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CONNECTIVE COVERINGS OF BO AND IMMERSIONS
OF PROJECTIVE SPACES

DONALD M. DAVIS

New immersions and nonimmersions of real projective
space RPn in Euclidean space are proved when the number
of l's in the binary expansion of n is 7. The method is
obstruction theory, utilizing the connective coverings of BO.

1* Introduction. Let BO[j] (resp. BON[j]) denote the space ob-
tained from BO (resp. BON) by killing πt for i < j. In [4] Mahowald
and the author computed the cohomology and stable homotopy groups
of B0[8]/B0N[8] through degree N + 16 and used these results to
prove some new immersion and nonimmersion results for real pro-
jective spaces Pn. In this paper similar computations are performed
when j > 8 and used to obtain some more new immersion and non-
immersion results.

Let a{n) denote the number of l 's in the binary expansion of n
and v(2a(2b + 1)) = a.

THEOREM 1.1. If v{n + 1) ^ a(n) — 4 ^ 3 , then Pn cannot be
immersed in fi*»-*«™-*-\

THEOREM 1.2. If a(n) = 7, vin + 1) = 4 or 5, then Pn can be
immersed in R2n~16.

Theorem 1.2 is within 3 dimensions of best possible (by Theorem
1.1). It provides another counterexample to the previously conjec-
tured nonimmersions ([6], [4]). For a(ri) ^ 8, Theorem 1.1 is probably
not very close to best possible. It gives the densest set of metastable
nonimmersion results known to the author. The number of n < 2k

satisfying the condition of 1.1 is ( c" )•

Let j ^ denote the mod 2 Steenrod algebra. For j = 0,1, 2, or
4(8) let Ij denote the left ideal generated by

Sq* if i =

Sq3 if j = 2(8)

Sq' and Sq5 if j = 0(8)

Sq1 and Sq2 if j = 4(8)

Let J^(g0, g9) be a free J^-module with generators of degree 0 and
9, and I the left ideal generated b y Sq^o, Sq2g0, Sq4g0, Sqsg0, Sq2g9,
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and Sq16g0 + Sq7g, + Sq'Sq'Sq'g,. Let PN = RP^IRPN~\ All cohomology
groups have Z2-coefficients. Our other main result is

THEOREM 1.3. (i) There is an isomorphism of ^/-modules
through degree N + 18

H*(B0[9], BON[9]) ~ 3*(ΣPN) <g) ̂ (g0, g9)/I

(ii) For j — 0, 1, 2, 4(8) and j ^ 10, there is an isomorphism
of ^/-modules through degree N + 2j

H*(BO[j]9 BON[j]) ~ H\ΣPN) 0 &*{ΣPN) (g) Σ'^/Ij .

In Proposition 2.1 we show how 1.3 can be used to compute the
Adams spectral sequence (ASS) for BO[j]/BON[j] through degree
N + 2j.

This work owes a heavy debt to Mark Mahowald, who devised
this approach to immersions and suggested the validity of 1.3 (ii)
and the case a(n) = 7 of 1.1.

2* The spaces BO[j]/BON[j]. In this section we study the Z2-
cohomology and stable homotopy groups of the spaces BO[j]/BON[j]
through degree N + 2j.

Proof of Theorem 1.3(ii) Let k: BO[j]-*BO and k: BO[j]/BON[j]->
BO/BON. Let i: ΣPN = CPN/PN -> BO[j]/BON[j] be induced from the
2N-equivalence PN -> VN and the fibration VN -> BON[j] -> BO[j]. The
Serre spectral sequence ([9], [10]) of the relative fibration (CVN, VN)—>
(BO[j], BON[j]) -^ 5O[i] is trivial through degree 2N because it is
mapped onto by that of {BO, BON) —• BO. Thus as a vector space
H*(BO[j], BON[j]) is isomorphic to <{&*ww: m > N}) ® H*(B0[j]),
where <S> is the vector space spanned by S. Here we use the ex-
ternal cup product and the fact that i^ϊc^w^ = sam~\ the nonzero
element in Hm(ΣPN).

Stong ([11]) showed k* - 0: H\B0) -> H\BO[j]) for i < 2φ{j)~\
where φ(j) is the number of positive integers ^j which are ΞΞ 0,1,2,4(8).
Thus for j ^ 1 0 k* = 0: H\B0) -> H%BO[j]) for i ^ 2j. By the
Wu formula

m — 1 \_ * Im — 1 — i -\- a
UJ+1 — 2

so that for i ^ 2 i S^Qc^w^ — { 7 )fc*ww+ϊ Hence through degree

N + 2i <&*^m: N <m^N + 2j) is an j^-submodule of H*(BO[j],
BON[j]) isomorphic to jy*(2ίP^+2i~1). Thus by the Cartan formula
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the vector space splitting of the previous paragraph gives an iso-
morphism of jy-modules through degree N + 2j H*(BO[j], BON[j]) &
3*(ΣPN)®H*(BO[j]). Through degree 2j - 1 H*(BO[j]) ~ Z2 0

as J^-modules ([11]).

Proof of Theorem 1.3(i) This follows the same outline as the
previous proof with a few modifications due to the fact that 2ί5(9)~1 <
2-9. This time

Sq\k*wm) =
m i_16 U k*wί{

0

if i = 16 or m is
even and i = 17

otherwise.

Through degree 17, fP(J3O[9]) ^ Z2 φ ^Vo/'/jy'CSg2). Let u9 denote
the nonzero element of H\B0[9]). Then &*^16 = (Sq7 + Sq'Sq'Sq1)^
because (Sg7 + Sq'Sq^q1)^ is the only nonzero element of H16(BO[9])
annihilated by Sq1 and Sq2, which is true of k*w16. The homomorphism
f: H*(ΣPN) (x) j^(flT0, Λ)//--> 5*(B0[9]/B0^[9]) defined by ψ(«α ® Λ ) =
k*wm+li ψ(sam (x) Sg7g9) = k*wm+1 U SgJw9 is easily seen to be an
j^-module isomorphism in the desired range. For example,

gQ)) - ψ ( ( ^ ) ^ m + 1 6 ® 9o + sam (x) (Sq7 + Sq'StfSq1^ =

Theorem 1.3 enables one to compute Ext^ (H*(BO[j\/BON[j])f Z2),
the ί72-term of the ASS converging to the stable homotopy groups
of BO[j]/BON[j]. We exemplify with the case which will be used
in proving Theorem L2. Other cases are treated similarly. Ext
groups are graphed as in [2]-[8], with vertical lines indicating
multiplication by hQ e Ext^(Z 2, Z2) which corresponds (up to elements
of higher filtration) to multiplication by 2 in homotopy groups, and
diagonal (/) lines indicating multiplication by h1 e ΈxVjβ (Z2, Z2), which
corresponds to ^ e ^ + 1 ( S % ) . Differentials in the ASS are indicated by
diagonal (\) lines.

PROPOSITION 2.1. Suppose
BO[9]/BOn_16[9] is given by

n = 7(8). The ASS chart for

A.
33 17
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1 5 9 13 17

with some differentials omitted in the top degree.

Proof. Let N = n — 16. By 1.3 (i) there is a short exact se-
quence of j^-modules

0 — H*(ΣPN) (X) Σ9j^/j^(Sq2) -> H*(B0[9], BON[9]) — H*(ΣPN) -* 0 ,

inducing a long exact sequence in Ext^ (, Z2). Ext^ {H*(ΣPN), Z2)
is given in [7; 8.16]. Let J^ζ denote the subalgebra of J*f generated
by Sq1 and Sq2. By the method of [1; § 6] J^/J^(Sq2) <** ^f\\^®
M, where M is the j^-module with nonzero element Sq°, Sg1, Sq2Sq1.
By the change-of-rings theorem ([2; 3.1])

(H*(ΣPN) (g) J^//<M (x) M, Z2) « E x t ^ (H*(ΣPN) (x) Af, Z.) .

This is computed as in [2; Ch. 3] or [8, Ch. 4] to begin

A
A \

12

There is a nonzero boundary homomorphism in the Ext-sequence,
which we picture as a ^-differential in the ASS. The ^-differentials
are deduced by applying π*( ) to the diagram

using the results of [4; Ch. 3]. The higher differentials in the top
degree which are present in ΣPn_16 are deduced by considering the
map of ASS induced by P%_16 —> Pw_16 Λ bJ (see [5]). We have also
used <Z2(feo(iβl)) = 0 in ASS (Pn_lβ), which is proved by going back to
P«-w When v{n + 1) = 6, the element in 8 = 5, t — s = n may not
be killed, which is the reason no immersion result is stated in this
case.
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3* Proof of nonimmersions (Theorem 1.1)* This proof is very-
similar to that in [4; Ch.5]. Let /: p -»β( } - 8 + " — JSO[8] classify the
restriction of the stable normal bundle (2L — n — l)ξ of P \ We will

prove t h e composite Pn~2<xM~3+n-C BO[8]^ BO[8]/BOn_2aM-3_4[8] is
essential.

Let a = a(n) - 4 and b = (n + l)/2α. Then α(δ - 1) = 4 and α ^ 3.
From [4; 3.2] the ASS chart for τrί(JBO[8]/jBO(6_2)2α_5[8]) is

£=(6-2)2*4-

In order to use the main result of [3], we "factor" / through QP
by going into BSpin as in [4; 4.1]. Thus we have

B0[8] > BSpin < BSp

(3.2) /j ,}
Γ>(5—2)2α+10 f\ Γ)(δ—2)2α~2+2

where g classifies (2L~2 - b2a~2)H.

LEMMA 3.3. If a(b — 1) = 4 and a ^ 3, then v(£_ £ΓΛr2

if J = 0 and is greater than 3 if Δ = —1,1, or 2.

Proof. By [3; 4.1]

2L~2 — 62α"
«((6 2 ) 2 ) + a(2L~2 - 2α~2(2δ - 2))

(6 — 2)2α /

= a(b - 2) + L - α - α(26 - 3) - (L - α - α(δ - 1))

= a{b - 2) - (α(26 - 4) + 1) + α(δ - 1) = - 1 + 4 = 3 .

The case J =̂ 0 is handled by similar techniques.

Let 8i = (6 - 2)2α and Q = J5O[8]/-BOβI_β[8]. Let Q<3> be the
space formed from Q by killing Extβ for s < 3. ([4; 2.1]). ζ><3> has
cohomology generators k8l, k8l+4, k8l+δ, k8l+7, k8l+8, k8l+8, and k8l+10 corre-
sponding to the elements of (3.1) of filtration 3.

LEMMA 3.4. kf lifts to a map P8l+10 —> Q<3> which sends only
k8l nontrivially.
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Proof. By the method of [4; Gh. 2 and 4.2], which is based
upon [3; 1.8], and using Lemma 3.3 and the fact that πJiCΓP8I_5) —*
πli(ΣP8l_5 A bo) is injective for i ^ 21 + 2 (by [7; 8.4 and 8.12]), there
exists a lifting of g to E3 in the modified Postnikov tower (MPT) of

the fibration BSp8l_5 —> BSp which sends only the 8£-dimensional k-
invariant nontrivially. Thus, since (3.2) effectively gives a factoriza-
tion through QP, as in the proof of [4; 5.1] / lifts to a map /:
P 8 m o — E"9 where E" is the third stage of the MPT of J5O8l_6[8]->
J5O[8], sending only the 8i-dimensional Mnvariant k8l nontrivially.

η

There is a map E" —> Q<3> and its behaviour on k-invariants is com-
puted by computing the induced morphism of minimal resolutions.
In particular, for the ^-invariant k8l+8e H8l+%Q(S)) corresponing to
the element in coker (Exty I + u (H*(ΣP8l_b\ Z2) — Ext 3/* 1 1 (β*(Q), Z2)),
if I is odd, j*(k'8l+8) = (Sq8 + w8)k8l so that f*j*k8l+8 = Sq8asι +
w8((2L - SI - 2α+1)f) U a%ι = a8l+s+a8l+8 = 0, while if I is even, j^(BO[8])
annihilates k8t in the range under consideration.

Theorem 1.1 follows from Lemma 3.4 together with

PROPOSITION 3.5. If p8*+10—>Q<3> sends only k8l nontrivially,
then P8l+10 —> Q<3> -+Q is essential.

Proof. We show that such a map represents a nontrivial class
of E x t y (S*(Q), J?*(P8ί+10)) which is not hit by a differential in the
ASS converging to [P8<+10, Q].

A minimal ^/-resolution of H*(Q) corresponds to a minimal
^-resolution of H*(ΣP8l_5). (See [4; 3.1].) This is listed in the
Appendix. Ext3',3 (β*(Q), i ϊ * ( P 8 m o ) ) ^ ker d*/im d? in

If we denote by fc, the j^-homomorphism Σ~*C3 -> ff*(p«+i<>) sending
only 2f~3/cί nontrivially, then dt(ko)~O because, for example d*ko(Σ"%) =
ίcMΣ'%) = ίcQ(Σ-\Sq% + Sq2Sq%)) = Sq2Sq3a81 = 0. ^The image of d*
is generated^ by &8 = d2*(^8), £8 + fc10 = d2*(fe7), &0 + Λ8 = d^h^) and
ίc4 + k6 = d*(ίi4). Thus fc0 gives a nonzero element of Ext.

Similarly Ext&/+1 (JΪ*Q, JϊP8 Z + 1 0) = ^ 2 for j = 0 and 1. The non-
zero elements in these groups survive to give the nontrivial elements
2j[fo], where fQ is the map defined after (4.6). Thus there are no
elements which could support a differential hitting fc0.

4* Proof of immersions (Theorem 1.2). The proof is very similar
to that of [4; 1.1]. We let g: Pn -> BO[9] classify the stable normal
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bundle and let g7 denote the fibre of k0: BO[9] -> C, where C =
J3O[9]/2?O%_16[9]. We consider the diagram

—

As in [4; 1.4(c)] the fibre of kx has the same w-type as -BOn_lβ[9].
(This is the main reason for using BO[9] instead of BO[8].) It suf-
fices to prove
(4.1) kog is null-homotopic, so that there is a lifting I of g, and
(4.2) there is a map Pn —> 0C such that kλμ(f x Z) is null-homotopic.

Proof of 4.1. We use the charts of π*(C) given in 2.1.

Similarly to [4; 4.1] one shows that kog has filtration ^ 5 . This

is accomplished by noting that if n = 16Ϊ + 15, then y( 47 _μ ε ) ~

{4 J = 2 0 Γ 8 > s o t h a t QpU+* l i f t s t 0 ^ s e n d i n ^ o n l y 1̂6̂+8 nontrivi-
ally. (QP gets past the irregular element in s = 2, έ — s = 16Ϊ + 8
as in [4; 4.2]. It gets by the x'd tower in t — s — 16Ϊ + 12 because

they are not present in the MPT for BSpn_16—>BSp, where the
liftings are first performed. (See [4; 4.1, 4.2].).) Thus Pn lifts to Eδ

since primary indeterminacy enables one to vary k16l+8 without varying
the other ^-invariants.

Finally we show that any filtration 5 map Pn —> C is null-ho-
motopic. The only possible map not trivial by Ext-considerations
(or by the differentials in the top degree) is an extension over Pn

of the map P71"3 Λ Sn~* £ C, where k is the collapse and [/] the fil-
tration 5 generator. But [/] is divisible by 2 by [4; 3.5] since
BO[9]/BOn_]6[9] -> BO[8]/BOn_16[S] sends the filtration 2 class in πn_z

to the filtration 3 class. Thus Plz\ —•> S*~~3 —* C is trivial and hence
so is fk. But there is a unique filtration 5 extension of fk over P"
since for i = 0, 1, 2, πn_t(C) has no elements of filtration ^ 5 . Hence
the extension over P % is trivial.

Proof of 4.2. This is very similar to [4; Ch. 4 beginning with
4.3]. [hμίf x I)] is considered as the homotopy sum of three stable
maps
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(4.4)

(4.5)

(4.6)

pn

pn

pn

I

f ;

fΛl

£f-

ΩC

ΩC
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— • 8-/JBOίϊ_16[9]

> i f AB0M_lf![9]

A i f >ί f >'<

Let /o denote the composite Pn —•> Vn_ί6—+ΩΣVn-ί9—> ΩC and f

the composite Pn -+ Sn ^> ΩC where [u] has smallest possible filtra-
tion (5^2). As in [4] we have the following results.

PROPOSITION 4.7. (4.5) with /== /0 cmd (4.6) wi£fe / = /i are
homotopίc.

PROPOSITION 4.8. [P , ^/J5OΛ_lβ[9]] ^ Z2 © Z8 © Z2 φ Z l β.

. As in [4; 4.3] JEΓ*( 8
so that its homotopy groups are as in (2.2, ? = 1) reindexed.
[P Λ , &/BOn-ie[9]] is computed as in [4; 4.9] or by computing
E x t y (JEΓ*( g7, JBOW_16[9]), P%) as in 3.5. The Z2's are due to the Z2

homotopy groups in degrees n — 3 and n — 7.

Let (•?!, G2, G3, and (?4 denote generators under a splitting of
Proposition 4.8.

PROPOSITION 4.9. Some multiple of (4.5) with f — fx equals 4(?2.

PROPOSITION 4.10. If v(n + 1) = 4, then (4.6) with / = /0

coefficient of Gv / / v(n + 1) = 5, then (4.6) witΛ f=f0 is 2aG1 +
26G2 where a is an odd integer and b is an integer.

Proof. This can be seen by using the map

&/BOn-a[8], where W = fibre (50[8] ^ BO[8]/BOΛ_lβ[8]), and [4; 4.11,

4.12].
To deduce 1.2, we use the fact ([4; 1.2]) that Pn immerses in

R2n~u and argue as in the last paragraphs of [4; Ch. 4]. We consider
the diagram

Ω(BO[9]/BO^ί6[9]) x g7 - ^ gf — &IBOΛ-ιβ[9]

X J2 b21*
[^^J 3\] is onto with kernel <4G2, 8G4>. [Pn, j\] is onto all elements
except a filtration 1 map /2 trivial on Pn~2. The analogue of (4.6)
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with f = f2 is null-homotopic and the analogue of (4.5) with f — f2

is 0 or 4G2.
Let l:Pn—>i? be some lifting of g. There exists f':Pn~+

β(£O[9]/.BOw_u[9]) such that k\μ\f x j2l) = 0. Either / ' or / ' - /2

factors as Pn^ΩC^> Ω(BO[9]/BOn_u[9]). Then k[μ'(j\ x i,)(/ x Z) = 0
or 4G2. Hence kxμ(f x I) is 4α(?1 + 46G2 for some a e Z2, b e Z4. If
α=0, by 4.7 and 4.9 there is some multiple dfx such that hμdf—df^x
Z) = 0. If α = l , there exists <Z such that k1μ((f+2«-v{n+1)f0-df1)xl) = Q.

5* Appendix* A minimal J^-resolution through degree 81 + 10

of JΪ*(2rP8ί_5) is given by C0<^-C1^'C2<^-C3^-Ci<—, where Cβ is a
free j^-module generated by elements xi9 gif hif kif or lt for s=0,l,2,3,
or 4 with subscripts indicating £ — s — 81, where t is the degree of
the generator. (See [4; Ch. 6].) We omit Sq for Steenrod squares;
thus, 62g denotes SqβSq2g. This resolution corresponds to (3.1).

Co has generators #_4, x0, and #8

L_4 (This means dQ(g_2) =

00

2tf0

lα?8 + 27#0

09

h2

h7

k7

ks

K
" ' I O

h
h

2ίc8 + 424#o

21flr_
2

, , + (7 + 421)fiτ_2

! + (91 +
lg8 + 521gι + 54#(

λί : (46 + 73 + 631)^ + 461^_;

-09 + 3^8 + (46

h
A4 + 41ft,

\K + (7 Λ
72Λ_1

(27

lh's + 2h7 + 4Shz + (27 + 72)h

+ (66 0

(7 + 421)A;0

(6
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