CONNECTIVE COVERINGS OF *BO* AND IMMERSIONS OF PROJECTIVE SPACES

DONALD M. DAVIS

New immersions and nonimmersions of real projective space RP^n in Euclidean space are proved when the number of 1's in the binary expansion of n is 7. The method is obstruction theory, utilizing the connective coverings of BO.

1. Introduction. Let BO[j] (resp. $BO_N[j]$) denote the space obtained from BO (resp. BO_N) by killing π_i for i < j. In [4] Mahowald and the author computed the cohomology and stable homotopy groups of $BO[8]/BO_N[8]$ through degree N + 16 and used these results to prove some new immersion and nonimmersion results for real projective spaces P^n . In this paper similar computations are performed when j > 8 and used to obtain some more new immersion and nonimmersion results.

Let $\alpha(n)$ denote the number of 1's in the binary expansion of n and $\nu(2^{a}(2b+1)) = a$.

THEOREM 1.1. If $\nu(n+1) \ge \alpha(n) - 4 \ge 3$, then P^n cannot be immersed in $R^{2n-2^{\alpha(n)-3-4}}$.

THEOREM 1.2. If $\alpha(n) = 7$, $\nu(n+1) = 4$ or 5, then P^n can be immersed in \mathbb{R}^{2n-16} .

Theorem 1.2 is within 3 dimensions of best possible (by Theorem 1.1). It provides another counterexample to the previously conjectured nonimmersions ([6], [4]). For $\alpha(n) \ge 8$, Theorem 1.1 is probably not very close to best possible. It gives the densest set of metastable nonimmersion results known to the author. The number of $n < 2^k$ satisfying the condition of 1.1 is $\binom{k-2}{5}$.

Let \mathcal{A} denote the mod 2 Steenrod algebra. For $j \equiv 0, 1, 2$, or 4(8) let I_j denote the left ideal generated by

Let $\mathscr{H}(g_0, g_9)$ be a free \mathscr{H} -module with generators of degree 0 and 9, and I the left ideal generated by $Sq^1g_0, Sq^2g_0, Sq^4g_0, Sq^8g_0, Sq^2g_9$,

and $Sq^{_{16}}g_0 + Sq^7g_9 + Sq^4Sq^2Sq^1g_9$. Let $P_N = RP^{\infty}/RP^{N-1}$. All cohomology groups have \mathbb{Z}_2 -coefficients. Our other main result is

THEOREM 1.3. (i) There is an isomorphism of \mathcal{A} -modules through degree N + 18

$$H^*(BO[9], BO_N[9]) \approx \widetilde{H}^*(\Sigma P_N) \otimes \mathscr{M}(g_0, g_9)/I$$

(ii) For j = 0, 1, 2, 4(8) and $j \ge 10$, there is an isomorphism of *A*-modules through degree N + 2j

 $H^*(BO[j], BO_N[j]) \approx \widetilde{H}^*(\Sigma P_N) \bigoplus \widetilde{H}^*(\Sigma P_N) \otimes \Sigma^j \mathcal{A}/I_j$.

In Proposition 2.1 we show how 1.3 can be used to compute the Adams spectral sequence (ASS) for $BO[j]/BO_N[j]$ through degree N+2j.

This work owes a heavy debt to Mark Mahowald, who devised this approach to immersions and suggested the validity of 1.3 (ii) and the case $\alpha(n) = 7$ of 1.1.

2. The spaces $BO[j]/BO_N[j]$. In this section we study the Z_2 -cohomology and stable homotopy groups of the spaces $BO[j]/BO_N[j]$ through degree N + 2j.

Proof of Theorem 1.3(ii) Let $k: BO[j] \rightarrow BO$ and $\overline{k}: BO[j]/BO_N[j] \rightarrow BO/BO_N$. Let $i: \Sigma P_N = CP_N/P_N \rightarrow BO[j]/BO_N[j]$ be induced from the 2N-equivalence $P_N \rightarrow V_N$ and the fibration $V_N \rightarrow BO_N[j] \rightarrow BO[j]$. The Serre spectral sequence ([9], [10]) of the relative fibration $(CV_N, V_N) \rightarrow (BO[j], BO_N[j]) \rightarrow BO[j]$ is trivial through degree 2N because it is mapped onto by that of $(BO, BO_N) \rightarrow BO$. Thus as a vector space $H^*(BO[j], BO_N[j])$ is isomorphic to $\langle \{\bar{k}^* w_m : m > N\} \rangle \otimes H^*(BO[j])$, where $\langle S \rangle$ is the vector space spanned by S. Here we use the external cup product and the fact that $i^*\bar{k}^*w_m = s\alpha^{m-1}$, the nonzero element in $H^m(\Sigma P_N)$.

Stong ([11]) showed $k^* = 0$: $H^i(BO) \to H^i(BO[j])$ for $i < 2^{\phi(j)-1}$, where $\phi(j)$ is the number of positive integers $\leq j$ which are $\equiv 0, 1, 2, 4(8)$. Thus for $j \geq 10$ $k^* = 0$: $H^i(BO) \to H^i(BO[j])$ for $i \leq 2j$. By the Wu formula

$$S^i q(ar{k}^*w_{\scriptscriptstyle m}) = inom{m-1}{i}ar{k}^*w_{\scriptscriptstyle m+1} = \sum\limits_{a=0}^iinom{m-1-i+a}{a}k^*w_aigcupar{k}^*w_{\scriptscriptstyle m+i-a}$$
 ,

so that for $i \leq 2j \ S^i q(\bar{k}^* w_m) = \binom{m-1}{i} \bar{k}^* w_{m+i}$. Hence through degree $N + 2j \ \langle \bar{k}^* w_m : N < m \leq N + 2j \rangle$ is an *A*-submodule of $H^*(BO[j], BO_N[j])$ isomorphic to $\tilde{H}^*(\Sigma P_N^{N+2j-1})$. Thus by the Cartan formula

the vector space splitting of the previous paragraph gives an isomorphism of \mathscr{A} -modules through degree $N + 2j H^*(BO[j], BO_N[j]) \approx \widetilde{H}^*(\Sigma P_N) \otimes H^*(BO[j])$. Through degree $2j - 1 H^*(BO[j]) \approx Z_2 \bigoplus \Sigma^j \mathscr{A}/I_j$ as \mathscr{A} -modules ([11]).

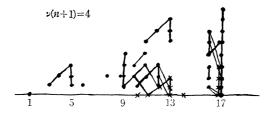
Proof of Theorem 1.3(i) This follows the same outline as the previous proof with a few modifications due to the fact that $2^{\phi(9)-1} < 2.9$. This time

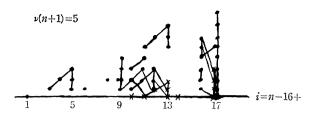
$$Sq^i(ar{k}^*w_m)=inom{m-1}{i}ar{k}^*w_{m+i}+inom{k}^*w_{m+i-16}\cup k^*w_{16} & ext{if} \ i=16 \ ext{or} \ m \ ext{is} \ even \ ext{and} \ i=17 \ 0 & ext{otherwise}. \end{cases}$$

Through degree 17, $H^*(BO[\mathbf{9}]) \approx \mathbb{Z}_2 \bigoplus \Sigma^9 \mathscr{A}/\mathscr{A}(Sq^2)$. Let u_9 denote the nonzero element of $H^9(BO[\mathbf{9}])$. Then $k^*w_{16} = (Sq^7 + Sq^4Sq^2Sq^1)u_9$ because $(Sq^7 + Sq^4Sq^2Sq^1)u_9$ is the only nonzero element of $H^{16}(BO[\mathbf{9}])$ annihilated by Sq^1 and Sq^2 , which is true of k^*w_{16} . The homomorphism $\psi: \tilde{H}^*(\Sigma P_N) \otimes \mathscr{A}(g_0, g_9)/I \rightarrow \tilde{H}^*(BO[\mathbf{9}]/BO_N[\mathbf{9}])$ defined by $\psi(s\alpha^m \otimes g_0) = \overline{k}^*w_{m+1}$, $\psi(s\alpha^m \otimes Sq^Ig_9) = \overline{k}^*w_{m+1} \cup Sq^Iu_9$ is easily seen to be an \mathscr{A} -module isomorphism in the desired range. For example, $\psi(Sq^{16}(s\alpha^m \otimes g_0)) = \psi(\binom{m}{16}s\alpha^{m+16} \otimes g_0 + s\alpha^m \otimes (Sq^7 + Sq^4Sq^2Sq^1)g_9) = \binom{m}{16}\overline{k}^*w_{m+17} + \overline{k}^*w_{m+1} \cup (Sq^7 + Sq^4Sq^2Sq^1)u_9 = Sq^{16}(\overline{k}^*w_{m+1}) = Sq^{16}(\psi(s\alpha^m \otimes g_0)).$

Theorem 1.3 enables one to compute $\operatorname{Ext}_{\mathscr{A}}(\widetilde{H}^*(BO[j]/BO_N[j]), \mathbb{Z}_2)$, the E_2 -term of the ASS converging to the stable homotopy groups of $BO[j]/BO_N[j]$. We exemplify with the case which will be used in proving Theorem 1.2. Other cases are treated similarly. Ext groups are graphed as in [2]-[8], with vertical lines indicating multiplication by $h_0 \in \operatorname{Ext}_{\mathscr{A}}^{1,1}(\mathbb{Z}_2, \mathbb{Z}_2)$ which corresponds (up to elements of higher filtration) to multiplication by 2 in homotopy groups, and diagonal (/) lines indicating multiplication by $h_1 \in \operatorname{Ext}_{\mathscr{A}}^{1,2}(\mathbb{Z}_2, \mathbb{Z}_2)$, which corresponds to $\eta \in \pi_{n+1}(S^n)$. Differentials in the ASS are indicated by diagonal (\) lines.

PROPOSITION 2.1. Suppose $n \equiv 7(8)$. The ASS chart for $BO[9]/BO_{n-16}[9]$ is given by





with some differentials omitted in the top degree.

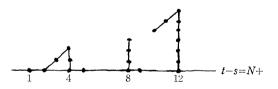
Proof. Let N = n - 16. By 1.3 (i) there is a short exact sequence of \mathcal{A} -modules

$$0 \to \widetilde{H}^*(\Sigma P_N) \otimes \Sigma^{\mathfrak{g}} \mathscr{A}/\mathscr{A}(Sq^2) \to H^*(BO[\mathfrak{g}], BO_N[\mathfrak{g}]) \to \widetilde{H}^*(\Sigma P_N) \to 0 ,$$

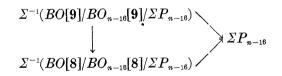
inducing a long exact sequence in $\operatorname{Ext}_{\mathscr{A}}(, \mathbb{Z}_2)$. $\operatorname{Ext}_{\mathscr{A}}(\widetilde{H}^*(\Sigma P_N), \mathbb{Z}_2)$ is given in [7; 8.16]. Let \mathscr{M}_1 denote the subalgebra of \mathscr{M} generated by Sq^1 and Sq^2 . By the method of [1; § 6] $\mathscr{M}/\mathscr{M}(Sq^2) \approx \mathscr{M}//\mathscr{M}_1 \otimes$ M, where M is the \mathscr{M}_1 -module with nonzero element Sq^0 , Sq^1 , Sq^2Sq^1 . By the change-of-rings theorem ([2; 3.1])

 $\operatorname{Ext}_{\mathscr{A}}(\widetilde{H}^*(\Sigma P_N)\otimes \mathscr{A}//\mathscr{A}_1\otimes M, \mathbb{Z}_2) \approx \operatorname{Ext}_{\mathscr{A}_1}(\widetilde{H}^*(\Sigma P_N)\otimes M, \mathbb{Z}_2).$

This is computed as in [2; Ch. 3] or [8, Ch. 4] to begin



There is a nonzero boundary homomorphism in the Ext-sequence, which we picture as a d_1 -differential in the ASS. The d_2 -differentials are deduced by applying $\pi_*()$ to the diagram



using the results of [4; Ch. 3]. The higher differentials in the top degree which are present in ΣP_{n-16} are deduced by considering the map of ASS induced by $P_{n-16} \rightarrow P_{n-16} \wedge bJ$ (see [5]). We have also used $d_2(h_0(_{16}1)) = 0$ in ASS (P_{n-16}) , which is proved by going back to P_{n-24} . When $\nu(n+1) = 6$, the element in s = 5, t - s = n may not be killed, which is the reason no immersion result is stated in this case.

3. Proof of nonimmersions (Theorem 1.1). This proof is very similar to that in [4; Ch.5]. Let $f: P^{n-2^{\alpha(m)-3}+11} \to BO[8]$ classify the restriction of the stable normal bundle $(2^L - n - 1)\xi$ of P^n . We will prove the composite $P^{n-2^{\alpha(m)-3}+11} \xrightarrow{f} BO[8] \xrightarrow{k} BO[8]/BO_{n-2^{\alpha(m)-3}-4}[8]$ is essential.

Let $\alpha = \alpha(n) - 4$ and $b = (n+1)/2^{a}$. Then $\alpha(b-1) = 4$ and $\alpha \ge 3$. From [4; 3.2] the ASS chart for $\pi_{i}(BO[8]/BO_{(b-2)2^{a}-5}[8])$ is



In order to use the main result of [3], we "factor" f through QP by going into BSpin as in [4; 4.1]. Thus we have

$$(3.2) \qquad \begin{array}{c} BO[8] \longrightarrow BSpin \longleftarrow BSp \\ f \uparrow \qquad g \uparrow \\ P^{(b-2)2^{a+10}} \longrightarrow QP^{(b-2)2^{a-2+2}} \end{array}$$

where g classifies $(2^{L-2} - b2^{a-2})H$.

LEMMA 3.3. If $\alpha(b-1) = 4$ and $a \ge 3$, then $\nu \begin{pmatrix} 2^{L-2} - b2^{a-2} \\ (b-2)2^{a-2} + d \end{pmatrix} = 3$ if d = 0 and is greater than 3 if d = -1, 1, or 2.

Proof. By [3; 4.1]

$$egin{aligned} & m{
u}igg(rac{2^{L-2}-b2^{a-2}}{(b-2)2^{a-2}}igg) &= lpha((b-2)2^{a-2})+lpha(2^{L-2}-2^{a-2}(2b-2))-lpha(2^{L-2}-b2^{a-2})\ &= lpha(b-2)+L-a-lpha(2b-3)-(L-a-lpha(b-1))\ &= lpha(b-2)-(lpha(2b-4)+1)+lpha(b-1)=-1+4=3 \,. \end{aligned}$$

The case $\Delta \neq 0$ is handled by similar techniques.

Let $8l = (b-2)2^s$ and $Q = BO[8]/BO_{8l-5}[8]$. Let $Q\langle 3 \rangle$ be the space formed from Q by killing Ext^s for s < 3. ([4; 2.1]). $Q\langle 3 \rangle$ has cohomology generators k_{8l} , k_{8l+4} , k_{8l+5} , k_{8l+7} , k_{8l+8} , k_{8l+8} , and k_{8l+10} corresponding to the elements of (3.1) of filtration 3.

LEMMA 3.4. kf lifts to a map $P^{\mathfrak{sl}+\mathfrak{10}} \rightarrow Q\langle 3 \rangle$ which sends only $k_{\mathfrak{sl}}$ nontrivially.

Proof. By the method of [4; Ch. 2 and 4.2], which is based upon [3; 1.8], and using Lemma 3.3 and the fact that $\pi_{4i}^{s}(\Sigma P_{8l-5}) \rightarrow$ $\pi_{4i}^s(\Sigma P_{8l-5} \wedge bo)$ is injective for $i \leq 2l+2$ (by [7; 8.4 and 8.12]), there exists a lifting of g to E_3 in the modified Postnikov tower (MPT) of the fibration $\widetilde{BSp}_{sl-5} \rightarrow BSp$ which sends only the 8l-dimensional kinvariant nontrivially. Thus, since (3.2) effectively gives a factorization through QP, as in the proof of [4; 5.1] f lifts to a map \tilde{f} : $P^{\mathfrak{sl}+\mathfrak{l0}} \rightarrow E_{\mathfrak{s}}^{\prime\prime}$, where $E_{\mathfrak{s}}^{\prime\prime}$ is the third stage of the MPT of $BO_{\mathfrak{sl}-\mathfrak{s}}[8] \rightarrow$ BO[8], sending only the 8*l*-dimensional *k*-invariant \overline{k}_{sl} nontrivially. There is a map $E_{\mathfrak{s}}'' \xrightarrow{j} Q\langle 3 \rangle$ and its behaviour on k-invariants is computed by computing the induced morphism of minimal resolutions. In particular, for the k-invariant $k'_{8l+8} \in H^{8l+8}(Q\langle 3 \rangle)$ corresponding to the element in coker $(\operatorname{Ext}^{3,8l+11}_{\mathscr{H}}(\widetilde{H}^*(\Sigma P_{8l-5}), \mathbb{Z}_2) \to \operatorname{Ext}^{3,8l+11}_{\mathscr{H}}(\widetilde{H}^*(Q), \mathbb{Z}_2)),$ $\text{if} \hspace{0.1in} l \hspace{0.1in} \text{is} \hspace{0.1in} \text{odd}, \hspace{0.1in} j^{*}(k_{sl+8}') = (Sq^{s}+w_{s})\overline{k}_{sl} \hspace{0.1in} \text{so} \hspace{0.1in} \text{that} \hspace{0.1in} \widetilde{f}^{*}j^{*}k_{sl+8} = Sq^{s}\alpha^{sl} +$ $w_{8}((2^{L}-8l-2^{a+1})\xi) \cup \alpha^{8l} = \alpha^{8l+8} + \alpha^{8l+8} = 0$, while if *l* is even, $\mathcal{M}(BO[8])$ annihilates \bar{k}_{st} in the range under consideration.

Theorem 1.1 follows from Lemma 3.4 together with

PROPOSITION 3.5. If $P^{8l+10} \rightarrow Q\langle 3 \rangle$ sends only k_{sl} nontrivially, then $P^{8l+10} \rightarrow Q\langle 3 \rangle \rightarrow Q$ is essential.

Proof. We show that such a map represents a nontrivial class of $\operatorname{Ext}^{3,3}_{\mathcal{V}}(\widetilde{H}^*(Q), \widetilde{H}^*(P^{\mathfrak{s}l+10}))$ which is not hit by a differential in the ASS converging to $[P^{\mathfrak{s}l+10}, Q]$.

A minimal \mathscr{A} -resolution of $\tilde{H}^*(Q)$ corresponds to a minimal \mathscr{A}_2 -resolution of $\tilde{H}^*(\Sigma P_{8l-5})$. (See [4; 3.1].) This is listed in the Appendix. Ext $^{3,3}_{\mathscr{A}}(\tilde{H}^*(Q), \tilde{H}^*(P^{8l+10})) \approx \ker d_3^*/\operatorname{in} d_2^*$ in

$$\operatorname{Hom}(\Sigma^{-3}C_2, \widetilde{H}^*P^{8l+10}) \xrightarrow{d_2^*} \operatorname{Hom}(\Sigma^{-3}C_3, \widetilde{H}^*P^{8l+10}) \xrightarrow{d_3^*} \operatorname{Hom}(\Sigma^{-3}C_4, \widetilde{H}^*P^{8l+10}) .$$

If we denote by \hat{k}_i the \mathscr{N}_2 -homomorphism $\Sigma^{-3}C_3 \to \tilde{H}^*(P^{8l+10})$ sending only $\Sigma^{-3}k_i$ nontrivially, then $d_3^*(\hat{k}_0) = 0$ because, for example $d_3^*\hat{k}_0(\Sigma^{-3}l_4) = \hat{k}_0 d_3(\Sigma^{-3}l_4) = \hat{k}_0(\Sigma^{-3}(Sq^1k_4 + Sq^2Sq^3k_0)) = Sq^2Sq^3\alpha^{8l} = 0$. The image of d_2^* is generated by $\hat{k}_8 = d_2^*(\hat{h}_8), \hat{k}'_8 + \hat{k}_{10} = d_2^*(\hat{h}_7), \hat{k}_0 + \hat{k}'_8 = d_2^*(\hat{h}_{-1})$ and $\hat{k}_4 + \hat{k}_5 = d_2^*(\hat{h}_4)$. Thus \hat{k}_0 gives a nonzero element of Ext.

Similarly $\operatorname{Ext}_{\mathscr{A}}^{j,j+1}(\widetilde{H}^*Q, \widetilde{H}P^{8l+10}) = Z_2$ for j = 0 and 1. The nonzero elements in these groups survive to give the nontrivial elements $2^j[f_0]$, where f_0 is the map defined after (4.6). Thus there are no elements which could support a differential hitting \hat{k}_0 .

4. Proof of immersions (Theorem 1.2). The proof is very similar to that of [4; 1.1]. We let $g: P^n \to BO[9]$ classify the stable normal

bundle and let \mathscr{C} denote the fibre of $k_0: BO[9] \to C$, where $C = BO[9]/BO_{n-10}[9]$. We consider the diagram

$$BO_{n-16}[9]$$
 \downarrow
 $QC \times \mathscr{C} \xrightarrow{\mu} \mathscr{C} \xrightarrow{k_1} \mathscr{C}/BO_{n-16}[9]$
 \downarrow
 $P^n \xrightarrow{g} BO[9] \xrightarrow{k_0} C$

As in [4; 1.4(c)] the fibre of k_1 has the same *n*-type as $BO_{n-16}[9]$. (This is the main reason for using BO[9] instead of BO[8].) It suffices to prove

(4.1) k_0g is null-homotopic, so that there is a lifting l of g, and

(4.2) there is a map $P^n \to \Omega C$ such that $k_1 \mu(f \times l)$ is null-homotopic.

Proof of 4.1. We use the charts of $\pi_*(C)$ given in 2.1.

Similarly to [4; 4.1] one shows that k_0g has filtration ≥ 5 . This is accomplished by noting that if n = 16l + 15, then $\nu \begin{pmatrix} 2^L - 16l - 16 \\ 4l + \varepsilon \end{pmatrix} = \begin{cases} 5 \ \varepsilon = 1 \ \text{or } 3 \\ 4 \ \varepsilon = 2 \end{cases}$, so that QP^{4l+3} lifts to E_4 sending only k_{16l+8} nontrivially. (QP gets past the irregular element in s = 2, t - s = 16l + 8 as in [4; 4.2]. It gets by the x'd tower in t - s = 16l + 12 because they are not present in the MPT for $\widetilde{BSp}_{n-16} \rightarrow BSp$, where the liftings are first performed. (See [4; 4.1, 4.2].).) Thus P^n lifts to E_5 since primary indeterminacy enables one to vary k_{16l+8} without varying the other k^4 -invariants.

Finally we show that any filtration 5 map $P^n \to C$ is null-homotopic. The only possible map not trivial by Ext-considerations (or by the differentials in the top degree) is an extension over P^n of the map $P^{n-3} \xrightarrow{k} S^{n-3} \xrightarrow{f} C$, where k is the collapse and [f] the filtration 5 generator. But [f] is divisible by 2 by [4; 3.5] since $BO[9]/BO_{n-16}[9] \to BO[8]/BO_{n-16}[8]$ sends the filtration 2 class in π_{n-3} to the filtration 3 class. Thus $P_{n-4}^{n-3} \to S^{n-3} \xrightarrow{f} C$ is trivial and hence so is fk. But there is a unique filtration 5 extension of fk over P^n since for $i = 0, 1, 2, \pi_{n-i}(C)$ has no elements of filtration ≥ 5 . Hence the extension over P^n is trivial.

Proof of 4.2. This is very similar to [4; Ch. 4 beginning with 4.3]. $[k_1\mu(f \times l)]$ is considered as the homotopy sum of three stable maps

$$(4.4) P^{n} \xrightarrow{l} \mathscr{C} \longrightarrow \mathscr{C}/BO_{n-16}[9]$$

(4.5) $P^{n} \xrightarrow{f} \Omega C \longrightarrow \mathscr{C}/BO_{n-16}[9]$

(4.6)
$$P^{n} \xrightarrow{f \wedge l} \Omega C \wedge \mathscr{C} \longrightarrow \mathscr{C} \longrightarrow \mathscr{C} / BO_{n-16}[9].$$

Let f_0 denote the composite $P^n \to V_{n-16} \to \Omega \Sigma V_{n-16} \to \Omega C$ and f_1 the composite $P^n \to S^n \xrightarrow{u} \Omega C$ where [u] has smallest possible filtration (≤ 2). As in [4] we have the following results.

PROPOSITION 4.7. (4.5) with $f = f_0$ and (4.6) with $f = f_1$ are null-homotopic.

PROPOSITION 4.8. $[P^n, \mathscr{C}/BO_{n-16}[9]] \approx \mathbb{Z}_2 \bigoplus \mathbb{Z}_8 \bigoplus \mathbb{Z}_2 \bigoplus \mathbb{Z}_{16}.$

Rroof. As in [4; 4.3] $H^*(\mathcal{C}, BO_{n-16}[9]) \approx \tilde{H}^*(\Sigma^9 P_{n-16}) \otimes \mathscr{A}/I(Sq^2)$, so that its homotopy groups are as in (2.2, $j \equiv 1$) reindexed. $[P^n, \mathscr{C}/BO_{n-16}[9]]$ is computed as in [4; 4.9] or by computing $\operatorname{Ext}_{\mathscr{A}}^{s,s}(H^*(\mathscr{C}, BO_{n-16}[9]), P^n)$ as in 3.5. The \mathbb{Z}_2 's are due to the \mathbb{Z}_2 homotopy groups in degrees n-3 and n-7.

Let G_1, G_2, G_3 , and G_4 denote generators under a splitting of Proposition 4.8.

PROPOSITION 4.9. Some multiple of (4.5) with $f = f_1$ equals $4G_2$.

PROPOSITION 4.10. If $\nu(n+1) = 4$, then (4.6) with $f = f_0$ has odd coefficient of G_1 . If $\nu(n+1) = 5$, then (4.6) with $f = f_0$ is $2aG_1 + 2bG_2$ where a is an odd integer and b is an integer.

Proof. This can be seen by using the map $\mathscr{C}/BO_{n-16}[9] \rightarrow \overline{\mathscr{C}}/BO_{n-16}[8]$, where $\overline{\mathscr{C}}$ = fibre $(BO[8] \rightarrow BO[8]/BO_{n-16}[8])$, and [4; 4.11, 4.12].

To deduce 1.2, we use the fact ([4; 1.2]) that P^n immerses in \mathbb{R}^{2n-14} and argue as in the last paragraphs of [4; Ch. 4]. We consider the diagram

 $[P^n, j_3]$ is onto with kernel $\langle 4G_2, 8G_4 \rangle$. $[P^n, j_1]$ is onto all elements except a filtration 1 map f_2 trivial on P^{n-2} . The analogue of (4.6)

40

with $f = f_2$ is null-homotopic and the analogue of (4.5) with $f = f_2$ is 0 or $4G'_2$.

Let $l: P^n \to \mathscr{C}$ be some lifting of g. There exists $f': P^n \to \mathscr{Q}(BO[9]/BO_{n-14}[9])$ such that $k'_1\mu'(f' \times j_2l) = 0$. Either f' or $f' - f_2$ factors as $P^n \xrightarrow{f} \mathscr{Q}C \xrightarrow{j_1} \mathscr{Q}(BO[9]/BO_{n-14}[9])$. Then $k'_1\mu'(j_1 \times j_2)(f \times l) = 0$ or $4G'_2$. Hence $k_1\mu(f \times l)$ is $4aG_1 + 4bG_2$ for some $a \in \mathbb{Z}_2$, $b \in \mathbb{Z}_4$. If a=0, by 4.7 and 4.9 there is some multiple df_1 such that $k_1\mu((f-df_1) \times l) = 0$. If a=1, there exists d such that $k_1\mu((f+2^{6-\nu(n+1)}f_0-df_1) \times l) = 0$.

5. Appendix. A minimal \mathscr{A}_2 -resolution through degree 8l + 10of $\tilde{H}^*(\Sigma P_{3l-5})$ is given by $C_0 \stackrel{d_0}{\leftarrow} C_1 \stackrel{d_1}{\leftarrow} C_2 \stackrel{d_2}{\leftarrow} C_3 \stackrel{d_3}{\leftarrow} C_4 \leftarrow$, where C_s is a free \mathscr{A}_2 -module generated by elements x_i, g_i, h_i, k_i , or l_i for s=0,1,2,3, or 4 with subscripts indicating t-s-8l, where t is the degree of the generator. (See [4; Ch. 6].) We omit Sq for Steenrod squares; thus, 62g denotes Sq^8Sq^2g . This resolution corresponds to (3.1).

 C_0 has generators x_{-4} , x_0 , and x_8

```
g_{-2}: 21x_{-4} (This means d_0(g_{-2}) = Sq^2Sq^3x_{-4})
 g_{-1}: 4x_{-4}
g_0: 1x_0 + 41x_{-4}
g_1: 2x_0 + 42x_{-4}
g_8 : 1x_8 + 27x_0
g_9: 2x_8 + 424x_0
h_{-1}: 2g_{-2}
h_0: 1g_0 + 21g_{-2}
h_2: 2g_1 + 3g_0 + 4g_{-1}
h_4: 51g_{-1} + (7 + 421)g_{-2}
h_7: 621g_{-1} + (91 + 46)g_{-2}
h_8: 1g_8 + 521g_1 + 54g_0 + 46g_{-1}
h'_8: (46 + 73 + 631)g_{-1} + 461g_{-2}
h_{10}: 2g_9 + 3g_8 + (46 + 91)g_1 + 47g_0
k_0: 1h_0 + 2h_{-1}
k_{\star}: 1h_{\star} + 41h_{0}
k_5: 2h_4 + (7 + 421)h_{-1}
k_7: 1h_7 + 4h_4 + 51h_2 + 72h_{-1}
k_8: 1h_8 + 43h_2 + (27 + 72)h_0 + 631h_{-1}
k_8': 1h_8' + 2h_7 + 43h_2 + (27 + 72)h_0 + 46h_{-1}
k_{10}: 3h'_8 + 4h_7 + 423h_2 + (66 + 75)h_{-1}
l_{\star} : 1k_{\star} + 23k_{\circ}
l_6: 2k_5 + 3k_4 + (7 + 421)k_0
l_7 : 1k_7 + 21k_5 + 4k_4 + 62k_0
l_8 : 1k_8 + 72k_0 + 41k_4
l_{10}: 1k_{10} + 21k'_8 + 4k_7 + (6 + 51)k_5 + 7k_4
```

DONALD M. DAVIS

References

1. D. W. Anderson, E. H. Brown and F. P. Peterson, The structure of the spin cobordism ring, Ann. of Math., 86 (1967), 271-298.

2. D. M. Davis, Generalized homology and the generalized vector field problem, Quar. Jour. Math., Oxford **25** (1974), 169-193.

3. D. M. Davis and M. Mahowald, The geometric dimension of some vector bundles over projective spaces, Trans. Amer. Math. Soc., **205** (1975), 295-316.

4. _____, The immersion conjecture is false, Trans. Amer. Math. Soc., 236 (1978), 361-383.

5. ____, Obstruction theory and ko-theory, to appear in Proc. Evanston Conference, Springer-Verlag Lecture Notes.

 S. Gitler, M. Mahowald and R. J. Milgram, The nonimmersion problem for RPⁿ and higher order cohomology operations, Proc. Nat. Acad. Sci., U.S.A., **60** (1968), 432-437.
 M. Mahowald, The metastable homotopy of Sⁿ, Mem. Amer. Math. Soc., **72** (1967).

8. M. Mahowald and R. J. Milgram, Operations which detect Sq^4 in connective Ktheory and their applications, Quar. J. Math., Oxford, **27** (1976), 415-432.

9. J. C. Moore, Some applications of homology theory to homotopy problems, Ann. of Math., 58 (1953), 325-350.

10. F. Nussbaum, Obstruction theory of possibly non-orientable fibrations, Ph. D. thesis, Northwestern Univ. 1970.

11. R. Stong, Determination of $H^*(BO(k, \infty); \mathbb{Z}_2)$ and $H^*(BU(k, \infty); \mathbb{Z}_2)$, Trans. Amer. Math. Soc., **107** (1963), 526-544.

Received September 3, 1976. This work was partially supported by a National Science Foundation grant.

Lehigh University Bethlehem, PA 18015