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ON THE STRUCTURE OF Boo(F), F A STABLE SPACE

JERROLD SIEGEL

For a given space F9 let F-*EJF)-*BJJP) be the clas-
sifying fibration for fibre homotopy equivalence classes of
fibrations with fibre F. The usual theoretical construction
of this fibration offers little insight into its structure homo-
topically. Below we study this structure under the hypothesis
that F has homotopy concentrated in a stable range. As an
application of this study, for F a stable two stage Postnikov
system determined by a Steenrod operation, we obtain explicit
descriptions of the spaces E^iF) and BJF).

Our study is based on two observations about these spaces for
such stable F. Firstly, BJF) "splits" between EJF) and B{F) [12].
Secondly, the finite Postnikov decomposition of F will be shown to
translate into a finite filtration of EJF). The homotopy spectral
sequence of this filtration is relatively accessible.

In the first section we review certain constructions that will be
needed in the sequel.

The second section is devoted to setting up the spectral sequence
mentioned above. Restricting attention to two and three stage
Postnikov systems, we are able to use this spectral sequence to obtain
information about the homotopy of BJF).

Finally, in the third section we consider stable two stage systems
where it is possible to give a fairly complete geometric description
of EJF) and BJF). Again, when the system is determined by a
Steenrod operation the description is made precise. We show that
EJJΓ) is a certain fibre product of spaces of type L(π, n) [9] and
BJF) is essentially the total space of a fibration over EJJΓ) deter-
mined by a single ^-invariant for which a formula is given.

Finally, we would like to thank the referee for his many helpful
suggestions.

1* Preliminaries* We assume that all of the constructions and
computations below take place in an appropriate topological setting
(e.g., [6]). We will be interested in fibrations with a given cross-
section. James [4] would consider the first constructions to be a
fragment of ex-Postnikov theory.

NOTATION 1.1. (a) Let S? = (E, p, B) be a fibration with fibre
F. For a given space X we let Ex = {f\X-*E\pf = const.}. <gx =
(EΣ

9 p, B) is a fibration with fibre map (X, F) and with p defined by
the formula p(f) = p(f(x)).
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(b) Let s:B-*E be a cross-section for gf and let x0 be a fixed
point of X. For each b e B we have a preferred base point s(b) e
p-'tf). Let Ef = {feE*\f(xo) = 8{b) where p/(s0) = 6}. gff =
(J57f, j5, J5) is a fibration with fibre the base pointed maps of X to
F. g?f has a preferred cross-section of constant maps.

Given a map we may replace it by a fibration using a well known
construction. We now wish to observe that this may also be carried
out in the setting of ex-homotopy theory.

Suppose we are given a commutative diagram of fibrations. (Not
necessarily with the same fibre.)

Define E7 - {(e, h)eE x Eτ\f(e) = fc(0)} and let p: Ej -> £ be
given by the formula p(β, ft) = p(e).

LEMMA 1.2. ξfγ = {Ej, p, B) is a fibration fibre homotopy equi-
valent to g*.

The proof is straightforward as is the proof of the lemma that
follows the next definition.

DEFINITION 1.3. Suppose we are given cross-sections s and s of
g? and gr respectively. Define Ej = {(e, h)eEj\sfp(e) = Λ(l)} and
let p' be the restriction of p to Ej.

LEMMA 1.4. if/ = (28y, p', JB) is α fibration with cross-section s'
and the fibre of ^j is the fibre of the map f:F-+F.

Note that we have the following commutative diagram of fibrations
with cross-section.

T7T / v π

1*
> JD

We will denote such diagrams by the notation
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We will also write g^resp. g7') interchangeably for if 7 (resp. g7/)
taking the appropriate meaning from context.

The following application of 1.4 is basic to much of what follows.

THEOREM 1.5. Let F, the fibre of g7, be (n — l)-connected and
let t: F-* K(π, n) represent the fundamental class of Hn(F, π) where

(a) There exists a fibration ξ?π = (EX9 pπ, B) with cross-section

and with fibre K(π, n), and a map of fibrations g7 —'—* gV with

t\F=t.
(b) The fibre of if' in the sequence

is the result of killing the lowest nonzero homotopy group of F.

Proof. (See also [7].)

The existence of t is a corollary of 1.6 of [11]. In particular,
g7* is the first stage of the twisted Postnikov decomposition of g*.

In applying 1.6 of [11] one notes that the existence of a cross-
section implies that the twisted ^-invariant τ(i) = 0 and that it
suffices to set sπ — ts. Note that g7* need not be a product. To
see this one notes that the vanishing of the twisted ^-invariant does
not have the usual geometric meaning that the corresponding map
of spaces is trivial (see 1.5 of [11]).

The Functors H and Ho

We now recall some facts about classifying spaces of fibre
homotopy equivalence classes of fibrations.

Let H(X, F) be the set of fibre homotopy equivalence classes of
fibrations over X with fibre F. H has a classifying space BJJF)
and universal fibration &JF) = (EUF), $„, BJJF)) [1, 2].

One also has H6(X, F), the set of base cross-section preserving
fibre homotopy equivalences. In [12] we established the following
information about Ho(—, F) (see also [3]).

THEOREM 1.6. (a) Ho(—, F) is classified by a space
(b) J5t(jP) = EJF), the total space of the universal fibration

over BJF). Moreoverf a classifying fibration g\(F) for HQ is given
by pulling &JF) back along p^ {see [3]).

(c) If fti{F) = 0 for i < n and i > 2n — 3 for some n (such an
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F is called stable) then the map B^(F) -* B^F) admits a retraction

The following theorem follows at once from the proof of 1.6 c in
[12] and should have been stated there (see 2.3 and 2.13 of [12]).
Since stable spaces are associative H-spaces we may form principal

Hence,

THEOREM 1.7. Let F be stable and B(F) be the classifying space

for principle F-bundles. Let B(F) —> B^F) classify B{F) as a fibra-

tion. Then the fibre of the map r is B(F) and B(F) -^ BJJ?) -^
Bi(F) is a universal fibration for H0( — rB(F)).

Since rp^ ~ Id 1.7 implies:

COROLLARY 1.8. πn(BM(F)) = πn(B(F)) 0 πn(Bt(F)).

In fact, 1.8 holds when F is an associative iϊ-space [12].

NOTATION 1.9. In all that follows we will be considering fibrations
with 1-connected fibres F, F\ We will want to look at certain
subspaces of various mapping spaces. We adopt the following notation:

(a) Let (Ff, F) denote the subspace of the space of maps of F'
to F such that fe(F', F) if and only if f*:πn(Ff) ^ πn(F) for all
n such that both πn(F') and πn(F) are not trivial.

(b) If Fr and F have specified base points then (F', F)o C (F', F}
denotes the subspace of base point preserving maps.

(c) For a fibration gf = (E, p, B) with fibre F, let gf <F', F) =
(E(F\ F\ p, B) denote the fibration with fibre (F\ F) and total
space E(F, F) = \JxeB (F', p-'ix)) £ EF.

(d) If g7 has a base section and Fr a given base point, let
ξf(F, F)o = (E(F', F}0, p, B) denote the obvious fibration with fibre
(F', F)o and base section of constant maps.

(e) Finally if F = F' we write Ϊ?(F) (resp. ξ?(F\) for
Ϊ?(F,F) (resp. <%{F, F\).

We complete this section by recording two more or less well
known facts.

THEOREM 1.10. [1], [3]. Let (EJF), p^ B^F)) and (Et(F), pu

Bf(F)) be as 1.6 then E^ζF) and Et(F}0 have vanishing homotopy.

1.11. Next, let (E, p, B) be a fibration, let bQeB and e0 6 p-\b0)
be given base points and let θ: ΩB x I—>B be the evaluation map
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(θ(l, t) = l(t)). Let θ: ΩB x J-> £? be a lifting of 0 such that 0 |β£ x
0 = e0. Finally define d:ΩB-+F by d(i) = 0(Z, 1). d is called a
geometric boundary map and is unique up to homotopy class if F
is path connected.

LEMMA 1.12. Suppose we are given the following homotopy
commutative diagram of fibrations

•I , 1v'

Let ΩB —> F and ΩB' -* F' be geometric boundary maps then the
diagram

of

homotopy commutes.

2* A Filtration of the space B^(F). In this section we make
use of 1.5 to give a filtration of the space Bt(F) by fibrations. We
then analyze the associated homotopy spectral sequence, first formally
then in the case F stable. In the stable case the Ex and E2 terms
of the spectral sequence are seen to be computable in terms of more
familiar objects.

2.1. Applying 1.5 to the fibration ξf^F) yields the fibration
gf' = (E\ p\ Bi(F)) with fibre F'. Again F' is the result of killing
the lowest homotopy group of F. Since g7' is classified by a map
p: Bt(F) -» B\Fr) we have the following diagram.

I J i
(2.2) E,(F') < E' > E

1,1 1
Writing F' as F1 and p as p1 we may iterate this process giving
the sequence of spaces.
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(2.3) B,{F)

and the associated sequence of fibres of opposite variance.

It is now our intention to study the fibres of the maps p\ Since
our diagrams are already heavily adorned we will work with 2.2
itself but state conclusions in general.

We begin by noting that the map F' —»F induces i*:<F, F)o->
(F\ F)o and i«: (F', F')o -> (F', F\. The following extension of 2.2
is basic to our analysis of the maps p\

(F', F'\ = (F\ F'\ - X (Ff, F\ J— <F, F}0

i i i I
(2.4) E,(F>\ < E'{F'\ > E'(F', F\ <

1 , 1 1 I
We will also need the following observation.

LEMMA 2.5. i* induces an isomorphism in homotopy.

Proof. Since Ff is ^-connected (F\ K(π, ri))Q has vanishing
homotopy.

Finally, letting d{d') be a geometric boundary map for

we have the following:

THEOREM 2.6. The following diagram of spaces is homotopy
commutative.

ΩB,(F') *^- ΩB,(F)

(2.7) ji*d'

<F', F)ΰ JL (F, F}0

Moreover, i*df and d induce isomorphisms in homotopy.

Proof. Homotopy commutativity follows from 2.4 and 1.12. d
and d' induce isomorphisms by 1.10. Finally, i* is an isomorphism
by 2.5.
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Using 2.7 we can now study the homotopy of T, the fibre of the
map p.

πΰ(T) and π^T)

(2.8) Since Bt(F) and Bt(F') are connected πo(T) = coker p* =
πάB+ίF'Mp+πΛB+iF)). Moreover, ^(J5+(F)) = £?«[F] the group of
base point preserving self-equivalences of F.

p*

The map Eq[F] —>Eq[F'] has been studied in several places
and in fact for the stable case a formula for the image of Eq[F]
in Eq[Fr] can be found in [9]. We give an interpretation of this
formula in a simple case.

Let F be a stable two stage Postnikov system determined by a
cohomology operation φ e Hm+\K(π19 ri), π2). Eq[Fr] — aut (π2) and the
image of p in aut (π2) are precisely those a in aut (ττ2) for which
there is a β in aut (TΓJ with

K(πί9 ri) -^-> JSΓ(π2, m + 1)

K(πlf ri) —^-> ϋΓ(τr2, m + 1)

commutative.
One may state conditions when p* is onto, (if π1 and π2 are prime

cyclic) but in general, of course, this is not the case.
On the other hand, since T is the fibre of a fibration with path

connected base and total space, all of the path components of T have
the same homotopy type. Hence the higher homotopy of T is reflected
in Ω(T) which is also the fibre of ί*: <F, F\-+(F', F)o.

The study of πλ(T) requires similar consideration [5], [8], [9].
We will consider these groups again in §3 for some special cases.

π n ( T ) , n^2

NOTATION. We let F/F' denote the cofibre of the map i: Fr-+F.
For X a space we let S(X) denote its reduced suspension. Finally,
for base pointed spaces X and Y, let [X, Y] denote the set of base
pointed homotopy classes of maps of X to Y.

LEMMA 2.9. // F is an H-space then

πn(T) - [S*-\FIF')9 F]

for n^2.

Proof. By 2.6, it suffices to study πn^(ΩT) where ΩT is con-
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sidered as the fibre of the map i*: (Ff F)Q->(F', F)Q. Since F is
an iϊ-space all components of spaces of maps into F have the same
homotopy. Hence we may replace i* by the map of components of
maps base point homotopic to the constant map. The result is now
a standard mapping space argument.

The Spectral Sequence

In order to set up the spectral sequence we extend the sequence.

F <_: F1 < F2 <

in a trivial way by setting Fn — F for n <; 0. Also set

d" = i\i\ . i*d*: Ω(Bt(F*)) > (F\ F\ .

We have the following formal display of spaces.

Ω{B^Fn))
Q9n at Ώ tjpny, V * + 1

 i WB^F71*1)) •

dn+l

^<Fn+lfF>

Before extracting our exact couple from 2.10 we establish some
notation.

The general form of our bigraded exact couple will be

A ί .

k \ Si
E

ιP)q: Ap P q+l> Op q'- A p q ""-Pi? *

For the pair (Fn, Fn+1) its Barratt-Puppe sequence is

Fn+1 %n > Fn - ^n > Fn/Fn+ι —> S(Fn+1) .

Note, for example, that Δn induces
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(S*-1^)*: [S»-\S(Fn+ι)), F] > [Sp~\Fn/Fn+1), F] .

THEOREM 2.11. For F an H-space there is a bigraded exact
couple (A, E, i, j, k) as above and such that

1. A\,q = π
2. El,q = [

3. dϊ,q = j\qK,q = (S'-^)*(SW*.

Proof. The exact couple in question is induced by 2.10. Hence
all that is left to prove is (3) which, like 2.8, is a standard mapping
space argument. For example one identifies jPtq as induced by the pth
suspension of the geometric boundary homomorphism then observe
that (Sp~1Aq)^ is essentially an explicit choice for that map.

When F is a stable space 2.11 takes a more convenient form.
Before stating the result we introduce some notation relating to the
Postnikov decomposition of F. Let the rth nonzero homotopy group
of F be denoted by πnr, where nr is the dimension where it occurs.
Let Er denote the rth stage in a Postnikov decomposition of F and
let kr 6 H%r+1+1{Er, πnr+l) be the rth ^-invariant of F. Thus we have
the following decomposition of F.

(2.12)

K(πni,

nQf n0) =^= K(πno, nQ) — ^ K(πnι, n2

We set ψr - [Mr] eH^+\K(πnr, nr), πr+1).
Since we are in a stable range it makes sense to speak of Spψr e

Hnr+1+p+1(K(πnr, nr + p), πr+1), the pth suspension of fr. Note that
p may take negative values. The following well known fact motivates
our restatement of 2.11 for the stable case.

LEMMA 2.13. For p ^ 2nr — 2 we have that

S^Vr-l ° SPψr = 0 .

Proof. It suffices to consider the case p — 0. Other cases following
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by isomorphism under suspension. For p — 0 we have the diagram-

%ψf nr) ~^Er^-> K(πnr+lf nr+ί + 1)

I -
f nr.x) Ά Er.x ^ K(πnr,nr+1

now S'Xψr^) = [ΩkrS Ωir^] and Ωkr^ is the geometric boundary of

the fibration K(πr, nr)^Er^> JSU so [irΩkr^] = 0 and

- \kr%rΩK-,Ωir-λ = 0 .

We are now prepared to state the additional properties that our
spectral sequence has in the stable case.

T H E O R E M 2 .14. Let F be stable {again, π^F) = Qn>iori>
2n - 3) then

(a) The spectral sequence of 2.11 finitely converges.
(b) Elq = [K(πnq,nq + p),F],p^l.
(c) d\,q = (S '-y ,_,)*.

Proof. Firstly let w0, ww ^ 2 ns be the dimensions in which

π % ( F ) Φ 0 . T h e n E ι

p > q = 0 p > 2 n ~ S o r q > s ( 2 . 1 1 - 2 ) .
It is a simple matter to check that the maps

K, nt))
and

S'(K(π%1, %q + p)) -?-* K{πnq, nq + p)

are 2n — 3 equivalences hence

{σS%pq)T[K{πnq, nq + p), F] = [8>(F</F<+ί), F] .

If θq 6 Hn*(K(πnq, nq), πnq) is the fundamental class then [fcg_J =
(p^^dgθg where δ* is the coboundary homomorphism in the sequence
of the pair (En , K(πn , nq)). On the other hand if S* is the cohomology

q g Δ q

suspension and En /K(πn , nq)-+S(K(πn , nq)) is as in 2.10 then δ* = J9*S*.nJK(πnq,
b

Jq q
Using this fact, (2) above, and 2.11.3, the remainder of the proof
reduces to an examination of the appropriate diagrams.

APPLICATIONS 2.14. We now apply 2.13 to certain simple cases.
We assume nQ > 1.

1. F = K(πno, nQ). This situation was studied in [11] where it

was shown that B^(F) is a i£(Aut (?O, 1).
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We rederive this result from 2.13 by noting that Ep)0 =

[K(πnQ, n0 + p), K(πnQ, n0)] = 0 p ^ l . Also El

p>q = 0 trivially for q Φ 0.

Thus we conclude that πn(Bt(K(πno, n0)) — 0 n^2. Finally, we know

that π^B^F)) = Eq[f] = aut (πnQ) (2.8).

2. F= (K(πno, n0), K(π%1, Q , k,). Here E1^ = OqΦθ,l. By ele-

mentary obstruction theory one shows

(a) JS£fl = 0, p 2; 1.
(b) Ep,0 = [JΓfoJ, rc0 + p, iΓ(τr%1, wj], p ^ 1.

Thus:

for w ^ 2.
We will discuss the actual structure of BJJF) in §3.

3. F = (K(πno, n0), K(πni, nt), K(πnz, nz\ kί9 k2).

As above: (a) E\,q = 0, g Φ 0, 1, 2 (trivially)

(b) J E ^ = 0, p ^ 1 (as in 1 above).

(c) E\Λ - HnKK{πny9 nx + p), π%2), p ^ 1.

Ep,0 = Hn2(K(πno, n0 + p), π%2)p ^ ^ — ^ 0 + 1 (as in 2 above).

(d) In general for p ^ 1 there is an exact sequence

— H"KK(π, n0 + p), ττ%2) > ^ ^ > H%K{πnQ, n, + p), ττmi) Ά .

We next consider the .E'M erms.
(e) For p ^ 1 ^ , 2 = ker < 2 = ker ( S ' " 1 ^ ) * and for p ^ ^ 2 - n2 + 1

2

(1 = coker (S**^)* where

nx + p), π,2) > HnKK(πnQf n0 + p - 1), ττW2) .

Thus, for p ^ ^ 2 — nx + 1, there is a short exact sequence

0 > ker (S*-tyi)* > πp(B,(F)) > coker (S'ψJ* > 0 .

A more complex sequence can be written down using (d).

4. As a last example we apply (3) to an explicit case. The
results are indicative of the sorts of conclusions we will draw in the
next section.

Let F be a stable space based on the Adem relation Sq*Sq2 =
0. Thus, letting n be a base stable dimension we have the following
Postnikov system for F.
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F2 = K(ZU n + Z) -ίu F1 -£-» F

I . I ,
&(Zr2f 71 -ή- L) > ϊiι1 > &(Zt2, n + 4)

1,.
K(Z2,n)-^->K(Z2,n + 2)

where k2i2 — Sq* and, in the notation of 2.11 i1j2 — %.
By (3) a, b, c, d above we conclude that the nonzero E^-terms in

our spectral sequence are

'2, n + 1), Z2) = Z2[Sq*]

J h l Λ = JG/2,0 = = ^ 2 L ^ ^ J

# 2 ι l = J5ϊt0 = ^2[Jd] .

All of these are immediate except the first which follows from (3)
d by a simple evaluation of the various terms in the sequence. By
2.14 (C), d\Λ = [Sqψ: E\Λ ~ E{Λ thus E\Λ = El, = 0.

Further, it is not difficult to verify that d\Λ Φ 0 thus E\Λ = 0.
Thus the nonzero j£2-terms are:

77T2 /~*s T7
• " 2 , 0 —— ^ 2

Again, checking that πx(B^F)) = ^ 2 we have that

Z2 i = 1, 3, 4

0 otherwise .

THEOREM 2.15. In a Postnikov decomposition of B^(F)9 k2i2 = 0.
Thus the simply connected covering space of Bt(F) is K{Z2J 3) x
K(Z2, 4).

Sketch of proof. k2i2 is either Sq2 or zero. Let X = S(P4)> the
suspension of real protective 4 space. If k2i2 = fig2 then one verifies
[X, JS+(JF)] = Z2. On the other hand, a direct calculation shows
ϋΓ0[X, F] ~ Z2@ Z2 which agrees with the assumption k2i2 = 0.

3* B^{F) and B^ (F) for stable two stage systems* In this
section we give explicit descriptions of B^(F) and BJJF) for certain
stable two stage systems. These descriptions are based on a presen-
tation of B^F) as the total space of a fibration with fibre a product
of K(π, n)'s and base a K(π, 1). We first develop this presentation.
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3.1. To fix notation for this section, assume we are given the
following Postnikov decomposition of F

1' , 1
> K(πi9 % + 1) .

Associated with this decomposition is the principal bundle pairing

σ:K(πlf nt) x F >F .

Finally, for spaces X and Y, CQ(X, Y) will denote the space of maps
homotopic to a given constant map.

The following construction is basic to the remainder of this
section.

3.2. Suppose we are given a pairing

ζ: X A K(π0, n0) > K(πl9 n, + 1) .

Let ζ: -X" x K(π09 nQ) —> K(π19 nx + 1) be the pairing induced by ζ.
Let k: X x K(π09 nQ) —> K(πί9 nt + 1) be the composition of projec-

tion onto the second factor and k.
Finally, let m denote multiplication in K(πί9 nx + 1) and Δ\ X x

K(π09 n0) —> (X x K(π0, no)f denote the diagonal map.
We have the following pullback diagram of fibrations

ϊ\

X x K(πo,\o) ^ Ά K(πlf n, + 1) .

Letting t be t composed with projection onto the first factor,
we have the following lemma.

LEMMA 3.3. E —> X is a fibration over X with fibre F and with
cross-section.

In general (E, t, X) is not a product. To see this we show by
example that the geometric boundary homomorphism of the associated
fibration (E(F)Of t9 X) may be nontrivial. We will use this com-
putation for other purposes as well.

3.4. The pairing σ induces a pairing of mapping spaces.

σ: C0(F, K(π19 nx)) x <F, F\ > {F, F\
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which in turn induces

dιCJiF9K{π19nd) > <F, F\

by the formula σ(f) = σ(f, Id), where Id is the identity map on F.
On the other hand, ζ induces

Ωζ: ΩX A K(π0, n0) > ΩK(π19 nγ + 1)

which in turn induces

Ωζ: ΩX > C0(K(π0, n0), K(πlf nx)) .

We have the following

THEOREM 3.5. A geometric boundary homomorphism d:ΩX-+
(F, F)o, for the fibration (E(F}0, p, X) is given by the composition.

3.6. ΩXΩS C0(K(π0, n0), K(πlf nj) £ C0(F, K(πlf nx)) ̂  <F, F\.

Proof. Referring back to the definition of d (1.11) the proof
amounts to a verification that the given composition is a suitable
choice for d.

EXAMPLE 3.7. Let X = C0(K(πQ, n0), K(π19 nx + 1)). One has the
evaluation pairing

ζ: C0(K(πQ, O , K(π19 nx + 1)) Λ K(πQ, n0) > K(πlf wt + 1)

hence one may apply the construction 3.2.

LEMMA 3.3- In the setting of 3.7,

d*: n^CQ{K{n,y n0), K(π19 n, + 1))) > πt{{F7 F\)

is an isomorphism for i > 0.

Firstly, Ωζ is, in fact, the identity map on the spaces in question.
For i > 0, p* is an isomorphism by a simple obstruction theoretic

argument as in 2.14.2b and if* is an isomorphism by similar consi-
deration taking into account the properties of the pairing σ.

In what follows we denote the space C0(K(πQ, n0), K(πιt nx + 1))
by the letter "K". Again, 3.2 gives a fibration over K with fibre
F and cross-section.

THEOREM 3.9. Let κ:K->B^F) classify this fibration. Then:
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(a) K is a product of spaces of type K(π, i) for
Moreover π^K) = Hni+1(K(π0, n0 + i), πt).

(b) κ^:7ϋt(K) >τϋi(Bt(F)) is an isomorphism for i Φ 1.

Proof, (a) is a well known result ([13]).
(b) follows at once from 3.8, 1.10 and 1.12.

3.9 may be interpreted as saying that the universal covering
space of B^(F) is a product of K(π, n)'s. Thus, in order to determine
the structure of Bt(F), we must know its fundamental group and
the action of this group on the higher homotopy groups.

As we have indicated (2.8) π^B^F)) = Eq[F]. Let

τ: Eq[f] > aut (πnQ(F)) x aut (πΛι(F))

be defined by the formula τ[f] = /* x /*. Denote the image of τ as
π. τ induces a map

The following theorem gives a fairly complete hold on the geometry
of Bi(F).

THEOREM 3.10. Up to homotopy, the sequence of maps

is a fibration.
Moreover, the action of π on 7ζt{K) is just the restriction of the

usual action of aut (πno) x aut (πni) on H%1+1(K(π0, n0 + i), πj.

Proof. Since the base of τ is a K(π, 1), to show that the sequence
in question is a fibration it suffices to check that

(a) κ*\ πt(K) = πJίβ^F))i > 1 (as was verified in 3.9).

(b) 0 --»πx(K) ^ π^B^F)) ^ ^(K(TC9 1)) -> 0
is exact.

To verify (b) we first observe that r* is onto essentially by
definition.

Next, self-equivalences in the image of £* are represented by
compositions of the form

(3.11) F-?-* F x Fv-^± K(πQt n0) x F ^ i K(πlf nx) x F-^> F

where h: K(πOf n0) -> K(πlf nj is some map [h] e πo(ΩK) = ic^
On checks that
1. Such compositions induce the identity map on homotopy.

Hence τ*/c* = 0.
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2. Such compositions are homotopic to the identity if and only
if h is homotopic to the constant map. Hence tc* is a monomorphism.

To show that ker τ* = im £*, let x e π^B^F)) be such that τ*(x) =
0. Consider x = [/] 6 Eq[f] under the appropriate identification. By
hypothesis,

Hence, there exists a map g: F-+ K(π19 nx) such that i*[g] = [/] — 1.
Again by hypothesis,

0 = ^ : πn(F) > πn(K(πlf nj) .

Thus i*[g] = 0. Since we are in the stable range [g] = p*[h] where
h: K{π0, nQ) —> K(πl9 nj. Finally considering [Λ] e τrx(JBΓ) (3.11) one
verifies fc*[h] = x.

That the action of π on πt(K) is as stated is a similar verification.
We now consider a situation where we can give an explicit

model for

3.12. For a given prime p let k be a nontrivial stable operation
of type (Zpf Zpy %ly n2). Then aut (πx) = aut (ττ2) = ^ - i and since k
is nontrivial ί? = Zv_γ (see 2.8).

Consider the twisted Eilenberg-MacLane spaces LZί)_1(7Γί(jRΓ), i) [10].
Since TΓ̂ JBΓ) is ^-primary the fundamental classes of the cohomology
of the fibre live to E^ in the twisted Serre spectral sequence of
Bt(F) —> K(ZP-lf 1) [10, 11]. Hence there are geometric representations
of these classes as commutative diagrams of the following form

>LZp_ι{πi{K),ϊ)

I I
K(Zp_lf 1) = K(Z^lf 1)

where the top map is an isomorphism in homotopy in dimension i
and in dimension 1. We then have

THEOREM 3.13. Let F be determined by a stable operation of
type (Zp, Zp, nίf n2). Then

B,(F)^ X L^πάK), i) ,

the fibre product over K(ZP-19 1).

For p = 2 this reduces to an ordinary product.
We may use 3.13 to determine the structure of B^F). For

simplicity we only write down details for p = 2.

Recall that the fibration B(F) -> B^F) ^> B,(F) is a model for
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(1.7). Hence B^F) is the total space of this fibration.
For the case p — 2 we have essentially constructed this total space
in 3.5. In particular, let kt e Hni+2(K(Z2, n0 + 1), Z2) be k delooped.
Identifying BM(F) = K= C0(K(Z2, n0), K(Z2, n, + 1)) and B£B(F)) =
C0(K(Z2, n0 4- 1), K(Z2, nx + 2)), we have the following theorem.

THEOREM 3.14. BJJΓ) is the pullback of the following diagram.

(3.15) i J
B,(F)X x K(Z2, n0 + 1) - ^ - X - ^ i K(Z2, n, + 2) .

Proof. Since π = 0 this is an immediate consequence of 3.10.

FINAL REMARKS 3.16. For p ^ 2 a similar construction can be
given. The difference between the two cases is that the Λ -invariant
for p Φ 2 is a twisted k-invariant. Therefore, in (3.15) one must
replace K(Z2f ri) by LZp_x{Zpy n) and products by fibre products. The
formula for the Λ-invariant in this case is similarly generalized.
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