
PACIFIC JOURNAL OF MATHEMATICS
Vol. 76, No. 2, 1978

CHARACTERIZING THE ORDERS CHANGED
BY PROGRAM TRANSLATORS

MARGARET SHAY AND PAUL YOUNG

The ways in which translators from one programming
system for the recursively enumerable sets to another such
programming system can change the orders of the sets being
translated are characterized using the computable functions
which permute infinitely many initial segments.

In [3], it is shown (Corollary, p. 194) that every translator
from one programming system for the recursively enumerable (r.e.)
sets to another such programming system must preserve every
order of enumeration of every r.e. set on infinitely many of the
programs which enumerate the set in the given order. It was also
conjectured there that for every translator, many sets of cardinality
greater than one never have their order of enumeration changed
by the translation of any of their programs. In this paper, we
show that this conjecture is false, although ' 'nearly" true, and we
characterize the orders which can be changed by program trans-
lators. Specifically, we show that given any r.e. sequence of effec-
tive permutations which permute infinitely many initial segments,
we can build a translator which changes every (infinite) order of
enumeration by every permutation in this set. On the other hand,
if a program enumerates a set sufficiently slowly, then no transla-
tion of the program can change the order of enumeration by a
permutation which is not of this form. Thus for any translation,
many sets (those having only slow enumerations) have all of their
enumeration orders preserved modulo such permutations of their
initial segments.

In [3], the vague conjecture that "the only general method of
translation is simulation (of the source programs)" is discussed.
The results presented here are compatible with that conjecture.

We use without further discussion the notation and the defini-
tions of [3], and we assume some familiarity with the results of
that paper.

DEFINITION Let p by a function on the natural numbers, i.e.,
p: N • N. Then p permutes initial segments if there are infinitely

onto
many n such that {p(i) \ i < n) = {% \ i < n}.

We first show that, in a very strong sense, translations can
change orders of enumerations by functions which permute initial
segments. Intuitively, if p is such a permutation, and we want to

485

486 MARGARET SHAY AND PAUL YOUNG

build a translator τ such that the order <r(<> is the p-permutation
of <u we get in trouble if Wt is finite since Wt may not contain
enough elements to complete the permutation called for by p. To
overcome this difficulty, we define a "pretranslator" τ' such that
WT'(i) is obtained by using as much of Wt as we are able to succes-
sfully permute. Since Wτ>H) £ Wt, we can then define the desired
translation roughly as the inverse of τ', using only enough elements
of Wr-ut) to make WT-ιH) — Wt. We give the details as:

THEOREM 1. Let XiWi be any standard indexing of the r.e.
sets and let p be a computable function on N which permutes initial
segments. Then there is a translator τ from XiWt to itself which
changes every order of every infinite set by p.

Proof. In view of the order isomorphism theorem (5) of [3],
it suffices to prove this result for any of the familiar enumeration
techniques, such as Turing machines, in which standard intuitive
operations on orders can be performed. We assume such a techni-
que in the following proof. (For the same reason, to prove the
result for a translation from one enumeration technique to another,
it suffices to have the result for a translation from any one enu-
meration technique to itself.)

First define the "pretranslator" τr having recursive range as
follows: Given i and n obtain the nth element of Wτr{i) by:

(1) Compute p(x) for x = 0, 1, until finding k = μy ̂ n such
that {z I z ^ y) = {p(z) | z ^ y}.

(2) Enumerate Wt until k elements have been enumerated.
(3) If and when step 2 terminates, output the p~\n)t]i element

of Wt.
Clearly these instructions are effective and the order padding

lemma ([3]) for XiWt can be used to make the range of τf recur-
sive by making τ' strictly monotonically increasing.

Note that if Wt is infinite, then WT^t) = Wt and < 4 is a
p-permutation of <τrU). The key observation is that if Wt is finite
then Wr>u)Q Wt and some initial segment of <t is a p-permutation
of <τ>u)- Thus τ' is just the inverse of the translation we want,
except that τf does not translate finite sets whose cardinalities are
not the lengths of initial segments on which the permutation p is
fixed.

We now define the translator τ of the theorem as follows, for
all i:

(i) If i ί range τ\ let τ(i) — i.
(ii) Otherwise let m=r' (~ 1 }(i); to get the wth element of Wτ{t)9

run i and m until both have enumerated n elements; if and when

CHARACTERIZING THE ORDERS CHANGED BY PROGRAM TRANSLATORS 487

this happens, put out the nth element enumerated by m.
Then for all i in the range of τ', -<r(<) is a p-permutation of

<t. In view of the order isomorphism theorem of [3], all orders
of every infinite r.e. set appear infinitely often in every enumeration
technique. Clearly for Turing machines, if <{ is such an order and
Wi happens to be infinite, we can find V such that W? = Wi and
-<r is a ^-permutation of <t. Since < r is also a p-permutation of
<vm), we see that •<< = <Γ/(<,. Thus since all orders for every
infinite set are in the range of τ', τ changes all orders of every
infinite set by p.

Theorem 1 shows that permutations which permute initial seg-
ments can be realized by translations. It is natural to ask what
other permutations can be realized. There is a sense in which every
permutation can obviously be realized if we know that Wt is infinite
or if Wi is infinite and happens to be enumerated "quickly/' then
as observed at the end of the preceding proof we can change the
order <t in any way we please. On the other hand, if we do not
a priori know whether Wt is infinite and if p does not permute
infinitely many initial segments, then intuitively it would seem
impossible for any uniform method, and hence for any translator,
to change the order of Wi by the permutation p since it would
appear necessary for the translator to periodically make judgments
as to whether Wt is finite or infinite in order to effect the permuta-
tion. This is essentially the content of our next theorem:

THEOREM 2. Let XiWt be any standard indexing of the r.e. sets
and let τ be any translator from XiWi to itself. Then there is a
recursive function b such that for any i, if A^n) > b(n) infinitely
often, then τ cannot change the order of i by any permutation
which does not permute initial segments.

Proof. (Recall that Ai(n), defined in [3] and in [6], is, intui-
tively, the time required for program i to enumerate n elements.)
Note that if p is a permutation which does not permute initial
segments and if <τ{k) is a p-permutation of <k, (with Wk infinite),
then for all but finitely many n,

{e\e is one of the first n elements of Wτ{k)}

Φ{e\e is one of the first n elements of Wk}.

Using this fact we can define the function b of the theorem by
diagonalizing over the run times of all sets j for which τ changes
the order of j by some permutation which does not permute infinitely
many initial segments:

488 MARGARET SHAY AND PAUL YOUNG

Let 6(0) - 1

and b(n) = b(n — 1) + 1 +

max {Aj(n) | (3m)[A, (m) ^ b(n — 1), and for all r such that

m ^ r < n

{the first r elements of TF, } ̂ {the first r elements of Wτ{j)) .

For any translator τ this 6 is a total recursive function. (Note
that if {the first r elements of Wd} Φ {the first r elements of Wτij)}
then Wj and Wτ{j) have at least r + 1 elements.) For all i, if <τ{i)

is a ^-permutation of -<* for some p which does not permute
initial segments, then A^ri) < δ(w) almost everywhere. (Just as with
Theorem 1, because of the order isomorphism theorem of [3], the
extension of Theorem 2 to translations between any two standard
indexings of the r.e. sets is immediate.)

As a corollary to Theorem 2, we observe that if p is a permu-
tation which does not permute initial segments, then for any
translator τ, there are many orders of enumeration which τ fails to
change by p:

COROLLARY. Let p be any computable function which fails to
permute infinitely many initial segments, and let τ be any trans-
lator. Then there are infinite sets Wi such that τ does not permute
any order of enumeration of Wi by p. Also, for every infinite set Wif

Wi has some orders of enumeration which τ does not permute by p.

Proof. It is well known that some infinite r.e. sets are difficult
to enumerate (for every order of enumeration). (See, e.g., [6].)
Furthermore, it is proven in [3] that every infinite r.e. set has
some orders in which it is difficult to enumerate the set. Thus the
corollary follows from Theorem 2.

We close by extending the proofs of Theorems 1 and 2 to pro-
vide a complete characterization of the orders which can be changed
by program translators:

THEOREM 3. (a) Let pQ, p19 p2, be any enumeration of compu-
table permutations each of which either is a finite permutation
mapping {0,1, 2, , m} onto {0, 1, 2, , m) for some m or an infinite
permutation which permutes initial segments. Then from the list
Po> Pi* Ί>%> " we c®n effectively find a translator τ such that if Wi
is infinite, either -<< = -<r(i) or <i and <τ{i) differ by some infinite
pd. Furthermore if pά and Wi are infinite, then the order of
enumeration -<$ is changed by pά.

CHARACTERIZING THE ORDERS CHANGED BY PROGRAM TRANSLATORS 489

(b) Conversely, let τ be any translator. Then from τ we can
effectively find a list p0, pλ, p2, such that each pβ is either a finite
permutation mapping {0, 1, 2, , m) onto {0, 1, 2, , m) for some m,
or else pd is an infinite recursive function which permutes initial
segments, and for some i for which Wt is infinite -<t and -<r(<)

differ by p5. Furthermore, if Wi is infinite and At is sufficiently
slow, then <{ and <τ{i) do differ by some pά.

Proof. The proof of (a) is an obvious and easy extension of
the proof of Theorem 1. One begins by using order-padding [3], to
obtain from Xi <t an infinite listing XiXj <<iιj> such that if Wt and
Pj are infinite then < £ = <<ί,i>. One then calculates τ' exactly as
in the proof of Theorem 1, except that one replaces i by (i, j) and
p by Pj. That is, one attempts to permute the order <<ijj> by the
permutation Pj. Since this construction is uniform, there is no
difficulty in so computing τ' and τ. The proof is now exactly as
the proof of Theorem 1, except that we must consider the possibility
that Pj is finite. But in this case, we still have that W^^j^W^^y
and that some initial segment of -<«,,-> is a prpermutation of <τ,{i,j).
Thus the proof still reads exactly as the proof of Theorem 1, with
(i, j) replacing i, {%', j) replacing ir, and p3- replacing p.

To prove (b), we observe that, given τ, we can, for each i,
begin listing the permutation pt which permutes in the obvious way
the longest initial segments of <t and -<r(<) on which -<< and -<r(<)

do permute the initial segments. It is clear that if Wt is finite, Pi
is a finite permutation which correctly permutes -<* and -<r(t). If
Wi is infinite and A€ is sufficiently slow, then by Theorem 2 -<* and
<τii) differ by an infinite permutation which permutes initial seg-
ments and Pi must be this permutation. To complete the proof we
observe that if Wi is infinite but -<* and -<Γ(i) do not differ by a
permutation which permutes initial segments (which can only happen
if At is fast), then pt will obviously be finite, proving (b).

In closing, we remark that the translators τ of Theorem 1 and
of 3(a) can (using order-padding [3]) via the usual sort of isomor-
phism proofs, be constructed to be isomorphisms. On the other
hand, in Theorem 3(b), we cannot obtain a more elegant characteri-
zation by requiring each of the P/s to be an infinite permutation
which permutes initial segments, essentially because we can code
into such a sequence pQ, plf p2 any enumerable sequence of com-
putable functions, each of whose domain is some finite or infinite
initial segment of the integers; since we can obtain every total
recursive function in such a sequence, if we could then eliminate
the finite permutations we would have an enumeration of all the

490 MARGARET SHAY AND PAUL YOUNG

total recursive functions.

REFERENCES

1. A.M. Dawes, Splitting theorems for speedup related to order of enumeration,
Dept. of Math., Univ. West Ontario, (1977), 1-17.
2. J. Gill, J. Helm, A. Meyer and P. Young, Notes on difficulties of enumerations,
SI AM J. Comp., to appear.
3. J. Helm, A. Meyer and P. Young, On orders of translations and enumerations,
Pacific J. Math., 46 (1973), 185-195.
4. M. Machtey, K. Winklmann and P. Young, Simple G'όdel number ings, isomorphisms,
and programming properties, SI AM J. Comp., 7 (1978), 39-60.
5. M. Machtey and P. Young, An Introduction to the General Theory of Algorithms,
Elsevier-North Holland, New York, 1978.
6. P. Young, Toward a theory of enumerations, J. Assoc. Comp. Math., 16 (1969),
328-348.
7. 1 Speed-ups by changing the order in which sets are enumerated, Math.
Systems Theory, 5 (1971), 148-156. (Minor correction, Ibid, 7 (1974), 352.)

Received October 16, 1975 and in revised form November 23, 1977. Supported by
NSF Grant MC 75-09212. The authors are indebted to R.W. Ritchie for helpful sugges-
tions for the presentation of this material.

PURDUE UNIVERSITY

LAFAYETTE, IN 47906

AND

UNIVERSITY OF NEW MEXICO

ALBUQUERQUE, NM 87131

