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HERMITIAN QUADRATIC FORMS AND HERMITIAN
MODULAR FORMS

DAVID MORDECAI COHEN AND H.L. RESNIKOFF

It is shown that if i f is a positive definite Hermitian
quadratic form in r variables which is even integral over
the imaginary quadratic field of discriminant —d and if det
H^2rd~r/2

9 then 4 divides r.

1* It has long been known that an even integral unimodular
positive quadratic form over Z must have rank divisible by 8 ([6],
[7]). An interesting consequence of this fact is that if s > r, then
the C-linear space of Siegel modular forms of degree s and weight
r/2 is {0} unless 8 divides r ([12]).

The purpose of the present note is to prove an analogous theo-
rem about Hermitian quadratic forms over imaginary quadratic
number fields, and to draw the corresponding conclusions about
certain C-linear spaces of Hermitian modular forms.

Let K be the imaginary quadratic number field of discriminant
— d with ring of integers έ? = Z + Zω. Let %, S3{, (£, be fractional
ideals and L = %x1 + + %rxr a finitely generated ^'-module.
Then the ideal class of Sί = Sίi Sϊr is an invariant of L. Let H:
L x L —> K be a Hermitian form of rank r. We define the deter-
minant of H by \H\ = NoTmK/Q(W)\H(xifXj)\. Then \H\ depends
only on H and L [8, page 229].

Associated to H are the ideal scale (H) = {H(v, w)\v, w eL} and
the ideal norm (H) generated by {H(y, v)\v eL}. Since H(v, w) =
H(w, v), norm (H)aQ. H is called positive definite if norm (H)<z
Q+, and even integral if norm (H) c 2Z. Since tτa.ceκ/Q(H(v, w)) =
H(v, w) + H(w, v) = H(v + w, v + w) — H(y, v) — H{w, w), trace#/<?

(scale (if)) c norm (H) c scale (JT) and an even integral Hermitian
form H need not have integral scale.

THEOREM 1. If H is a positive, even integral Hermitian form
of rank r, and \H\ = 2reZ~r/2, then 4 divides r.

The proof of this theorem consists of the assignment to H of
the Z-bilinear form B:LxL->Q defined by B(v, w) = (H(v, w) +
H(w,v))/2. If H is positive, even integral and of determinant \H —
2rd~r/2, then B is positive even integral and unimodular. Since
dimzL = 2r, the assertion follows immediately from the corresponding
classical fact.
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Once the assignment H H-> Q is specified, the desired properties
can be obtained by direct algebraic considerations. However, in
view of our intended application and because it provides a natural
organization and thematic coherence for the various details of the
proof, we prefer to cloak the algebra in the garb of the theory of
theta functions. For convenience, we give the proof only in the
case when L — ̂ x1 + ••• + ^xr is a free ^-module. Then \H\ =
I H(xi9 Xj) I and without the risk of confusion we can let H also
denote the Hermitian matrix (H(xif

2. Denote by ϊ i the set of s-rowed Hermitian matrices con-
sidered as a real vector space. The subset 2)^ of positive Hermitian
matrices is a strictly convex open cone in $%?. The subset $%, —
#5r + iW&> of the complexification of %%, is biholomorphically equi-
valent to a bounded symmetric domain, and is called the Hermitian
half space of rank s. The group of biholomorphic automorphisms
of ,3i consists of the mappings

(1) Z H+ (AZ + B)(CZ + D)-1

where the complex matrix M =(n n ) satisfies M'( !: V)M = ( Ί π ) .
\o 17/ \—-i υ/ \ — i u/

The Hermitian modular group ΓS^(K) of rank s associated with K
is the subgroup of mappings of the form (1) such that the entries
of M belong to &. A holomorphic function φ: $%, -»C is a Hermi-
tian modular form for K of weight w if φ(AZ + B)(CZ + D)"1 —
ε I CZ + D \wφ{Z) for all mappings in Γ%(K), where ε is a certain
root of 1 (see [1], [2]).

There are theta functions naturally associated with 3Sr Let
H denote a positive Hermitian quadratic form in r variables and let
S stand for a lattice in Crxs considered as a real vector space.
Then the theta function on $%, associated with H and 8 is (cp. [11]):

(2) Θ2(Z, H) = (vol 8)1/2 Σ exp iπσ(ZNΉN) ,

where vol 8 denotes the volume of the lattice 8 with respect to a
Haar measure on Crs — R2rs, and σ stands for matrix trace. This
theta function satisfies the following basic functional equation, whose
proof consists of a standard application of the Poisson summation
formula ([11], Theorem 2.2 with zU2 = 0):

(3) Θi(-Z-\H-1) - \-iZ\r\H\sθ2(Z,H)

where 8 is the dual lattice defined by

(4) 2 = {NeCrxs:σ(SlN)eZ for all Ne8>} .
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We will determine necessary and sufficient conditions on H such
that ΘZ(Z, H) be a Hermitian modular form for ΓS^(K) of weight r
if the lattice £ = (^)rxs.

It will suffice to consider the behavior of Θ2(Z, H) with respect
to the following set of generators of Γ^{K):

(1) Translations: Z ι-> Z + B, where B is a Hermitian matrix
over &\

(2) Unimodular transformations: Z \-+U'ZU9 where U is a
unimodular matrix over ^ , and

(3) Partial involutions: Z H* JβίZ, where sx is an integer,
0 < sx ^ 8, and the transformation JSl corresponds to the Hermitian
modular matrix

, A B

< 5 ' "Id)

s2 = s — 819 and lk denotes the unit matrix of rank equal to k.

If 8X = 8, then the partial involution Js is just the involution
Z H - Z\

First observe that a Γ%(K)-moάxύ&τ form is invariant under
the translation Z \-> Z + B where B is a Hermitian matrix over &.
It follows that H must be even integral over <̂ \

The function θa(Z, H), with H even integral over ^ , is invari-
ant under the unimodular mappings Z ι-> Z7'Z Σ7, where Z7 is a
unimodular matrix over έ? ([11], Theorem 2.3); hence, it remains to
consider the constraints imposed by the partial involutions in con-
junction with the functional equation (3).

First we will consider involution Z H — Z~ι, and determine the
conditions it imposes on H. Then we will show that if H satisfies
the conditions imposed by the translations and the involution, then
it automatically satisfies the constrains imposed by the various
partial involutions.

The lattice S can be easily expressed in terms of S. In fact,
since the different of K is the principal ideal generated by l/^d,
one finds 8 = (2/l/—d)&, and consequently θ% can be expressed in
terms of <9S by

(6) 6>£ (Z, H) = -±-θJz, ψ
volS V d

here we have used (vol S)(vol S) = 1. Then (3) becomes
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(7) Θ^-Z-\^ψ^j = \-iZ\'\H\ (γo\S)θΛ(Z,H) .

If θs(Zf H) is a /7t(JK')-modular form of weight r, then in particular

Θl-Z~\ £Γ) = | - iZ\rθΛ(Z, H) .

Using (7) to rewrite the right side as a function of — Z~ι, and
then replacing — Z~ι by Z, obtain

(Z9 -^f-) = volS \H\SΘΆ(Z, H) .

Now write Z = X + i Y, with X and F Hermitian, and compute
the limit as the eigenvalues of Y approach infinity (and X remains
in some compact set); only the constant term (volS)1/2 survives in
the theta function (because Y and H are positive) as one immedia-
tely sees from the defining equation (2). Therefore |jff|8(vol8) = 1.
Since 8 = έ?rxs, volS = (V"d/2)r8 and hence

-r/2(8) I if] = 2rd~r

Using this condition, the left side of (7) can be rewritten.
Abbreviate H = (y^fflH; then | ^ | = 1 and

(since H is integral and induces a mere basis change of S)

= «,(- Z\ H) .

Hence (7) reduces to the functional equation for a Γ%,(K)-modular
form of weight r under the involution Z H — Z~\

Now we will show that if H is even integral over & and
|JEf I = 2rd~r/\ then θs(Z, H) is a ΓM^O-modular form of weight r.
It is only necessary to verify that Θ2(Z, H) satisfies the appropriate
functional equation for the partial involutions since the other classes
of generators of Γ%,(K) have already been considered.

Let 0 < Si ̂  s, let JH denote the corresponding partial involu-
tion with matrix given by (5), and write

z=(Zί Zi:

\Zu Z2

with rank Zx — s{, observe that ZΆ is determined by Zlt. Then

(9) J3ίZ =
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In order to express Θ2(J8lZ, H) in terms of Θ2(Z, H), we will
expand θs(Z, H) relative to Z2. Let s2 = s — sx and decompose 8 =

S i θ S k ££ = έ?rxβ*. Write S 9 iNΓ = (j^1) with JV<e8< and introduce

the theta function θSί(Z19 Z12, H) by

(]()) Θ (Z Z H) =

+ NXZ12H + Z2

Then, noting that vol 8 = (vol 8χ)(vol 82), obtain

(11) θΛ(Z, H) = (vol82)
1/2 Σ θ2l(Z19 Z12N'2, H) exp iπσ{Z2N'2HN2) .

By (9),

(12) =(volS2r Σ θBι{-Zϊ\ Z^Zjfl, H)
N2es2

x exp — iπσ(N2Z21Z^Z12N2) exp ίπσ(Z2N2HN2) .

The theta function θ2ί(Zl9 Z12, H) satisfies a transformation for-
mula analogous to (3) which will enable us to rewrite the right
hand side of (12). In fact, ([10], Theorem 2.2) asserts

Θix{Z,Z?Z*B,H)

= I - iZx|Ί H\* exp ίπσiZ^ZuHW^Zv Z12, H) .

Since 8X = (2/i/ :

vol Si \ d

(cp. (6)), whence (13) can be written

(14)
= I - iZx Γ vol 8XIH |81 exp iπσ{Z%1ZτιZjaί)θZl{Zlf Zm H) .

We have assumed that H is even integral over έ? and |JEΓ| =

2rd~r/2; therefore, with 3 = (i/—d/2)H as before, and replacing JVi

by 52Vlf find

—-—Zΐ ιZ l 2H, — - — ) — θSl(Zlf Z~\Z12, H).ZΐZl2H,

Recalling that vol 2, = (2rd~r/2)% substitution in (14) yields
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= ]-%Z1 \
r exp iπσi^ZΓ'Z^yθ^Zu Zm H) .

Now write Z12N'S in place of Z l 2 and substitute (15) in (12) to obtain

(16)
θa(JHZ, H) = \-ii

* 2 e s 2

x exp iπσ(Z2N'2HN2) = | -iZ^Θ^Z, H) .

Since \CZ + D\ = for the modular transformation
»2

J8 l, (16) shows that Θ2(Z, H) is a modular form of weight r with a
multiplier system e which equals 1 on the translations and uni-
modular transformations in Γ%.(K), and equals (— i)TSl on the partial
involution JΛl.

The Siegel half space of rank s, denoted $%>, is the subspace
of 3Jr which consists of symmetric complex matrices. The Siegel
modular group Γ%, of rank s is the subgroup of Γ%.(K) which
consists of those mappings whose corresponding matrices L J are
real. It follows that the restriction of a /^CSQ-modular form of
weight r to 3 ^ is a ^-modular form of weight r ("Siegel" modular
form).

In particular, if 8 = (^)rx% H is even integral over <̂% and
HI = 2rd~r/2, then Θ2(Z9 H) \8^ is a Siegel modular form of weight

r. We can identify this form.
If Q is the matrix of an even integral unimodular quadratic

form in 2r variables over Z, and if Z e 3^> then the theta function

(17) θ(z, Q) = Σ exp iπσ{zn'Qri)

is a Siegel modular form of weight r. In particular, it satisfies
the relation

θ{~z~\Q) = \-iz\rθ(z,Q) .

Set ω = — (d + l/—d)/2; then {1, ώ) is a Z-basis for #, and the
elements of S = ( ^ ) r x s can be expressed in the form N = JVΊ +
where iV ί6Z r x s. If Z is restricted to 3i*> one obtains

where

H + H ωH+ώH
(18) < K H ) = ^ β H .

Since the restriction of Θβ to 8%> is a Siegel modular form, it
automatically follows that Q(H) is positive, even integral over Z,
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and I Q(H) \ = 1. But these conditions entail that 8 divides the rank
of Q(H), i.e., 4 divides r, which completes the proof of Theorem 1.

3* Theorem 1 gives necessary conditions for the existence of
positive, even integral Hermitian forms H of rank r with determi-
nant IHI = 2rd~r/\ In fact, these conditions are sufficient as the
following theorem implies.

THEOREM 2. There exists a positive Hermitian matrix H of
rank 4, \H\~ 16/c£2, which is even integral over έ?.

In modern terminology, we will show that there exists a Her-
mitian form H: ^ x ^ -> K such that norm (H) c 2Z+ and \H\ =

Our construction is based on the following lemma of Jacobson
[5]. See also Gerstein [3] for a similar construction.

LEMMA (Jacobson). // K% is a local field, then any two regular
n-ary Hermitian spaces over K% with the same determinant are
isometric*

Let U = (v,) 1 (v2) 1 <>3> ± (v4y

= <2> ± <2> 1 {21 d) 1 {21 d) .

Then \U\ = 16/'d2 and norm (L')c(2/d)Z. At all primes Sβ/eZ we
will use Jacobson's lemma to change U to L so that L will be even
integral. Let pZ = φ n Z. Then pέ? = ψ and φ is the only inte-
gral with JV(*β) = p.

For all 5β|d!, let

(20) , f
V- 2/1/- d 0

Then Lsp is a Hermitian form over ^ , | Z/¥ | = lβ/d2, and norm
(LQ)(Z2ZP. Since |L¥ | = |L' |, by Jacobson's lemma, the Hermitian
spaces L$ 0 <?%K% and L' (x) iί^ are isometric, and there exists a
lattice in Lf (x) iΓφ which is isometric to L^. Gall that lattice L%.
We have a matrix T% with ^3-adic coefficients such that

For some large integer n, ψΛL' c L$. Therefore if T is a
matrix with coefficients in K which is close to T$ in the ^3-adic
topology, then T{U) (g) &^ = -̂ φ Since there are only a finite
number of prime ideals 5̂ ] d, we can use the Chinese Remainder
Theorem to construct a matrix T, with coefficients in K, which is
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sufficiently close to T% for all 5β | d. Let M = T(JJ). Then V*β | d,

Using the invariant factor theorem [8, page 214], we can find
a basis xlf x2, xz, and x4 for V = U ® K — M® K such that

U =

M=

is a principal ideal.

d, and Ord,(e<) =

Since L' is a free ^-module, Sί =
Let (£, be the ideal such that Ord,,(e<) =
Ord^SδJVSβ I d. Let & - S ^ S ^ and

(22) L =

Then L <g)
Therefore

Now

% = ΛΓ <g) <£?, = L, V5β|d, and L (x) ̂ r = L' (g) <£%,^
L | = 16/ώ2 and norm (L) c 2Z.

HC^, α?y) | and | L | = N(<S) \ H(xt, xs) |. Since
I L I = I L'\, iSΓ(8l/e) = 1. But 9ί and © differ only at the ramified
primes. Let 8Ϊ/K = ξβĵ  ξβ,;* where the 5ft are the different rami-
fied primes, and pt = JVζSβJ are distinct prime numbers. Then
i\Γ(SΪ/(£) = 1 = pji. .p,;« and all e€ = 0. Therefore 81 = K. Since U
is a free ^-module, 9ί = K is principal, and L is free.

For K = / = T

(23) / =

2 —i - i 1\

i 2 1 i

i 1 2 1

\1 - i 1 2/

is even integral over Z[V—1] and | J | = 1, cp. Iyanaga [4].
One can show that the set of even integral Hermitian forms

with determinant Void2 forms a genus. But its class number
remains unknown; in view of [9], it seems unlikely that it is 1.

4* The results of the previous sections can be applied to the
theory of Hermitian modular forms. Since, for s > 4. (Γs^(K)t 4)
is spanned by theta functions associated with Hermitian forms of
the type described in Theorem 1, Theorem 2 implies:

THEOREM 3. (a) I / s > 4 , then (Γy(K), 4) is spanned by Θ$(Z, L),
where S = ^ 4 X S and L runs through representatives of the ^-equi-
valence classes of positive Hermitian forms in 4 variables which
are even integral over & and of determinant 16/ώ2;

(b) If s > 4k, then dimc(Γi(JΓ) f 4fc) ^ 1;
(c) If s > r and r is not divisible by 4, then (Γ%(K), r) = {0}.
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Freitag [2] has shown that (Γ%.{Q(V—1)), 4) is one-dimensional,
and has constructed a generator by means of theta functions with
characteristic. Define ([2], eq. (11))

Θ(Z; a, SB) = Σ exp iπ(z(z j&+

where Z{%} = X'ZX, 81, 35 e Z\ and K runs through Z[V^Ϊ]2, and set

where the sum runs over all "syzegetic triples" (81, 33), cp. [2].
Then £>4 is a Hermitian modular form of weight 4 for Q(l/ — 1).

THEOREM 4. Lβί 8 = Z[V:iT\ix2 and ZeQ%,. There is a non-
zero constant c such that

ΨlZ) = cθ2(Z, I) .

Indeed, the proof of Theorem 1 shows that Θ^(Z91) is a Hermi-
tian modular form of weight 4 for Q(τ/— 1), where I is Iyanaga's
Hermitian quadratic form, given by (23).
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