CONNECTIVE COVERINGS OF $B O$ AND IMMERSIONS OF PROJECTIVE SPACES

Donald M. Davis

Abstract

New immersions and nonimmersions of real projective space $R P^{n}$ in Euclidean space are proved when the number of 1 's in the binary expansion of n is 7 . The method is obstruction theory, utilizing the connective coverings of $B O$.

1. Introduction. Let $B O[j]$ (resp. $B O_{N}[j]$) denote the space obtained from $B O$ (resp. $B O_{N}$) by killing π_{i} for $i<j$. In [4] Mahowald and the author computed the cohomology and stable homotopy groups of $B O[8] / B O_{N}[8]$ through degree $N+16$ and used these results to prove some new immersion and nonimmersion results for real projective spaces P^{n}. In this paper similar computations are performed when $j>8$ and used to obtain some more new immersion and nonimmersion results.

Let $\alpha(n)$ denote the number of 1's in the binary expansion of n and $\nu\left(2^{a}(2 b+1)\right)=a$.

Theorem 1.1. If $\boldsymbol{\nu}(n+1) \geqq \alpha(n)-4 \geqq 3$, then P^{n} cannot be immersed in $R^{2 n-2^{\alpha(n)-3-4}}$.

Theorem 1.2. If $\alpha(n)=7, \nu(n+1)=4$ or 5 , then P^{n} can be immersed in $R^{2 n-16}$.

Theorem 1.2 is within 3 dimensions of best possible (by Theorem 1.1). It provides another counterexample to the previously conjectured nonimmersions ([6], [4]). For $\alpha(n) \geqq 8$, Theorem 1.1 is probably not very close to best possible. It gives the densest set of metastable nonimmersion results known to the author. The number of $n<2^{k}$ satisfying the condition of 1.1 is $\left(\frac{k-2}{5}\right)$.

Let \mathscr{A} denote the $\bmod 2$ Steenrod algebra. For $j \equiv 0,1,2$, or $4(8)$ let I_{j} denote the left ideal generated by

$$
\left\{\begin{array}{llll}
S q^{2} & & \text { if } & j \equiv 1(8) \\
S q^{3} & & \text { if } & j \equiv 2(8) \\
S q^{1} & \text { and } & S q^{5} & \text { if } \\
S q^{1} & \text { and } & S q^{2} & \text { if } \\
j \equiv 4(8)
\end{array}\right.
$$

Let $\mathscr{A}\left(g_{0}, g_{9}\right)$ be a free \mathscr{A}-module with generators of degree 0 and 9 , and I the left ideal generated by $S q^{1} g_{0}, S q^{2} g_{0}, S q^{4} g_{0}, S q^{8} g_{0}, S q^{2} g_{9}$,
and $S q^{18} g_{0}+S q^{7} g_{9}+S q^{4} S q^{2} S q^{1} g_{9}$. Let $P_{N}=R P^{\infty} / R P^{N-1}$. All cohomology groups have \boldsymbol{Z}_{2}-coefficients. Our other main result is

Theorem 1.3. (i) There is an isomorphism of \mathscr{A}-modules through degree $N+18$

$$
H^{*}\left(B O[9], B O_{N}[9]\right) \approx \tilde{H}^{*}\left(\Sigma P_{N}\right) \otimes \mathscr{A}\left(g_{0}, g_{9}\right) / I
$$

(ii) For $j=0,1,2,4(8)$ and $j \geqq 10$, there is an isomorphism of \mathscr{A}-modules through degree $N+2 j$

$$
H^{*}\left(B O[j], B O_{N}[j]\right) \approx \tilde{H}^{*}\left(\Sigma P_{N}\right) \oplus \widetilde{H}^{*}\left(\Sigma P_{N}\right) \otimes \Sigma^{j} \mathscr{A} / I_{j}
$$

In Proposition 2.1 we show how 1.3 can be used to compute the Adams spectral sequence (ASS) for $B O[j] / B O_{N}[j]$ through degree $N+2 j$.

This work owes a heavy debt to Mark Mahowald, who devised this approach to immersions and suggested the validity of 1.3 (ii) and the case $\alpha(n)=7$ of 1.1.
2. The spaces $B O[j] / B O_{N}[j]$. In this section we study the \boldsymbol{Z}_{2} cohomology and stable homotopy groups of the spaces $B O[j] / B O_{N}[j]$ through degree $N+2 j$.

Proof of Theorem 1.3(ii) Let $k: B O[j] \rightarrow B O$ and $\bar{k}: B O[j] / B O_{N}[j] \rightarrow$ $B O / B O_{N}$. Let $i: \Sigma P_{N}=C P_{N} / P_{N} \rightarrow B O[j] / B O_{N}[j]$ be induced from the $2 N$-equivalence $P_{N} \rightarrow V_{N}$ and the fibration $V_{N} \rightarrow B O_{N}[j] \rightarrow B O[j]$. The Serre spectral sequence ([9], [10]) of the relative fibration $\left(C V_{N}, V_{N}\right) \rightarrow$ $\left(B O[j], B O_{N}[j]\right) \rightarrow B O[j]$ is trivial through degree $2 N$ because it is mapped onto by that of $\left(B O, B O_{N}\right) \rightarrow B O$. Thus as a vector space $H^{*}\left(B O[j], B O_{N}[j]\right)$ is isomorphic to $\left\langle\left\{\bar{k}^{*} w_{m}: m>N\right\}\right\rangle \otimes H^{*}(B O[j])$, where $\langle S\rangle$ is the vector space spanned by S. Here we use the external cup product and the fact that $i^{*} \bar{k}^{*} w_{m}=s \alpha^{m-1}$, the nonzero element in $H^{m}\left(\Sigma P_{N}\right)$.

Stong ([11]) showed $k^{*}=0: H^{i}(B O) \rightarrow H^{i}(B O[j])$ for $i<2^{\phi(j)-1}$, where $\phi(j)$ is the number of positive integers $\leqq j$ which are $\equiv 0,1,2,4(8)$. Thus for $j \geqq 10 k^{*}=0: H^{i}(B O) \rightarrow H^{i}(B O[j])$ for $i \leqq 2 j$. By the Wu formula

$$
S^{i} q\left(\bar{k}^{*} w_{m}\right)=\binom{m-1}{i} \bar{k}^{*} w_{m+1}=\sum_{a=0}^{i}\binom{m-1-i+a}{a} k^{*} w_{a} \cup \bar{k}^{*} w_{m+i-a}
$$

so that for $i \leqq 2 j S^{i} q\left(\bar{k}^{*} w_{m}\right)=\binom{m-1}{i} \bar{k}^{*} w_{m+i}$. Hence through degree $N+2 j\left\langle\bar{k}^{*} w_{m}: N<m \leqq N+2 j\right\rangle$ is an \mathscr{A}-submodule of $H^{*}(B O[j]$, $\left.B O_{N}[j]\right)$ isomorphic to $\tilde{H}^{*}\left(\Sigma P_{N}^{N+2 j-1}\right)$. Thus by the Cartan formula
the vector space splitting of the previous paragraph gives an isomorphism of \mathscr{A}-modules through degree $N+2 j H^{*}\left(B O[j], B O_{N}[j]\right) \approx$ $\widetilde{H}^{*}\left(\Sigma P_{N}\right) \otimes H^{*}(B O[j])$. Through degree $2 j-1 \quad H^{*}(B O[j]) \approx Z_{2} \oplus$ $\Sigma^{j} \cdot \mathscr{A} / I_{j}$ as \mathscr{A}-modules ([11]).

Proof of Theorem 1.3(i) This follows the same outline as the previous proof with a few modifications due to the fact that $2^{\phi(9)-1}<$ $2 \cdot 9$. This time

$$
S q^{i}\left(\bar{k}^{*} w_{m}\right)=\binom{m-1}{i} \bar{k}^{*} w_{m+i}+ \begin{cases}\bar{k}^{*} w_{m+i-16} \cup k^{*} w_{16} & \text { if } i=16 \text { or } m \text { is } \\ 0 & \text { even and } i=17 \\ 0 & \text { otherwise } .\end{cases}
$$

Through degree 17, $H^{*}(B O[9]) \approx Z_{2} \oplus \Sigma^{9} \mathscr{A} / \mathscr{A}\left(S q^{2}\right)$. Let u_{9} denote the nonzero element of $H^{9}(B O[9])$. Then $k^{*} w_{18}=\left(S q^{7}+S q^{4} S q^{2} S q^{1}\right) u_{9}$ because ($\left.S q^{7}+S q^{4} S q^{2} S q^{1}\right) u_{9}$ is the only nonzero element of $H^{16}(B O[9])$ annihilated by $S q^{1}$ and $S q^{2}$, which is true of $k^{*} w_{16}$. The homomorphism $\psi: \widetilde{H}^{*}\left(\Sigma P_{N}\right) \otimes \mathscr{A}\left(g_{0}, g_{9}\right) / I \rightarrow \widetilde{H}^{*}\left(B O[9] / B O_{N}[9]\right)$ defined by $\psi\left(s \alpha^{m} \otimes g_{0}\right)=$ $\bar{k}^{*} w_{m+1}, \psi\left(s \alpha^{m} \otimes S q^{I} g_{9}\right)=\bar{k}^{*} w_{m+1} \cup S q^{I} u_{9}$ is easily seen to be an \mathscr{A}-module isomorphism in the desired range. For example, $\psi\left(S q^{16}\left(s \alpha^{m} \otimes g_{0}\right)\right)=\psi\left(\binom{m}{16} s \alpha^{m+16} \otimes g_{0}+s \alpha^{m} \otimes\left(S q^{7}+S q^{4} S q^{2} S q^{1}\right) g_{9}\right)=$ $\binom{m}{16} \bar{k}^{*} w_{m+17}+\bar{k}^{*} w_{m+1} \cup\left(S q^{7}+S q^{4} S q^{2} S q^{1}\right) u_{9}=S q^{16}\left(\bar{k}^{*} w_{m+1}\right)=S q^{16}\left(\psi\left(s \alpha^{m} \otimes g_{0}\right)\right.$.

Theorem 1.3 enables one to compute $\operatorname{Ext}_{\mathscr{\Omega}}\left(\tilde{H}^{*}\left(B O[j] / B O_{N}[j]\right), \boldsymbol{Z}_{2}\right)$, the E_{2}-term of the ASS converging to the stable homotopy groups of $B O[j] / B O_{N}[j]$. We exemplify with the case which will be used in proving Theorem 1.2. Other cases are treated similarly. Ext groups are graphed as in [2]-[8], with vertical lines indicating multiplication by $h_{0} \in \operatorname{Ext}_{\dot{\sim}}^{1,1}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)$ which corresponds (up to elements of higher filtration) to multiplication by 2 in homotopy groups, and diagonal (/) lines indicating multiplication by $h_{1} \in \operatorname{Ext}_{\boldsymbol{\beta}^{1}}^{1,2}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)$, which corresponds to $\eta \in \pi_{n+1}\left(S^{n}\right)$. Differentials in the ASS are indicated by diagonal (\backslash) lines.

Proposition 2.1. Suppose $n \equiv 7(8)$. The $A S S$ chart for $B O[9] / B O_{n-16}[9]$ is given by

with some differentials omitted in the top degree.
Proof. Let $N=n-16$. By 1.3 (i) there is a short exact sequence of \mathscr{A}-modules

$$
0 \rightarrow \tilde{H}^{*}\left(\Sigma P_{N}\right) \otimes \Sigma^{9} \mathscr{A} / \mathscr{A}\left(S q^{2}\right) \rightarrow H^{*}\left(B O[9], B O_{N}[9]\right) \rightarrow \tilde{H}^{*}\left(\Sigma P_{N}\right) \rightarrow 0
$$

inducing a long exact sequence in $\operatorname{Ext}_{\mathscr{A}}\left(, \boldsymbol{Z}_{2}\right)$. $\operatorname{Ext}_{\mathscr{A}}\left(\tilde{H}^{*}\left(\Sigma P_{N}\right), \boldsymbol{Z}_{2}\right)$ is given in [7; 8.16]. Let \mathscr{A}_{1} denote the subalgebra of \mathscr{A} generated by $S q^{1}$ and $S q^{2}$. By the method of $[1 ; \S 6] \mathscr{A} / \mathscr{A}\left(S q^{2}\right) \approx \mathscr{A} \| \mathscr{A}_{1} \otimes$ M, where M is the \mathscr{A}_{1}-module with nonzero element $S q^{0}, S q^{1}, S q^{2} S q^{1}$. By the change-of-rings theorem ([2; 3.1])

$$
\operatorname{Ext}_{\mathscr{A}}\left(\tilde{H}^{*}\left(\Sigma P_{N}\right) \otimes \mathscr{A} \| \mathscr{A}_{1} \otimes M, Z_{2}\right) \approx \operatorname{Ext}_{\mathscr{A}_{1}}\left(\tilde{H}^{*}\left(\Sigma P_{N}\right) \otimes M, Z_{2}\right)
$$

This is computed as in [2; Ch. 3] or [8, Ch. 4] to begin

There is a nonzero boundary homomorphism in the Ext-sequence, which we picture as a d_{1}-differential in the ASS. The d_{2}-differentials are deduced by applying $\pi_{*}()$ to the diagram

using the results of [4; Ch. 3]. The higher differentials in the top degree which are present in ΣP_{n-16} are deduced by considering the map of ASS induced by $P_{n-16} \rightarrow P_{n-16} \wedge b J$ (see [5]). We have also used $d_{2}\left(h_{0}\left({ }_{16} 1\right)\right)=0$ in ASS $\left(P_{n-16}\right)$, which is proved by going back to P_{n-24}. When $\nu(n+1)=6$, the element in $s=5, t-s=n$ may not be killed, which is the reason no immersion result is stated in this case.
3. Proof of nonimmersions (Theorem 1.1). This proof is very similar to that in [4; Ch.5]. Let $f: P^{n-2^{\alpha(n)-3+11}} \rightarrow B O[8]$ classify the restriction of the stable normal bundle $\left(2^{L}-n-1\right) \xi$ of P^{n}. We will prove the composite $P^{n-2^{\alpha(n)-3+11}} \xrightarrow{f} B O[8] \xrightarrow{k} B O[8] / B O_{n-2^{\alpha(n)-3-4}}[8]$ is essential.

Let $a=\alpha(n)-4$ and $b=(n+1) / 2^{a} . \quad$ Then $\alpha(b-1)=4$ and $a \geqq 3$. From [4; 3.2] the ASS chart for $\pi_{i}\left(B O[8] / B O_{(b-2) 2^{a}-5}[8]\right)$ is

In order to use the main result of [3], we "factor" f through $Q P$ by going into BSpin as in [4; 4.1]. Thus we have

where g classifies $\left(2^{L-2}-b 2^{a-2}\right) H$.
Lemma 3.3. If $\alpha(b-1)=4$ and $a \geqq 3$, then $\nu\binom{2^{L-2}-b 2^{a-2}}{(b-2) 2^{a-2}+4}=3$ if $\Delta=0$ and is greater than 3 if $\Delta=-1,1$, or 2 .

Proof. By [3; 4.1]

$$
\begin{aligned}
\nu\binom{2^{L-2}-b 2^{a-2}}{(b-2) 2^{a-2}} & =\alpha\left((b-2) 2^{a-2}\right)+\alpha\left(2^{L-2}-2^{a-2}(2 b-2)\right)-\alpha\left(2^{L-2}-b 2^{a-2}\right) \\
& =\alpha(b-2)+L-a-\alpha(2 b-3)-(L-a-\alpha(b-1)) \\
& =\alpha(b-2)-(\alpha(2 b-4)+1)+\alpha(b-1)=-1+4=3 .
\end{aligned}
$$

The case $\Delta \neq 0$ is handled by similar techniques.
Let $8 l=(b-2) 2^{a}$ and $Q=B O[8] / B O_{8 l-5}[8]$. Let $Q\langle 3\rangle$ be the space formed from Q by killing Ext ${ }^{8}$ for $s<3$. ([4; 2.1]). $\left.Q<3\right\rangle$ has cohomology generators $k_{8 l}, k_{8 l+4}, k_{8 l+5}, k_{8 l+7}, k_{8 l+8}, k_{8 l+8}^{\prime}$, and $k_{8 l+10}$ corresponding to the elements of (3.1) of filtration 3.

Lemma 3.4. kf lifts to a map $P^{8 l+10} \rightarrow Q\langle 3\rangle$ which sends only $k_{8 l}$ nontrivially.

Proof. By the method of [4; Ch. 2 and 4.2], which is based upon [3; 1.8], and using Lemma 3.3 and the fact that $\pi_{4 i}^{s}\left(\Sigma P_{8 t-5}\right) \rightarrow$ $\pi_{4 i}^{s}\left(\Sigma P_{8 l-5} \wedge b o\right.$) is injective for $i \leqq 2 l+2$ (by [7; 8.4 and 8.12]), there exists a lifting of g to E_{3} in the modified Postnikov tower (MPT) of the fibration $\widetilde{B S p_{8 l-5}} \rightarrow B S p$ which sends only the $8 l$-dimensional k invariant nontrivially. Thus, since (3.2) effectively gives a factorization through $Q P$, as in the proof of $[4 ; 5.1] f$ lifts to a map \tilde{f} : $P^{8 l+10} \rightarrow E_{3}^{\prime \prime}$, where $E_{3}^{\prime \prime}$ is the third stage of the MPT of $B O_{8 l-5}[8] \rightarrow$ $B O[8]$, sending only the $8 l$-dimensional k-invariant $\bar{k}_{8 l}$ nontrivially. There is a map $E_{3}^{\prime \prime} \xrightarrow{j} Q\langle 3\rangle$ and its behaviour on k-invariants is computed by computing the induced morphism of minimal resolutions. In particular, for the k-invariant $k_{8 l+8}^{\prime} \in H^{8 l+8}(Q\langle 3\rangle)$ corresponing to the element in coker $\left(\operatorname{Ext}^{3,8 l+11}\left(\tilde{H}^{*}\left(\Sigma P_{8 l-5}\right), \boldsymbol{Z}_{2}\right) \rightarrow \operatorname{Ext}_{8, ~}^{3,8 l+11}\left(\tilde{H}^{*}(Q), \boldsymbol{Z}_{2}\right)\right)$, if l is odd, $j^{*}\left(k_{8 l+8}^{\prime}\right)=\left(S q^{8}+w_{8}\right) \bar{k}_{8 l}$ so that $\tilde{f}^{*} j^{*} k_{8 l+8}=S q^{8} \alpha^{8 l}+$ $w_{8}\left(\left(2^{L}-8 l-2^{a+1}\right) \xi\right) \cup \alpha^{8 l}=\alpha^{8 l+8}+\alpha^{8 l+8}=0$, while if l is even, $\mathscr{A}(B O[8])$ annihilates $\bar{k}_{8 l}$ in the range under consideration.

Theorem 1.1 follows from Lemma 3.4 together with

PROPOSITION 3.5. If $P^{8 l+10} \rightarrow Q\langle 3\rangle$ sends only $k_{s i}$ nontrivially, then $P^{8 l+10} \rightarrow Q\langle 3\rangle \rightarrow Q$ is essential.

Proof. We show that such a map represents a nontrivial class of $\operatorname{Ext}_{s, 5}^{3,3}\left(\tilde{H}^{*}(Q), \tilde{H}^{*}\left(P^{8 l+10}\right)\right)$ which is not hit by a differential in the ASS converging to $\left[P^{8 l+10}, Q\right]$.

A minimal \mathscr{A}-resolution of $\widetilde{H}^{*}(Q)$ corresponds to a minimal \mathscr{A}_{2}-resolution of $\tilde{H}^{*}\left(\Sigma P_{8 l-5}\right)$. (See [4; 3.1].) This is listed in the Appendix. $\operatorname{Ext}^{3,3}\left(\tilde{H}^{*}(Q), \tilde{H}^{*}\left(P^{8 l+10}\right)\right) \approx \operatorname{ker} d_{3}^{*} / \operatorname{im} d_{2}^{*}$ in
$\operatorname{Hom}\left(\Sigma^{-3} C_{2}, \tilde{H}^{*} P^{8 l+10}\right) \xrightarrow{d_{2}^{*}} \operatorname{Hom}\left(\Sigma^{-3} C_{3}, \widetilde{H}^{*} P^{8 l+10}\right) \xrightarrow{d_{3}^{*}} \operatorname{Hom}\left(\Sigma^{-3} C_{4}, \widetilde{H}^{*} P^{8 l+10}\right)$.
If we denote by \hat{k}_{i} the \mathscr{A}_{2}-homomorphism $\Sigma^{-3} C_{3} \rightarrow \tilde{H}^{*}\left(P^{8 l+10}\right)$ sending only $\Sigma^{-3} k_{i}$ nontrivially, then $d_{3}^{*}\left(\hat{k}_{0}\right)=0$ because, for example $d_{3}^{*} \hat{k}_{0}\left(\Sigma^{-3} l_{4}\right)=$ $\hat{k}_{0} d_{3}\left(\Sigma^{-3} l_{4}\right)=\hat{k}_{0}\left(\Sigma^{-3}\left(S q^{1} k_{4}+S q^{2} S q^{3} k_{0}\right)\right)=S q^{2} S q^{3} \alpha^{8 l}=0$. The image of d_{2}^{*} is generated by $\hat{k}_{8}=d_{2}^{*}\left(\hat{h}_{8}\right), \hat{k}_{8}^{\prime}+\hat{k}_{10}=d_{2}^{*}\left(\hat{h}_{7}\right), \hat{k}_{0}+\hat{k}_{8}^{\prime}=d_{2}^{*}\left(\hat{h}_{-1}\right)$ and $\hat{k}_{4}+\hat{k}_{5}=d_{2}^{*}\left(\hat{h}_{4}\right)$. Thus \hat{k}_{0} gives a nonzero element of Ext.

Similarly $\operatorname{Ext}_{\mathcal{\mathcal { M }}}^{j, j+1}\left(\widetilde{H}^{*} Q, \widetilde{H} P^{8 l+10}\right)=Z_{2}$ for $j=0$ and 1 . The nonzero elements in these groups survive to give the nontrivial elements $2^{j}\left[f_{0}\right]$, where f_{0} is the map defined after (4.6). Thus there are no elements which could support a differential hitting \hat{k}_{0}.
4. Proof of immersions (Theorem 1.2). The proof is very similar to that of $[4 ; 1.1]$. We let $g: P^{n} \rightarrow B O[9]$ classify the stable normal
bundle and let \mathscr{E} denote the fibre of $k_{0}: B O[9] \rightarrow C$, where $C=$ $B O[9] / B O_{n-16}[9]$. We consider the diagram

As in [4; 1.4(c)] the fibre of k_{1} has the same n-type as $B O_{n-16}[9]$. (This is the main reason for using $B O[9]$ instead of $B O[8]$.) It suffices to prove
(4.1) $k_{0} g$ is null-homotopic, so that there is a lifting l of g, and
(4.2) there is a map $P^{n} \rightarrow \Omega C$ such that $k_{1} \mu(f \times l)$ is null-homotopic.

Proof of 4.1. We use the charts of $\pi_{*}(C)$ given in 2.1.
Similarly to [4; 4.1] one shows that $k_{0} g$ has filtration $\geqq 5$. This is accomplished by noting that if $n=16 l+15$, then $\nu\left(2^{2^{L}-16 l-16} 4 l+\varepsilon\right)=$
 ally. ($Q P$ gets past the irregular element in $s=2, t-s=16 l+8$ as in [4; 4.2]. It gets by the $x^{\prime} d$ tower in $t-s=16 l+12$ because they are not present in the MPT for $\widetilde{B S p_{n-16}} \rightarrow B S p$, where the liftings are first performed. (See [4; 4.1, 4.2].).) Thus P^{n} lifts to E_{5} since primary indeterminacy enables one to vary $k_{16 l+8}$ without varying the other k^{4}-invariants.

Finally we show that any filtration 5 map $P^{n} \rightarrow C$ is null-homotopic. The only possible map not trivial by Ext-considerations (or by the differentials in the top degree) is an extension over P^{n} of the map $P^{n-3} \xrightarrow{k} S^{n-3} \xrightarrow{f} C$, where k is the collapse and $[f]$ the filtration 5 generator. But $[f]$ is divisible by 2 by [4; 3.5] since $B O[9] / B O_{n-16}[9] \rightarrow B O[8] / B O_{n-16}[8]$ sends the filtration 2 class in π_{n-3} to the filtration 3 class. Thus $P_{n-4}^{n-3} \rightarrow S^{n-3} \xrightarrow{f} C$ is trivial and hence so is $f k$. But there is a unique filtration 5 extension of $f k$ over P^{n} since for $i=0,1,2, \pi_{n-i}(C)$ has no elements of filtration $\geqq 5$. Hence the extension over P^{n} is trivial.

Proof of 4.2. This is very similar to [4; Ch. 4 beginning with 4.3]. $\left[k_{1} \mu(f \times l)\right]$ is considered as the homotopy sum of three stable maps

$$
\begin{align*}
& P^{n} \xrightarrow{l} \mathscr{E} \longrightarrow \mathscr{E} \mid B O_{n-16}[9] \tag{4.4}\\
& P^{n} \xrightarrow{f} \Omega C \longrightarrow \mathscr{E} / B O_{n-16}[9] \tag{4.5}\\
& P^{n} \xrightarrow{f \wedge l} \Omega C \wedge \mathscr{E} \longrightarrow \mathscr{E} \longrightarrow \mathscr{E} \mid B O_{n-16}[9] \tag{4.6}
\end{align*}
$$

Let f_{0} denote the composite $P^{n} \rightarrow V_{n-16} \rightarrow \Omega \Sigma V_{n-16} \rightarrow \Omega C$ and f_{1} the composite $P^{n} \rightarrow S^{n} \xrightarrow{u} \Omega C$ where $[u]$ has smallest possible filtration ($\leqq 2$). As in [4] we have the following results.

PROPOSITION 4.7. (4.5) with $f=f_{0}$ and (4.6) with $f=f_{1}$ are nullhomotopic.

Proposition 4.8. $\left[P^{n}, \mathscr{E} / B O_{n-16}[9]\right] \approx \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{8} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{16}$.
Rroof. As in [4; 4.3] $H^{*}\left(\mathscr{E}, B O_{n-16}[9]\right) \approx \widetilde{H}^{*}\left(\Sigma^{9} P_{n-16}\right) \otimes \mathscr{A} / I\left(S q^{2}\right)$, so that its homotopy groups are as in (2.2, $j \equiv 1$) reindexed. [$\left.P^{n}, \mathscr{E} / B O_{n-16}[9]\right]$ is computed as in [4; 4.9] or by computing $\operatorname{Ext}_{\boldsymbol{\Omega} \boldsymbol{s}, \boldsymbol{s}}\left(H^{*}\left(\mathscr{E}, B O_{n-16}[9]\right), P^{n}\right)$ as in 3.5. The $\boldsymbol{Z}_{2}^{\prime}$'s are due to the \boldsymbol{Z}_{2} homotopy groups in degrees $n-3$ and $n-7$.

Let G_{1}, G_{2}, G_{3}, and G_{4} denote generators under a splitting of Proposition 4.8.

Proposition 4.9. Some multiple of (4.5) with $f=f_{1}$ equals $4 G_{2}$.
PROPOSITION 4.10. If $\nu(n+1)=4$, then (4.6) with $f=f_{0}$ has odd coefficient of G_{1}. If $\nu(n+1)=5$, then (4.6) with $f=f_{0}$ is $2 a G_{1}+$ $2 b G_{2}$ where a is an odd integer and b is an integer.

Proof. This can be seen by using the map $\mathscr{E} / B O_{n-16}[9] \rightarrow$ $\overline{\mathscr{E}} / B O_{n-16}[8]$, where $\overline{\mathscr{E}}=$ fibre $\left(B O[8] \rightarrow B O[8] / B O_{n-16}[8]\right)$, and [4; 4.11, 4.12].

To deduce 1.2, we use the fact ([4; 1.2]) that P^{n} immerses in $R^{2 n-14}$ and argue as in the last paragraphs of [4; Ch. 4]. We consider the diagram

[$\left.P^{n}, j_{3}\right]$ is onto with kernel $\left\langle 4 G_{2}, 8 G_{4}\right\rangle . \quad\left[P^{n}, j_{1}\right]$ is onto all elements except a filtration 1 map f_{2} trivial on P^{n-2}. The analogue of (4.6)
with $f=f_{2}$ is null-homotopic and the analogue of (4.5) with $f=f_{2}$ is 0 or $4 G_{2}^{\prime}$.

Let $l: P^{n} \rightarrow \mathscr{E}$ be some lifting of g. There exists $f^{\prime}: P^{n} \rightarrow$ $\Omega\left(B O[9] / B O_{n-14}[9]\right)$ such that $k_{1}^{\prime} \mu^{\prime}\left(f^{\prime} \times j_{2} l\right)=0$. Either f^{\prime} or $f^{\prime}-f_{2}$ factors as $P^{n} \xrightarrow{f} \Omega C \xrightarrow{j_{1}} \Omega\left(B O[9] / B O_{n-14}[9]\right)$. Then $k_{1}^{\prime} \mu^{\prime}\left(j_{1} \times j_{2}\right)(f \times l)=0$ or $4 G_{2}^{\prime}$. Hence $k_{1} \mu(f \times l)$ is $4 a G_{1}+4 b G_{2}$ for some $a \in \boldsymbol{Z}_{2}, b \in Z_{4}$. If $a=0$, by 4.7 and 4.9 there is some multiple $d f_{1}$ such that $k_{1} \mu\left(\left(f-d f_{1}\right) \times\right.$ $l)=0$. If $a=1$, there exists d such that $k_{1} \mu\left(\left(f+2^{6-\nu(n+1)} f_{0}-d f_{1}\right) \times l\right)=0$.
5. Appendix. A minimal \mathscr{A}_{2}-resolution through degree $8 l+10$ of $\tilde{H}^{*}\left(\Sigma P_{8 l-5}\right)$ is given by $C_{0} \stackrel{d_{0}}{\leftarrow} C_{1} \stackrel{d_{1}}{\leftarrow} C_{2} \stackrel{d_{2}}{\leftarrow} C_{3} \stackrel{d_{3}}{\leftarrow} C_{4} \leftarrow$, where C_{s} is a free \mathscr{A}_{2}-module generated by elements $x_{i}, g_{i}, h_{i}, k_{i}$, or l_{i} for $s=0,1,2,3$, or 4 with subscripts indicating $t-s-8 l$, where t is the degree of the generator. (See [4; Ch. 6].) We omit $S q$ for Steenrod squares; thus, $62 g$ denotes $S q^{6} S q^{2} g$. This resolution corresponds to (3.1).
C_{0} has generators x_{-4}, x_{0}, and x_{8}

$$
\begin{aligned}
& g_{-2}: 21 x_{-4} \quad\left(\text { This means } d_{0}\left(g_{-2}\right)=S q^{2} S q^{1} x_{-4}\right) \\
& g_{-1}: 4 x_{-4} \\
& g_{0}: 1 x_{0}+41 x_{-4} \\
& g_{1}: 2 x_{0}+42 x_{-4} \\
& g_{8}: 1 x_{8}+27 x_{0} \\
& g_{9}: 2 x_{8}+424 x_{0} \\
& h_{-1}: 2 g_{-2} \\
& h_{0}: 1 g_{0}+21 g_{-2} \\
& h_{2}: 2 g_{1}+3 g_{0}+4 g_{-1} \\
& h_{4}: 51 g_{-1}+(7+421) g_{-2} \\
& h_{7}: 621 g_{-1}+(91+46) g_{-2} \\
& h_{8}: 1 g_{8}+521 g_{1}+54 g_{0}+46 g_{-1} \\
& h_{8}^{\prime}:(46+73+631) g_{-1}+461 g_{-2} \\
& h_{10}: 2 g_{9}+3 g_{8}+(46+91) g_{1}+47 g_{0} \\
& k_{0}: 1 h_{0}+2 h_{-1} \\
& k_{4}: 1 h_{4}+41 h_{0} \\
& k_{5}: 2 h_{4}+(7+421) h_{-1} \\
& k_{7}: 1 h_{7}+4 h_{4}+51 h_{2}+72 h_{-1} \\
& k_{8}: 1 h_{8}+43 h_{2}+(27+72) h_{0}+631 h_{-1} \\
& k_{8}^{\prime}: 1 h_{8}^{\prime}+2 h_{7}+43 h_{2}+(27+72) h_{0}+46 h_{-1} \\
& k_{10}: 3 h_{8}^{\prime}+4 h_{7}+423 h_{2}+(66+75) h_{-1} \\
& l_{4}: 1 k_{4}+23 k_{0} \\
& l_{6}: 2 k_{5}+3 k_{4}+(7+421) k_{0} \\
& l_{7}: 1 k_{7}+21 k_{5}+4 k_{4}+62 k_{0} \\
& l_{8}: 1 k_{8}+72 k_{0}+41 k_{4} \\
& l_{10}: 1 k_{10}+21 k_{8}^{\prime}+4 k_{7}+(6+51) k_{5}+7 k_{4}
\end{aligned}
$$

References

1. D. W. Anderson, E. H. Brown and F. P. Peterson, The structure of the spin cobordism ring, Ann. of Math., 86 (1967), 271-298.
2. D. M. Davis, Generalized homology and the generalized vector field problem, Quar. Jour. Math., Oxford 25 (1974), 169-193.
3. D. M. Davis and M. Mahowald, The geometric dimension of some vector bundles over projective spaces, Trans. Amer. Math. Soc., 205 (1975), 295-316.
4. —, The immersion conjecture is false, Trans. Amer. Math. Soc., 236 (1978), 361-383.
5. -, Obstruction theory and ko-theory, to appear in Proc. Evanston Conference, Springer-Verlag Lecture Notes.
6. S. Gitler, M. Mahowald and R. J. Milgram, The nonimmersion problem for $R P^{n}$ and higher order cohomology operations, Proc. Nat. Acad. Sci., U.S.A., 60 (1968), 432-437.
7. M. Mahowald, The metastable homotopy of S^{n}, Mem. Amer. Math. Soc., 72 (1967).
8. M. Mahowald and R. J. Milgram, Operations which detect $S q^{4}$ in connective K theory and their applications, Quar. J. Math., Oxford, 27 (1976), 415-432.
9. J. C. Moore, Some applications of homology theory to homotopy problems, Ann. of Math., 58 (1953), 325-350.
10. F. Nussbaum, Obstruction theory of possibly non-orientable fibrations, Ph. D. thesis, Northwestern Univ. 1970.
11. R. Stong, Determination of $H^{*}\left(B O(k, \infty) ; Z_{2}\right)$ and $H^{*}\left(B U(k, \infty) ; Z_{2}\right)$, Trans. Amer. Math. Soc., 107 (1963), 526-544.

Received September 3, 1976. This work was partially supported by a National Science Foundation grant.

Lehigh University
Bethlehem, PA 18015

