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SCALAR DEPENDENT ALGEBRAS
IN THE ALTERNATIVE SENSE

JOYCE LONGMAN AND MICHAEL RICH

Let R, a not necessarily associative algebra over a field
F of characteristic Φ 2, be equipped with a map g\ R X R X
R->F. We show that if R contains a nonzero idempotent
and satisfies the identities (1) (xy)z + (yx)z — g(x, y, z)[x(yz) +
y(xz)] and (2) (xy)z + (xz)y = g(x, y, z)[x{yz) + x(zy)] then R is
an alternative algebra. The methods also apply to other
pairs of identities.

1* Introduction. In [1, 2] several authors have studied scalar
dependent algebras, i.e., not necessarily associative algebras R over
a field F which are equipped with a map g: R x R x R —> F such
that (xy)z = g(x, y, z)x(yz) for all x, y, z e R. The main result there
was that if a scalar dependent algebra contains an idempotent e,
then it is associative. In [3] the study was extended to the case
of algebras over a principal ideal domain. Here we shall look at
the analogous situation in the alternative case.

Specifically, suppose that R is a not necessarily associative
algebra over a field F of characteristic Φ 2 equipped with a map
g: R x R x R -> F and consider the identities:

(1) (xy)z + (yx)z = g(x, y, z)[x(yz) + y(xz)]

(2) (xy)z + (a?s)# = g(x, V, z)[x{yz) + x(zy)]

( 3 ) (a?2/)jδ + (zy)x = flr(a?, j/, s)|>(3/s)

(4) x(yz) + «(y«) = g(x, y, z)[{xy)z

( 5) x(yz) + x(zy) = g(x9 y, z)[{xy)z + (xz)y]

(6) x(yz) + y(a?ίδ) = flf(α?f y, z)[(xy)z + (ya?)2] .

Note that if g(x, y, z) = 1 then identities (1) and (6) each imply left
alternativity, (2) and (5) each imply right alternativity and identities
(3) and (4) each imply flexibility. (Recall that if (x, y, z) denotes
ixy)z — x(yz) then an algebra A is called left [right] alternative if
(x, x9 y) = 0 [{y, x, x) = 0] for all x, y in A and is alternative if it is
both left and right alternative. A is flexible if (x, y, x) = 0 for all
x9 y in A. A flexible left (right) alternative algebra is alternative.)
The intent of this paper is to show that if R contains an idempotent e,
then any pair of identities (l)-(6) which imply alternativity when
g(x, y, z) =Ξ 1, imply alternativity in all cases. Since the methods of
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proof are similar regardless of the choice of identities, to avoid
repetition we present proofs only for the case of an algebra satisfy-
ing identities (1) and (2) and describe the results for the other cases
at the end. Thus, unless otherwise specified, R will denote an
algebra satisfying (1) and (2) over a field F of characteristic Φ 2.

It wil be useful to note that if a — g(x, y, z) then (1) and (2)
easily reduce to

(1') O, y, z) + (y, x, z) = {a- l)[x{yz) + y(xz)]

and

(2') (x, y, z) + (x, z, y) = (α - l)[x(yz) + x(zy)] .

2. Algebras with an identity element* In this section we
assume that R contains an identity element 1.

LEMMA 1. // R contains an identity element 1 and satisfies
(1) then R is left alternative.

Proof. Let x, y, zeR and let a = g(x, y, z)f β = g(x + 1, y, z),
δ = g(xf y + 1, z), 7 = g(x + 1, y + 1, z). Then we have

{a - ΐ)[x(yz) + y(xz)] = (x, y, z) + (y, x, z)

= (a; + 1, y, z) + (y, x + 1, z)

Thus,

(7 ) (α - i8)[aj(»«) + y(xz)] = 2(/3 -

Similarly

(8) (α - δ)[aj(»«) + y(xz)] = 2(ί -

Suppose that (a;, y, z) + (y, α?, z) Φ 0 and that a = β. Then by (7)
#2 = 0. lΐ a = δ then by (8) xz = 0 from which it follows that
(a?, ̂ /, 2) + (y, a?, z) = 0. Thus α: ̂  δ and we get from (8)

y{xz) = δ'(a?«) for δ' = 2 ( g ^ ^ 6 F .
a — o

In a similar fashion (δ — l)[a;(^) + y(xz) + 2aJ2] = (x, y + 1,
(y + 1, a?, z) = (a? + 1, y + 1, «) + (y + 1, a? + 1, «) = (7 -
»(a?») + 2xz + 2yz + 2z] = (7 - l)[a/(a?«) + 2ίc^ + 2z] so that

(10) (δ - Ύ)[y(xz) + 2xz] = 2(7 - l)β .

Since δ = 7 implies that s = 0 we get δ ^ 7 and y(xz) +
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for μ G F. Thus (x + 1, y + 1, z) + (y + 1, x + 1, z) = (7 - ϊ)[y(xz) +
2xz + 2z] = tz for t e F . By (9) (a?, y, s) + (#, a?, 2) = (a - l)δ'xz. Thus
#2 = t'z for ί' 6 F so that #(#2) = t'yz = 0. Since #(#2) = x{yz) = 0
we arrive at (x, y, z) + (y, x, z) = 0. Thus if a? and y don't left
alternate it follows that a Φ β. Since a Φ β, (7) leads to:

(11) (x, y, z) + (y, x, z) = μ'yz for μ' e F .

Applying the same procedure as above it follows that g(x, y, z + 1) Φ
g(x + 1, y, z + 1) and that

(12) (a?, y,z + ΐ) + (y, a;, 2 + 1) = ^'(y(2 + 1)) for //' e i^7.

Combining (11) and (12) we have (// - μn)yz = ^"7/. If ^ ' = μ" it
follows that a? and y left alternate. Suppose μ* Φ μ", then 2̂; = cy
for c 6 F. Thus, by (11) (a?, y, z) + (y, a?, z) — sy for a 6 JP. Analog-
ously, (a?, y + 1, z) + (y + 1, x, z) = s'(y + 1) for a' 6 F. Comparing
the last two equations we have (β — s')y = a'l. Thus, either β' = 0
or 7/ is a scalar multiple of the identity element. In either case
(x, y, z) + (y, x, z) = 0, so R is left alternative.

LEMMA 2. 1/ iϋ contains an identity element 1 αwd satisfies (2)
£/££% i2 is right alternative.

Proof. Let x,y,zeR, a = g(x, y, z), and β = g(x + 1, #, 2).
Then (a — 1) [»(3/«) + x(zy)] — (x, y, z) + (a?, z, y) = (x + 1, y, z) +
(cc + 1, z, y) = (/S — l)[a;(!/s) + x(^) + 2/̂  + ^ ] . Thus we get

(13) (a - iS)[α?(ί/«) + a?(«»)] = (β - ΐ)[yz + «y] .

Suppose a — β. If β — 1 the result follows immediately whereas if
/9 Φ 1 then yz + zy = 0. But in this case also (a?, y, z) + (a?, z, y) =
(α — l)[a?(#3 + «2/)] = 0 so the result holds. It follows that a Φ β.
In general then, if (α, δ, c) + (α, c, δ) ^ 0 then g(a, δ, c) Φ g(a + 1, δ, c).
We are left with the case a Φ β. Then by (13) and (2') applied to
the triple x + 1, y, z we have (a?, y, z) + (a?, 3, y) = ϊ[̂ ?/ + 2/2] for
ϊ 6 F. Applying the same argument to the triple x, y, z + 1, we get
(a?, », « + 1) + (OJ, « + 1, y) = i ' [ ^ + ^ + 2]/] so that (Z - l')[zy + »«] =
2l'y. If I = V we get right alternativity as in Lemma 1. Thus we
may assume that zy + yz = Z"# for Z" e î 7 so that (a?, y, «) + (a?, 3, y) =
7y for ΎeF. Similarly (x, y + 1, z) + (x, z, y + 1) = Ύ\y + 1) for
7' 6 i*7. Setting the last two equations equal we get (7 — 7') = 7'1
and it follows that either 7' = 0 or y is a scalar multiple of the
identity element. Thus, in any case (x, y, z) + (x, z, y) = 0.

Combining Lemmas 1 and 2 we have
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THEOREM 1. If R contains an identity element and satisfies (1)
and (2) then R is an alternative algebra.

3* Algebras containing an idempotent* Henceforth, we drop
the assumption that R contains an identity element but assume
instead that it contains a nonzero idempotent.

LEMMA 3. // R satisfies (1) and (2) then (e, e, R) = (R, e, e) =
(β, R, e) = 0.

Proof. Let x e i ϋ . By (1) ex = ae{ex) for α — #(e, e, x). Thus
0, β, x) = (α - l)e(ea?) Similarly (e, e, a? + β) = OS — l)[e(ex) + e] for
/S = g(e, β9x + e). Thus (α — β)e(ex) = (β — l)e. Now a — β implies

β — 1 so that (β, β, x) — 0. Assume a Φ β. Then e(ex) is a scalar
multiple of e so that ex is a scalar multiple of e. Thus (e, e, x) =
ex — e(ex) = 0 and we have (e, e, Λ) = 0. Similarly, by (2) we get
OR, e, e) = 0.

For the last identity we first note that (e, R, e)e = 0. For if
x e R then (e, x, e)e = [(ex)e — e(xe)]e — (ex)e — [β(cce)]β = [e(x — xe)]e.
But by (1), [e(x — xe)]e = — [(x — xβ)e]β + r̂(β, x — xβ, e)[e((x — xe)β) +
(x — xe)e] = 0 by the earlier remarks. Therefore (e, R, e)e — 0. Now
by (1) (β, x, e) = (μ — ί)[e(xe) + xβ] for JM = g(e, x, β) and (β, x + β, β) =
(δ - l)[e(xe) + xe + 2β] for δ = #(e, x + e, e). Therefore (μ - δ)[β(xe) +
xe] - 2(δ - l)e. lί μ = δ then δ = 1 so that (β, x, e) - 0. Otherwise
β(xβ) + xe is a scalar multiple of e from which it follows that
(e, x, e) = te for some teF. But 0 = (e, x, e)β = β̂ so that t = 0.
Thus (e, x, e) = 0 so that (e, J?, β) = 0.

LEMMA 4. Lei e be an idempotent of a ring R satisfying (1).
Then to each x, y eR there are elements a, be F such that (x, y, e) +
(V, xf e) = ae and (x, e, y) + (e, x, ») = be. Similarly, if R satisfies
(2) there are elements c, deF such that (x, y, e) + (x, e, y) = ce α^ώ
(e, x, y) + (β, 2/, x) = de.

Proof. We prove the first identity only as the others are proved
analogously. By (1) (x, y, e) + (y, x, e) = {a - l)[x(ye) + y(xe)] and
(x, y + e,e) + (y + e, x, e) = OS - l)[x(ye) + y(a e) + 2xβ] for a = g(x, y, e)
and β = flr(a?, 2/ + e, β). Thus, (a - β)[x(ye) + y(xe)] = 2(/9 - l)xe. If
a Φ β then a?(yβ) + y{xe) = ί(«e) for i 6 F . li a = β then either /S = 1
or xe = 0. In any event we have (x, y, e) + (y, x, β) = t(xe) for ί e F
or xe = 0. Similarly (x + β, y, β) + (y, x + β, β) = t'(xe + e) for f e F
or xe + e = 0. A simple analysis of the four combinations yields
(x, y, e) + (y, x, e) — ae for some aeF.

It is well known that Lemma 3 implies that, relative to an
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ooidempotent e, R has a Peirce decomposition R = Rn + R10 + RQ1 +
where Ri3 — {xeR\ex = ix, xe = jx}. Thus, we only have to prove
the multiplicative properties in:

THEOREM 2. Let R be an algebra satisfying (1) and (2). Then
if e is an idempotent of R, R has a Peirce decomposition R — Rn +
R10 + R01 + Roo relative to e and the Peirce subspaces multiply ac-
cording to:

( a) Ri3 R3k £ Rik.
(b) RijR^ QRji.

( c ) Ri3Rkl = 0 if j Φ k and (i, j) Φ (k, I).
( d ) r\3 = 0 for any rtj e Rij9 i Φ j .

Proof. Let x, y e i24i. By Lemma 4 ($, y, e) + (#, β, y) = e# or
(»y)e — i(α?y) = ce. If i = 1 then by writing xy — α u + α ι0 + α01 + αOo
and comparing component parts of both sides of the equation we
get xy 6 Rn + ROί. Thus R\x £ Rn + RQ1. From Lemma 4 again
(cc, e, ?/) + (fit x, y) — be or i ( ^ ) — e(xy) — be. From this we get
Λϊi £ i?n + Λω and 2% £ Rn + Rn + -Koo. Hence ^ £ (Λu + R01) Π
(J8U + R10) = i2u. In (2) let a?, y e i?Oo, z = e to get (a y)β = 0. Thus
J?oo £ (̂ oo + Λio) n (Rn + Roi + i?oo) = #oo Hence the Ru are sub-
algebras.

To show that the subalgebras are othogonal, let x e Riίf y e Rih

i Φ j . Then from (x, yf e) + (», e, y) = cβ, we get (a?y)β + (i — 2 i ) ^ =
cβ from which it follows that xy = δee Rn for some δ e F. Thus
RuRjά £ Rn. Now let a? 6 Rn, y e Roo. By (2) (xy)e + (a?β)y = a[x(ye) +
n(fiy)] = 0 so that 2α^ = cc?/ = 0. By (1) (yx)e = gr(?/, a?, β)[y(a?β) + x(ye)]
and by (2) (ya?)β + (ye)x = {̂y, a?, e)[y(xe) + y(ex)]. Since yxeRn and
α?y = 0 we arrive at #& = ^(^, x, e){yx) = 2gr(̂ /, a?, e){yx). Thus 2/α? = 0
and we have JBUJBOO = J?oo^u = 0.

Before proceeding note that Ri3Rjj + RuRa £ Ru + Ra for all
i, j . For by Lemma 4, (a?, β, y) + (e, «, y) = be. Then if $ 6 j?n,
yeR10 or aeJ? 1 0, 2/6i200 we obtain xy — e{xy) — beeRn so that
xy 6 Rn + JB10. Similarly in (a?, e, y) + (x, y, e) = cβ let x e ϋ?00, /̂ e R01

or a?eJ?oi> VGRii to get (a?y)β — xy = ceeRn so that xyeRn + i2βl.
Next let a? € #«, y e Ri3-. Then αjy 6 Rn + i?i:? . If a = ^(x, β, a/)

then by (1), (a?e)y + (ex)y = α[a?(βy) + β(a?y)] is 2ίx^/ = a[ia?y + e(xy)].
Also by (2), (a?e)y + (xy)e — a[x{ey) + x(ye)] is ixy + (ya?)e = axy. If
α = 1 then ixy — e(xy) and ixy + (sBy)β = xy imply (a?y)u = 0 so that
xy e Ri3. lίaΦl and i = 1 then by (1) 2«y = 2αα??/ so that xy = 0,
whereas if i = 0, (2) gives ## = a:cc?/ and again ajy = 0. Therefore,
in all cases xy e Ri3 or RuRi3' £ -B^ .

By Lemma 4, (y, a?, e) + (y, e, x) = c'β reduces to
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(yx)e + (i — 2i)yx = c'e

and we have yx e Rn. Next let μ = g(e, y, x). By (1), (ey)x + (ye)x =
μ[e(yx) + y(ex)] or yx = μ[yx + iyx]. By (2), (ey)x + (ex)y = μ[e(yx) +
β(»y)] or iyx + iajy = μ[yx + ia?i/]. If i = 1, yx — 2μyx and yx Λ- xy —
μ[yx + xy]. If μ Φ 1 then ya? = — a?y so that yxeRn Π i? ί3 = 0. If
μ = 1, 2/cc = 22/# implies /̂x = 0. If i = 0, then μyx = 0 implies
2/x = 0. Hence yx = 0 in all cases and R^Ru = 0.

Now let xeRu, yeR3i and v = g(y, e, x). Then ya Giίn + 22*.
By (1) we obtain yx = v(iyx + e(yx)) and by (2) we have i{yx) + (yx)e =
2»i(yx) Therefore, if ΐ = 0 we have (yx)e = 0 so that (yx)n = 0.
If i = 1 we have (1 — v)yx = v[e(yx)] and 2yx = 2v̂ /x. Therefore, if
v Φ 1 then /̂x = 0 whereas, if v = 1, β(j/flc) = 0 so that d/aj)n = 0.
Hence, in all cases yx e R3ί or RaRu S ί?^.

By Lemma 4, (x, β, y) + (β, a?, y) = be which reduces to (3i — 1)̂ 2/ —
β(a?y) = be. This implies that xyeRn. Now let <5 = g(x, y, e). Then
(1) implies xy + i(2/x) = δi(xy + yx) so that if i = 0 then #2/ = 0.
(2) implies (1 + ϊ)(xy) = ^ία ̂ / Therefore, if i = 1 we obtain α?̂/ + ?/x =
δ(xy + ί/ίc) and 2xy = δx^/. Therefore, if 5 = 1 then xy = 0 whereas,
if δ Φ 1 we have xy = ~ p e i2u Π JBOi = 0. Thus ^ J B ^ = 0.

Let x 6 iϋ10, /̂ 6 R01. Then (α;, β, y) + (β, a?, y) = be reduces to xy —
eixy) = δe so that x̂ / e JBU + J?10. Also (a?, #, e) + (a?, β, y) = cβ reduces
to (xy)e — xy — ce so that xy e Rn + R01. Thus xy e(Rn + j?θi) Π
(JBU + JB10) = i?u and J?loi?Oi £ Λu Now (y, e, x) + (β, y, x) — b'e reduces

to —e(yx) = b'e so that yx e Rn + R01 + JB00 Let α = g(x, y, e). Then
(xy)e + (ya?)β = a[x(ye) + y(a?β)] and (a?i/)e + (xe)y = a[x(ye) + »(ei/)]
reduces to &# + (ya )e = αcc?/ and a??/ = axy, respectively. Thus
(yx)e = 0 and ## 6 .BOQ. Hence i?Oi#io £ R̂oo

We have established (a) and (c). For (b) let x,yeR10. Then
(x9 V, e) + (a?, β, i/) = ce reduces to (xy)e — xy = ce so that xy e Rn + 2?oι.
Let δ = flr(a?, β, #). Then (a;e)3/ + (ficy)e = δ[x(ey) + x(ye)] reduces to
xy = δ(a?y). Thus, if xy Φ 0 then <5 = 1. But then we get (xe)y +
(βcc)i/ = x(ey) + e(a?2/) or e{xy) = 0. Thus a??/ 6 Jί01 so that iίί0 £ 22O1.

If a?, ?/ e i?oi, then (x, e, y) + (β, x, y) — be reduces to xy — e{xy) = be
or xyeRn + R01. Let δ = flr(a?, β, y). Then (a;β)2/ + (ea?)i/ = δ[x(ey) +
e(xy)] and (xe)y + (ajy)β = δ[a?(βy) + x(ye)] reduce to xy = δa?2/ and
cĉ / + (xy)e — δxy, respectively. Thus (xy)e = 0 and xy e R10. Hence

RQI S iϋio
Finally, for (d) let xeRiό for i Φ j . Then x2eRH. Let y = x

in (x, y, e) + (y, x, e) = ce to obtain 2(i — i)a?2 = αe G i2u. Since i Φ j
and a?2 6 Rjίf it follows that x2 = 0.

The alternative nucleus, NA(R), of an arbitrary ring R is defined
by NA(R) = {reR\(x,r,x) = 0 and (r, y, a?) = (y, a?, r) = (a?, r, y) for
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all x, yeR). It is shown in [4] that Theorem 2 is equivalent to the
fact that e e NA(R) for any idempotent e of R. It is immediate that
if i Φ j then RiS £ NA(R) for if riS e Rίό then (e + riό)

2 = e + riό.
Thus e + riά is idempotent so that e + r,y 6 NA(R) and so r^ 6 NA(R).

LEMMA 5. Rn and Roo are alternative subalgebras of R.

Proof. It is immediate from Theorem 1 that Rn is alternative
since Rn is an algebra which contains an identity element e. Now
let x, y, ze Roo, a = g(x, y, z), and β = g(x + e, y + e, z + β). Then
by (1') (a?, #, 2) + (y, x, z) = (α — l)[α?(i/s) + 2/0)2]. Similarly

(a?, j/, 2) + (y, x, z) = (e + x, e + #, e + z) + (e + y, e + a?, β + z)
= (β-ϊ)[(e + x)[(e + y)(β + «)] + (β + y)[(e + a?)(β + «)]]

00

Comparing the last two identities we obtain (a — /3)[#(2/2) + y(xz)] —
2(β — ΐ)e since R0Q is a subalgebra. If a = /S then /9 = 1 so that JR
is left alternative. If a Φ β then a?d/2) + y(xz) = 2[(/S - l)/(α - ^)]β.
But x(yz) + y(xz) eR00 and 2[(iS-l)/(α-iS)]e e J?lle Thus x(^) + y{xz) = 0
and /9 = 1. Hence i?00 is left alternative. A similar argument using
(2') shows that R00 is right alternative.

THEOREM 3. If R is an algebra satisfying (1) and (2) and if
R contains a nonzero idempotent element, then R is alternative.

Proof. Let x,yeR. Then x = Σii=o^i and y = Σi,i=ol/<i so
that 0, α, 2/) = ΣJ,i=o (», », ?/ϋ) Now if i ^ i, then yiό e iV̂ (jB) so
that, by the definition of NA(R), (x, x, ytί) = 0. Thus, (x, x, y) reduces
to Σί=o (^ %, Vn) = Σi,i,fc,r=o (^i. ̂ fcr, Vu) Let S denote the sum
Σί,j,i,rfi=o (̂ ϋ> f̂cr> 2/H) The terms in S of the form (xij9 xkk, yn) are
all zero by Theorem 2 and Lemma 5. The terms in S of the form
(xij9 xίj9 yu) for i Φ j are all zero since xiό e NA{R). Finally the other
terms in S come in pairs of the form (xiίΊ xkr, yιt) + (xkr, xijf yn).
Since i Φ j or k Φ r the sum of each of these pairs is zero. Thus
(x, x,y) = 0 and R is left alternative. Similarly R is right alternative.

The result of Theorem 1 holds true if the ring satisfies any
pair of the identities (l)-(6) other than the pairs (1) and (6), (2) and
(5), and (3) and (4) for which the result is obviously not true. The
same holds true if the ring does not contain an identity but does
contain a nonzero idempotent, except that here the case in which
the identities (1) and (5) are satisfied is left open since we are un-
able to establish the property R2

Q0 £ R0Q in this case. The proofs
vary somewhat from those presented here but the basic attack is
the same. Detailed proofs are available from the authors upon
request.
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