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SPECIAL APPROYIMATIONS TO EMBEDDINGS
OF CODIMENSION ONE SPHERES

ROBERT J. DA VERM AN

Ancel and Cannon have shown that every embedding of
an (n — l)-sphere in the ^-sphere Sn can be approximated by
locally flat embeddings. Here it is shown that any such
embedding can be approximated by locally flat embeddings,
the images of which are contained, for the most part, in a
preassigned complementary domain of the original. In ad-
dition, the paper explores conditions implying the existence
of better approximations possessing various properties sug-
gested by high dimensional analogy with the conclusions of
Bing's 3-dimensional Side Approximation Theorem.

Originating early in the 1950's with the pioneering work of
E. E. Moise and R. H. Bing, systematic study of embeddings of the
2-sphere in S 3 had its fundamental breakthrough in Bing's Polyhedral
Approximation Theorem [3]. Shortly thereafter, he established a
much more useful version known as the Side Approximation Theorem.

Side Approximation Theorem [4]: If Σ is a 2-sphere in S3, U is
a component of Sz — Σ and ε > 0, then there exists a homeomorphism
h of Σ in S3, a finite set of pairwise disjoint ε-disks {D<|i = 1, , m}
on Σ, and a finite set of pairwise disjoint ε-disks {Et\i — 1, , n]
on h(Σ) such that

( 1 ) h moves no point more than a distance ε,
( 2 ) h(Σ) is polyhedral,
(3) h(Σ) -\JiEiC: U, and
(4) Σnh(Σ)(z\JiDi'

Still later, F. M. Lister [14] developed its ultimate refinement in
which the approximation h itself provides a one-to-one correspond-
ence between the small disks on Σ (the A's) and the small disks on
h(Σ) (the #/s) such that

h(Σ) nΰ-^nA

For high dimensional embedding theory F. D. Ancel and J. W.
Cannon [1] recently have developed an analogue to the Polyhedral
Approximation Theorem (in the locally flat rather than the poly-
hedral category, which, for practical purposes, is an unimportant
distinction):

Locally Flat Approximation Theorem [1]: For each (n — l)-mani-
fold Σ embedded in an ^-manifold Mf n^5, and for each ε > 0,
there exists a locally flat embedding h of Σ in M that moves no
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point more than ε.
Improving their result into a complete analogue of the Side

Approximation Theorem is already known to be impossible [8]; nev-
ertheless, certain improvements can be established. Because the
history surrounding the 3-dimensional case gives extensive evidence
for the value of special approximations, this paper aims to present
a thorough study of the limitations to and sufficient conditions for
various improvements to the Locally Flat Approximation Theorem.

The most general result, Theorem 3.1, shows that any (n — 1)-
sphere Σ in Sn (n ^ 5) can be almost approximated from either side
U (where a side is a component of Sn — Σ) in the sense that there
are locally flat approximations h(Σ) that are mostly in U, meaning
that the components of h(Σ) — U have small size. Whether this can
be done so that the intersections k(Σ) Π Σ are covered by small
(n — l)-cells (like the Dt

9s) on Σ depends only upon the type of the
crumpled cube ClU (Theorem 4.1). Whether this can be done so
that, instead, the intersections h(Σ) Π Σ are covered by small (n — 1)-
cells on h(Σ) (like the l?/s) is sporadic—the existence of such cells
has implications concerning the type of the crumpled cube ClU, but
in no way is it characteristic of a type (§ 5). As the paper pro-
gresses, a more insistently recurring theme is the relationship be-
tween the types of crumpled n-cuhes Cl U (see § 2 for a discussion
of the types) and the properties of special approximations to Σ =
Bd{ClU) almost contained in U. Focusing explicitly on this matter,
the final section (§ 6) deals with another kind of approximation,
motivated by analogy with 3-dimensional work of Eaton [11], more
general in that the approximations may be wild but limited in that
wildness by types, and less general in that they are confined entirely
to the closure of a specified side.

Discussion of (n — l)-spheres in Sn serves as a convenient ab-
breviation for a larger category. Each of the results here applies
equally well to embeddings of (n — l)-manifolds in w-manifolds as
closed, 2-sided subsets.

!• Definitions and notation* The symbol p is employed am-
biguously to signify a metric on a (variable) metric space. Ac-
cordingly, if / and g are maps of a space S into a metric space X,
then p(f, g) signifies the least upper bound of {p(f(s), g(s))\seS}.
For AaX (metric) and ε > 0, Nε(A) denotes the set of points of X
whose distance from A is less than ε; in addition, a map (embedding)
/ of A in X is called an ε-map (ε-embeddίng) provided that p(f,
inclusion) < ε. Such a set A is called an ε-set if its diameter is less
than ε.

The symbol Bn is reserved to denote the standard w-cell con-
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sisting of all points in Euclidean w-space En having norm <; 1. Let
A denote a subset of a metric space X, and p denote a limit point
of A. Then A is locally simply connected at p, written 1 — LC at
p, if for each ε > 0 there exists δ > 0 such that each map of dB2

into A Π Nδ(p) can be extended to a map of B2 into A Π Nε(p), and
A is uniformly locally simply connected, written 1 — ULC, if a
δ > 0 exists independent of the particular limit point p.

2. Types of crumpled cubes* A crumpled n-cube C is a space
homeomorphic to the closure of a complementary domain of an
(n — l)-sphere Σ topologically embedded in Sn; the set of points
corresponding to Σ is called the boundary of C, written BdC, and
the set C — BdC is called the interior of C, written Int C. An im-
portant simplification occurs whenever n Φ 4: each crumpled w-cube
can be regarded as the closure of the complement of some w-cell
topologically embedded in Sn [10].

Frequently it has been useful to distinguish certain types of
crumpled w-cubes C by setting forth properties that prescribe de-
creasing limitations to the complexity of the wildness at BdC, as
follows:

Type 1: BdC contains a O-dimensional set F that is the countable
union of Cantor sets, each tame relative to BdC, and such that
F U Int C is 1 - ULC.

Type 2A: BdC contains disjoint sets Fx and F2 such that Ft U
IntC is 1 - ULC (i = 1, 2).

Type 2B: BdC contains a O-dimensional set F such that FUlntC
is 1 - ULC.

Type 3: BdC contains a 1-dimensional set F such that jFΊJlntC
is 1 - ULC.

The fact that Type 3, at worst, covers the general situation is
established for n ^ 5 in [6] and for n = 4 in [2]; the existence of
an example that fails to be of Type 2B remains unsettled.

The development of this nonparallel nomenclature is something
of an historical accident, for which the author is primarily respon-
sible. (Several colleagues have stressed the desirability for a more
descriptive terminology, but none of the possibilities I have encoun-
tered pleases me enough to propose a change.) In particular, Type
2A is distinguished from Type 2B because a crumpled w-cube C
(n >̂ 5) is of Type 2A iff the space obtained by "sewing" C to itself
via the identity homeomorphism on BdC (see [9]) is topologically Sn

[9, Theorem 10.1]. It is proved in [9, Prop. 9.3] that each Type 1
crumpled w-cube is of Type 2A and that each Type 2A crumpled
w-cube is of Type 2B [9, Corollary 10.2].

3* Approximations almost from one side* Let Σ denote an
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(n — l)-sphere in Sn and let U denote a component of Sn — Σ. We
say that Σ can be almost approximated from U if for each ε > 0
there exists a locally flat ε-embedding of Σ in Sn such that each
component of h{Σ) — U has diameter less than e.

In this sense of approximating from the side, the Side Approxi-
mation Theorem generalizes to high dimension.

THEOREM 3.1. Each (n — T)-sphere Σ in Sn (n ^ 5) can be almost
approximated from either component U of Sn — Σ.

Proof. First we establish the theorem under the assumption
that Sn — U is an w-cell. Fix ε > 0. There exists a small (restric-
tions on the size will be given below) neighborhood W of Σ in
Nε(Σ), and there exists a compact PL ^-manifold Q such that Σ c
IntQaQaW. We name a triangulation T of Q in which the di-
ameter of simplices is less than ε/3, and we let P signify its 2-
skeleton By standard engulfing techniques, the neighborhood W
can be chosen so that there exists an (ε/3)-homeomorphism h of Sn

to itself for which h\U — Q = l and h(U) contains the 1-skeleton
of P, and so that there exists another (ε/3)-homeomorphism g of Sn

to itself for which g\Sn - (Q U U) = 1 and g(Sn - ClU) contains the
(n — 3)-skeleton of T dual to P. We thicken the open 2-simplexes
of h~\P) to obtain an open set V, the components of which have
diameter less than ε. We let U' denote V U U and note that h(Uf)i)P.
Stretching g(Sn — ClU) across of join structure of T by an (ε/3)-
homeomorphism / of Sn that is fixed off Q so that

fg(Sn - ClU) U h(U') = Sn ,

we define H as h~ιfg and observe that H is an ε-homeomorphism
such that H(Σ) c U'. Since Σ is collared from Sn - U, H(Σ) is ap-
proximated arbitrarily closely by locally flat spheres in U', and any
sufficiently close approximation indicates that Σ is almost approxi-
mated from U for this choice of ε.

The proof in the general case depends upon the capability of
reembedding crumpled w-cubes as the closed complements of w-cells.
In particular, there exists a splitting of Σ by an embedding ω of
Σ x [0,1] in Sn for which there exists a map π of Sn to itself such
that πω(s x [0, 1]) = s for each seΣ and π\Sn — ω(Σ x [0,1]) is a
homeomorphism onto Sn — Σ (see [10, Corollary 6.7]). Let [/* =
π"\ U) and ε > 0. Considerations of uniform continuity give a δ > 0
such that, whenever XaSn and diam X < δ, diam π(X) < ε/3. Ac-
cording to the first step of the proof, there exists a locally flat δ-
approximation e of BdU* (without loss of generality, BdU* can be
identified with ω(Σ x 1) in Sn) such that e(BdU*) - £7* is covered
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by finitely many pairwise disjoint open δ-sets Xlf •• ,Xfc. By
Siebenmann's Cellular Approximation Theorem [18], there exists a
homeomorphism / of Sn to itself such that p(f, π) < min {ε/3, p(Σ9

πeiβdTJ* — Xx U ••• U -X*))}. Then a satisfactory approximation h
to Σ can be defined as h = fe(π\BdU*y\ completing the proof.

The first half of the preceding argument, for the simplified
situation in which Σ bounds an %-cell, can be adapted readily to
cover the general situation in case n = 4, because all that must be
engulfed from the "other" side is a 1-complex.

THEOREM 3.2. Let Σ be a Z-sphere in S4 and let U denote a
component of S4 — Σ. For each ε > 0 there exists an e-embedding
h of Σ in S4 such that each component of h(Σ) — U has diameter
less than ε.

THEOREM 3.3. Let Σ be a 2>-sphere in S4. Then Σ can be almost
approximated from a component U of S4 •— Σ if and only if Σ can
be approximated by locally flat spheres.

4* Strong approximations* Let Σ denote an (n — l)-sphere in
Sn and let G denote one of the crumpled n-cubes bounded by Σ. We
say that Σ can be strongly almost approximated from IntC if for
each ε > 0 there exists a locally flat ε-embedding h of Σ in Sn such
that each component of h(Σ) — Int G has diameter less than ε and
Σ (Ί h{Σ) is covered by the interiors of a finite collection of pairwise
disjoint (n — l)-cells in Σf each of diameter less than ε.

THEOREM 4.1. Suppose Σ is an (n — ΐ)-sphere in Sn (n ^ 5)
bounding a crumpled n-cube G. Then Σ can be strongly almost
approximated from Int C if and only if C is of Type 1.

Proof. In case Sn — Int C is an w-cell, this is established in
Theorem 8 of [8]. The general case follows from this, based upon
Siebenmann's Cellular Approximation Theorem, just as in the proof
for the general case of Theorem 3.1.

5* Careful approximations* Let C denote a crumpled w-cube
in Sn with BdC = Σ. We say that Σ can be carefully almost ap-
proximated from Int C if for each ε > 0 there exists a locally flat
ε-embedding h of Σ in Sn such that each component of h(Σ) — Int C
has diameter less than ε and Σ Π h(Σ) is covered by the interiors
of finitely many pairwise disjoint {n — l)-cells {E^i = 1, •••, m} in
h(Σ), each of diameter less than ε.

The goal in this section is to establish Theorem 5.1 and to begin
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explaining (by means of Example 5.3) why it is best possible. The
explanation is completed in the next section by Example 6.4.

THEOREM 5.1. Suppose Σ is an (n — l)-sphere in Sn (n ^ 5)
bounding a crumpled n-cube C such that Σ can be carefully almost
approximated from Int C. Then C is of Type 2A.

The basic technical idea required for the proof is revealed in
the following result:

LEMMA 5.2. Suppose that the hypothesis of Theorem 5.1 holds,
f is a map of B2 in Σ, and δ is a positive number. Then there
exists a map f of B2 in C such that p(f, f) < δ, f\dB2 = f\dB2

and

Proof. We set δ' — δ/7 and determine a neighborhood V of Σ
for which there exists a S'-retraction R of V U C to C. We collar
dB2 by an annulus A in B2 and define F as Cl{B2 — A), requiring A
to be so close to dB2 that f\A, considered as a homotopy between
f\dB2 and f\dF, moves points less than δ\ By hypothesis there
exists a locally flat δ-embedding h of Σ in V such that h is δ'-
homotopic in V to the inclusion and h{Σ) contains finitely many
pairwise disjoint (n — l)-cells Elf , Emf each of diameter less than
δ', whose interiors cover h(Σ) — Int C. We produce a map g of B2

into VΌC such that p(g,f)<3δ', g(F)tzh(Σ) and g\dB2 = f\dB2

by defining g\F as hf and ^ |A as a 2S'-homotopy between f\dB2

and hf\dF. Certainly g(dF) may intersect some of the Et'&, say
E19 E29 -—,Ek, but, since dim Et ^ 3, we can retract g(F) out of
interiors of E/s (j > k) to obtain a map gf such that gr\ A = gr| A,
/°(̂ '> 9) < δ' and ^'(.F7) Π Int Ed — 0 whenever j > k. As a result,
if g\F)V\Eί Φ 0 , then

E< c NAg(dF)) c NUfiβF)) c N6Af(dB2)) .

Furthermore,

The required map / ' can be defined as i?#', for if f\x) e Σ then
either x e A or #'(» e J^ (i = 1, •••,&), implying in either case that

Proof of Theorem 5.1. By [9, Prop. 5.2] it suffices to consider
maps /<: J52 —> C (i = 1, 2) and ε > 0 and to prove that there exist
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maps gt: B2 -> C such that p(gif /,) < ε and

Σ Π g,(B2) n g2{B2) = 0 .

To make the situation as simple as possible at the outset, we
can assume that fϊ\BdC) is O-dimensional [9, Prop. 2.1] and, hence,
that MdB2) c Int C (i = 1, 2). We set ε' = ε/4 and choose 77 > 0
small enough that any 77-subset of BdC is contained in the interior
of an in — l)-cell in Σ of diameter < ε\ After covering fτ\BdC)
by pairwise disjoint open 2-cells *Wl9 •• ,ίWrfcU) in Int I?2 such that
diam/tCPΓy) < 37 (ί = 1, 2), we take general position approximations
to fi by maps Λ, of B2 in S* such that for i = 1, 2 (̂fc,, /,) < ε',

=/<|J58 - Ui'Wyi diamfe^TF,) < 17 and

TΓi) = 0 .

Now for i = 1, 2 we let iΓέ denote the component of J52 — hτ\BdC)
containing dB2. Since each ^-subset of BdC is contained in a cell
of diameter ε' in BdC, we can apply Tietze's Extension Theorem
k(ϊ) times, once for each set lWj9 to extend ht\ClKt to a map
Ht: B2 -> C such that H^Wj-Kt) is an ε'-subset of BdC. It follows
that ρ(Hif ft) < 3e'.

The key feature results from (*), namely, that

Σ n H^KJ n H2(κ2) - 0 .
Consequently, for i = 1, 2 we can obtain a finite family of pairwise
disjoint 2-cells {BiS \ j = 1, , m(i)} in 5 2 — Kt such that

J Π H,(B2 - U int jBiy) Π BIB2 - Int £2i) - 0 .

Defining a positive number 7 by

27 - p(BdC n #!(£ 2 - U Int Bu), BdC n #2(J32 - U Int

we can appeal to Lemma 5.2 to find maps Hiό of Bi3 in C such that
p(HiSf Ht\BtJ) < ε', fΓ<y|3B<y = jff.lδB^ and Σ f] H^B^cNriH^B^)).
Finally, we name the required approximations gi to /, according to
the rule gt\B* - \J, Btj = fl^B" ~ U i ^ and Λ | B < y = Hiά\Bίβ {% =
1, 2; i = 1, , m(i))f completing the argument.

Even for the simplest types of crumpled w-cubes, their boundaries
may fail to have careful approximations almost in the interiors.

EXAMPLE 5.3. A Type 1 crumpled w-cube D such that BdD
cannot be carefully almost approximated from Int D.

The construction is based upon the inflation procedure of [9,
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§ 11]. For a simple example, embed an (n — 2)-sphere in En~
to bound a crumpled (n — l)-cube C (not an (n — l)-cell) in En~ι

such that IntC contains a loop that cannot be contracted in C—if
desired, C can be obtained so its boundary is locally flat mudulo a
Cantor set X, for which X is tame in the boundary sphere. One
can think of this sphere as containing a wild Cantor set, with the
wildness of the sphere in the bounded component of its complement
in En"\

Identify E*'1 with E^1 x {0} in En~ι x E1 = Ena Sn. Inflate
C to an (n — l)-sphere Σ in En, where

J - ( C x {0}) U {<c, p(c, BdC))eEn~ι x Eι\ceC} .

It follows from Propositions 9.4 and 9.8 of [9] that Σ is an (n — 1)-
sphere and from Theorem 11.4 of [9] that the closure D of the
bounded component of En — Σ is a crumpled cube of Type 1. How-
ever, any contraction of the special loop (in Int C x {0}) with range
in D projects vertically to a contraction in C x {0}, which must in-
tersect X x {0}. If Σ could be carefully almost approximated from
U, a contradiction to Lemma 5.2 would result.

6* Interior approximations• We say a crumpled n-cube C has
Type E interior approximations if for each ε > 0 there exists an
ε-embedding h of BdC in C such that the crumpled w-cube C* in C
bounded by h(BdC) is of Type E (E = 1, 2A, 2B, 3). Trivially, a
crumpled n-cube of arbitrary type has interior approximations of
that type. Eaton has studied interior approximations of crumpled
3-cubes in the more restrictive setting requiring that most of the
approximating spheres lie interior to the crumpled cube [11].

THEOREM 6.1. 1/ a crumpled n-cube C (n^5) has Type 2B
interior approximations, then C is of Type 2B.

Proof. Let ε > 0. There exists δ > 0 such that, for any S-loop
in IntC and any embedding h of BdC in C sufficiently close to the
inclusion, the loop bounds a singular ε-disk D in the crumpled w-cube
C* bounded by h(BdC). By hypothesis, a Type 2B crumpled w-cube
C* can be so obtained. As a result the singular ε-disk D can be
improved so that D Π BdC aD f] BdC* is 0-dimensional.

THEOREM 6.2. If a crumpled n-cube C {n ̂  5) has Type 2A
interior approximations, then C is of Type 2A.

Proof. The homotopy theoretic defining property of Type 2A
is that for any two maps f of B2 in C and any ε > 0 there exist
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maps gt of B2 in C such that p(gif ft) < ε (i = 1, 2) and

BdC n &(£2) Π g2(B2) = 0 .

See [9, 5.2 and 10.1].
We fix maps f and /2 of B2 in C and δ > 0. As in the proof

of Lemma 5.2, we find an embedding h of BdC into C so close to
the inclusion that h(BdC) bounds a Type 2A crumpled n-cube C*
and that ft can be approximated by a map /* of 2?2 in C*, with
ί>(/i> tf/ί) < ε/2 (i = 1, 2), where α denotes the inclusion of C* in C.
Then, since C* is of Type 2A, the maps ft can be approximated by
maps gt of B2 in C* such p(agif af't) < ε/2 (i = 1, 2) and

0 = M * n ^(-B2) Π g2(B2) =) SdC n ccgi(B2) n ^ 2 ( ΰ 2 ) .

Now the pattern suggested by previous results in this section
becomes blurred, for a crumpled w-cube having Type 1 interior ap-
proximations may not be of Type 1 itself, though by Theorem 6.2
it can be no worse than of Type 2A.

To construct examples, we require a slight revision of the
technique used in [7] to construct the original crumpled ?ι-cubes of
Type 2A.

LEMMA 6.3. Let X denote an 0-dimensional compactum in the
boundary of the standard n-cell Bn in En (n ^ 4). Then there
exists a tame embedding e of X in BdBn and there exists an em-
bedding Θ of Bn in En such that θe = inclusion and 0(lnt Bn)z>Bn — X
Moreover, for each ε > 0 there exists an ε-embedding a of BdBn in
θ(Bn) - lntBn such that a(BdBn) (Ί Bn = X and ar\X) is tame in
BdBn.

Proof. For rather elementary reasons, there exists a tame em-
bedding e of X in BdBn and there exists a pseudo-isotopy ft of
BdBn to itself such that f = identity, ft is a homeomorphism for
0 < t <; 1, and foe = incl.x. This claim is true because any embedding
of a Cantor set can be approximated by tame embeddings and because
any two sufficiently close tame approximations are equivalent under
a small ambient isotopy; the pseudo-isotopy ft is realized as the limit
of an infinite string of such ambient isotopies. More formally, the
claim follows in case n ^ 6 from Edwards' improvement [12] to the
Stan'ko 1-ULC Approximation Theorem [19] and McMillan's char-
acterization of tame Cantor sets [17].

Regarding S*-origin as S*"1 x (0, oo), with BdB* = S*"1 x {1},
we define an upper semicontinuous decomposition G of En into points
and the family {Ax \ x e X) of arcs where
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A. = {(z, s) eS"- 1 x [1, 2] 12 = f^

the decomposition G is shrinkable in a special way: one can verify
that the nondegenerate elements {Ax} can be shrunk to small size
from the S"'1 x {2} end into the regions between S*'1 x {1} and
gn-i χ | r j ^ where r can be arbitrarily close to 1, by a homeomorphism
of E* that keeps points close to the "fibers" {Ax} of the decomposi-
tion G. The net result is that there is a map π of En to itself,
realizing the decomposition in the sense that G = {π~\p) | p e En),
and π\Bn is the inclusion.

There is an embedding F of S^"1 x {1} in En given by F((z, 1» =
ττ«2, 2». It is relatively easy to show that F(BdBn) bounds an
w-cell; for a homotopy theoretic argument, one can show that any
loop in S""1 x (0, 2) — π~\X) sufficiently close to an arc Ax can be
shrunk in Sn~x x (0, 2) near Ax9 that moreover it can be shrunk in
Sn~"Lx(09 2) near Ax but missing J x l , and then because any compact
subset of S^xQL, 2] — π~\X) corresponds so nicely to (Sn~1—e(X))x
[r, 2], which is 1-ULC, that it can be shrunk in S"'1 x (0, 2) near
Ax but missing π~\X). Consequently, the bounded component of
En — F(BdBn) is 1-ULC and, hence, its closure is an w-cell [1].
(Since F(BdBn) is collared from the other side, this follows from
the elementary flattening of w-cells due to Cernavskii [5].) Alterna-
tively, F(BdBn) is locally flat modulo the Cantor set X = Fe(X),
which is tamely embedded both in F(BdBn) and in En, which implies
that F{BdBn) bounds an w-cell [14]. As a result, F extends to the
desired embedding Θ of Bn in E%.

Note that for each number t satisfying 0 < t <; 1 there is a
natural embedding at of BdBn in θ(Bn) - Int B% given by at((z, 1» =
π((z, 1 + £». The required ε-embeddings then can be realized by
choosing small values of t. Since aj\X) = ft(e(X)), it is tamely
embedded in BdBn.

Applications of Lemma 6.3 arise if, given X in BdBn and an
embedding / of X in Sn, one wants to extend / to an embedding F
of Bn. Indeed, there is an extension of / to an embedding of

EXAMPLE 6.4. A crumpled w-cube C having Type 1 interior ap-
proximations that is not of Type 1 itself.

The construction essentially coincides with that of [7]. The
first step is the simultaneous construction of wild Cantor sets X in
BdBn and Z in Sn having compatible defining sequences [7, Lemma
4.1] such that every contraction of a certain loop in BdBn — X con-
tains an admissible subset of X and every contraction of another
loop of Sn — Z contains an admissible subset of Z. Then by [7,
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Lemma 3.1] there is a homeomorphism / of X onto Z "mixing" the
admissible subsets and, finally, by [7, Theorem 2.2] / extends to an
embedding F of the n-ce]l θ(Bn) promised in Lemma 6.3. The
crumpled cube C is Sn - F(IntBn). C fails to be of Type 1 for the
same reasons that apply to the examples of [7] (compare Theorem
5.2 of [7] and Theorem 4 of [8]. However, BdC can be approximated
in C by embeddings g — Fa(F\BdC)~\ where the embedding a of
BdBn in θ(Bn) - Int Bn) is such that cc\X) is tamely embedded in
BdBn. As a result, g(BdC) is locally flat modulo a Cantor set
FoΓ\X) tamely embedded in BdC, and obviously then g(BdC) bounds
Type 1 crumpled w-cubes.

It should be obvious from the preceding sentence and the Locally
Flat Approximation Theorem that BdC can be carefully almost ap-
proximated from IntC, indicating that Theorem 5.1 is a best possible
result.
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