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ON COUNTABLE PRODUCTS AND ALGEBRAIC
CONVEXIFICATIONS OF PROBABILISTIC

METRIC SPACES

CLAUDI ALSINA

Two different ways of defining a probabilistic metric on
the countable product of a family of probabilistic metric
spaces are studied and compared. The algebraic convexifica-
tion of probabilistic metric spaces is also investigated.

0* Introduction* Finite products of probabilistic metric (PM)
spaces have been studied previously by R. Egbert [1], R. Tardiff [10],
A. Xavier [13] and V. Istratescu and I. Vaduva [2]. In this paper
we turn to the study of countable products.

If {(S<, &~\ τJlieN} is a family of PM spaces and if we form
the generalized metric space (ΠΓ=i Si, ΠΓ=i Λ+, ΠΓ=i τt) in the sense of
E. Trillas [11, 12], then the problem is to choose the most satisfac-
tory assignment of a probability distribution function in Δ+ to each
member of the family (^r<)» ί e > to each sequence (Ft) e Πt°°=i ̂ +

Two natural assignments are considered:
(a) The series ΣΓ=i (1/2*)!^ as the weak limit of the pointwise

nondecreasing sequence {Σ?=i (1/2*)-^ I n e N) in J + .
(b) The product r£Lx Ft as the weak limit of the pointwise

nonincreasing sequence {τ(FJ9 , Fn)\n eN} in Δ+, where τ is an
arbitrary triangle function.

In case (a) we speak of Σ-products and in case (b) of τ-products.
In addition we also consider the question of the algebraic con-

vexification of a PM space, which involves the embedding of the
given space a in convex subspace of a suitably defined countable
product.

Throughout the paper we assume that the reader is familiar
with the basic definitions and concepts of the theory of PM spaces
as given, e.g., in [8] or [10].

1* On I'-products* We begin with the following:

DEFINITION 1.1. Let {(S,, ^ \ τt) \ i e N} be a countable family of
PM spaces. The ^-product of this family is the space (ΓL°°=i Sif ^Σ),
where *β^Σ: J[?=1 Si x ΠΠ=i Si —> J+, is the mapping given by
^Σ((Pi)f (?<)) = ΣΠ=i (l/2')^*(Po ?,), for any sequences (pt) and (qt)
in ΐίΐ=iSi.

In this section we will use the abbreviations: S = ΠΓ=i Si9 F =
FFq = jr\(Pi), (gt)) and F,tU =
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THEOREM 1.1. The Σ-product (S, F) is a PM space, more
precisely, a Menger space under the t-norm Tw.

Proof. We have to show: (1) Fj-q = ε0 if and only if p — q,
where ε0 6 Δ+ is given by

(0, if x < 0 ,
(1.1) eo(x) = ~

(1, if x > 0
(2) JV; - i ^ , and (3) if FFq(x) = 1 and JFi5<y) = 1 then FFr(x + y) = 1.
Since Σ£=i fai/2*) = 1 if and only if each α, = 1 (when α* 6 [0,1], for
each ieJV), the verification of (1), (2), and (3) is immediate.

THEOREM 1.2. The Σ-product (S, F) is a PM space under the
triangle function τTm whenever each (Sif ^ \ τt) is such that r< ̂  τTm.

Proof. In view of (1) and (2) of Theorem 1.1, we need only
prove the triangle inequality. Let x, y ^ 0 and p, q, r in S be given.
Then

Tm(Frq(x), FrM) = Max (F-φ) + FΓr(y) - 1, 0)

- Max ( Σ 2-XFPiU(x) + Fuu{y) - 1), o)

^ Σ 2-' Max (FPtqt(x) + F9 i r i(^) - 1, 0)

= Σ 2-iTm(FPiQi(x), FQiri(y)) ^ Σ 2-lFnri{x + y) = ί^(a? + y) ,

where in the last inequality we have used the fact that for every

ieN,

Tm{FPiQi{x\ FQin{y)) ^ τTm(Fw FqtU)(x + y)

^ τt{F9iU9 FqiH){x + y)^ FHH(x + y) .

Thus for any t ^ 0, τTm(FTq, FΓr)(t) = sup, + 2 / = ί Tm{FTq{x)9 FTr(y)) £ FVr(t).

Following the lines of the above proof it is easy to see that the
J-product (S, F) is a PM space under the triangle function ΠTm

whenever each (Si9 ̂ \ Γ*) is such that τ4 ^ ΠTm.
Since the most common ί-norms are stronger than Tm (e.g.,

Tm ^ Prod ^ Min) it follows that Theorem 1.2 applies to a large
class of PM spaces. However Tm cannot be replaced by a stronger
ί-norm, whence, for triangle functions of the form τT9 the result of
Theorem 1.2 is best-possible. This is a consequence of:

THEOREM 1.3. Let T be a t-norm and suppose that
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(1 2)

for any sequences (at), (bt) in [0, 1]. Then Tw <* T ̂  Tm.

Proof. Note first that Tw satisfies (1.2). Similarly, the fact
that Tm satisfies (1.2) is the crucial point in the proof of Theorem
1.2. Now suppose T satisfies (1.2). Since T is always stronger than
Tw and since T = Tm on the boundary of the unit square, we must
show T ̂  Tm on (0, 1) x (0,1). To this end, let Bo = 0 and, for any
n^l, let Bn = 1/2 + + l/2% and consider the partition (0, 1) x
(0, 1) = Rι U U?=2 Rn, where

Hi = {(», v)\0<x,y <l,x + y^l}

a n d

R {( ) | 0 < x , y < 1 , 1 + B^2 <x + y ^ l + J 5 . - J .

Let (x, ?/) 6 lΪ! be such that x + y = 1, and let ΣΓ=i («i/2*) be any
binary expansion of x, i.e., x = ΣΠ=i (α</2*), where α̂  e {0, 1}, for each
ΐ. Then noting that Γ(l, 0) = Γ(0, 1) = 0 and using (1.2) we have

T(x, y) = T(x, 1 - «) = r ( Σ | ί , g L ^ i ) ^ gijΓ(α<f 1 - α€) = 0 .

Thus since T is nondecreasing, Γ(a?, y) = Tm(x, y) = 0 for all (&, y)
in J?,.

Now fix ̂  ^ 2 and consider any point (x, y)eRn. Then α? + y =
1 + J5%_2 + α, where 0 < a ^ 1/2*"1, so that at least one of xf y must
be greater than Bn-γ.

Suppose x = !?„_! + ΣΓ=W (»i/2*), where xi e {0, 1} for each i. Then
since 1 - Bn-t = 1/2*"1, we have

» = 1 + B»_a + α - x = 5%_2 + α + l/2 -χ - Σ Xifi*

Consequently, writing

x = B^2 + 1/2-1 + Σ ^ 2 * ,

and then using (1.2) and the fact that Γ(l, 1) = 1, yields

T(x, y) £ Bn_2 + ^ T ( l , 2 "1α) + Σ ^ Γ ( ^ ,

= -BM_2 + α = x + v - 1 = Γm(xf ?/) .
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If x < Bn-ίf then reversing the roles of x and y yields the same
conclusion, and this completes the proof.

It should be noted that neither the commutativity nor associa-
tivity of T was used in the above proof. Thus we have in fact
established:

COROLLARY 1.1. Let T: [0, 1] x [0, 1] -> [0,1] be nondecreasing
in each place and such that T(0, x) = T(x, 0) = 0 and T(x, 1) —
Γ(l, x) = x, for any x in [0,1]. Suppose T satisfies (1.2). Then

τw^τ ^ τm.
The converse of Corollary 1.1 is false as the following example

shows.

EXAMPLE 1.1. For any λ e [0,1] consider the function Tλ: [0, 1] x
[0, 1] -> [0, 1] defined by

m , v TJx, y), if x + y ^ 1 + λ or x = 1 or y = 1 ,
T (CC Ίl) ^^

λ, otherwise.

If 0 ^ μ < λ ^ 1, we have Tw = To^ Tμ < Tλ^ Tx= Tm. Let 0 <
λ < 1. Then there is an n e N such that λ < 1 - 2~{n~1} < 1 and
consequently an a e (0, 1] such that (1 + λ)(2 - 2"(%~1))~1 < a < 1.
Hence

T(± %, Σ | ί ) = Γi(αd - 2-*), α(l - 2""))

Thus whenever 0 < λ < 1, (1.2) fails for Tλ.

Since the functions Tλ defined above are not associative, Example
1.1 is not a complete counterexample of Theorem 1.3. A ί-norm
weaker than Tm violating (1.2) remains to be found. Indeed, there
is good reason to conjecture that any continuous ί-norm weaker than
Tm9 satisfies (1.2).

As a consequence of Theorem 1.3 it is to be expected that, even
in the case of a family of PM spaces under the same ί-norm T, the
I'-product need not be a PM space under T. The next two examples
show that this is indeed the case.

EXAMPLE 1.2. The I'-product of Wald spaces is not necessarily
a Wald space.
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For any a ^ 0, let εa(x) = εo(x — α), where ε0 is given by (1.1).
Consider the metric space (R+, | |) as a Wald space (R+, G, *), where
Gpq = s,,.,, for all p, g eR+. Let (S«, J^*, τ,) = (R+, G, *) for each i
and form the J-product (ΠΓ=i # + , ί7, τ>w). Choose p = (0), <? =
(1, 0, 0, .), r = (1). Then FTq = ^ = 1/2(8, + ε0), F F = είf and
2V-FV - 1/46, + l/2eL + l/4ε0, whence for 0 < a? < 1, 2?V*V > ί7^.

EXAMPLE 1.3. The J-product of simple spaces is not necessarily
a simple space.

Let each component space be the simple space (R+, d, G) generated
by the metric d(x, y) — \x — y\fl + \x — y\ and a distribution function
Gejgr+ such that G(ΐ) < 1/2.

In the i -product CΠΐ=:1R
+, F, ττj we have FTq{x) = ̂ ΐ=ι l/VG^x),

where for every i ^ 1, GHH{x) = G(x/d(pt, qt)) if pt Φ qt and GPiH{x) =
εo(x) if Pi = gέ. Choose p = (0), g = (0, 2, 3, 4, , n, •) and r =
(1, 2, 3, , n, •). Then F^(l/4) ^ 1/2, F^(l/4) ^ 1/2 but 2^(1/2) <
1/2. Thus the J-product is not a Menger space under Min. Con-
sequently it cannot be a simple space.

One of the most interesting facts about J-products is given in
the following:

THEOREM 1.4. Let {(Stf ^ \ τt)\ieN} and (S, F) be as in Theo-
rem 1.2. Let each Si be endowed with the ε, X-topology induced by
ά?"1. Then the ε, X-topology on S induced by F is the product
topology.

Proof. Since Tm is continuous the system of neighborhoods B =
{Np(ε, X)\peS,ε,X> 0}, where Np(ε, X) = {q\qeS, FTq(ε) > 1 - λ}, is

a basis for the ε, λ-topology in (S, F). Similarly, for every ΐeiV,
the system Bt = {Np(ε, X)\p e Si9 ε, λ > 0} where Np(ε, X) — {q\q e St,

Fρq{ε) > 1 — λ}, is a basis for the ε, λ-topology in (Sif Fι). Thus we
have to show that B and the system of neighborhoods

C = {Π NPi(εt, X.) xfίSt+n\neN, (pί9 , pJ 6 Π S,J

which is a basis for the product topology in S, are equivalent.
Given Np(ε,X) in B, choose k e N such that λ' = l - ( l - λ ) / Σ L i 2"*>0

and note that λ' < 1 if λ < 1. Then if qeU = Π t i NPi(ε, λ') x
IL°Li S i+fc we have Fp.H(ε) > 1 - V, for i = 1, 2, • , k. Thus

FP~M ^ Σ 2"'^ i f f.(e) > Σ 2"'(1 - λ') = 1 - λ ,

and Uc:Np(ε,X). In the other direction, let V = Jlt^ NPi(εif Xt) x
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ΠΓ=i Si+n, where 0 < λ4 < 1 for i = 1, 2, , n, be a given neighbor-
hood in C. Choose e = Min {εlf ε2, , ε%} and

λ - 1 - Max |2-'(1 - λ,) + Σ 2~fc| ί = 1, , n\ .

If g G iVp(ε, λ), we have for each i = 1, 2, , w,

jp^(e) > 1 - λ = Max {2-<(l - λ f) + Σ 2 " * | i = 1, •••,

whence

JU rn ( ε ) l^> JC n n ( ε ) J ^ JL ~~~" λ *

thus Np(ε, λ) c V, and the proof is complete.

Recalling some elementary theorems of general topology, it is
immediate that the ε, λ-topology induced by F on S is the least
topology making the projections πt: S-> St continuous for all ieN.
We also have:

COROLLARY 1.2. // (S', F'f τf) is a PM space with τf ^ τTm then
the mapping f from S' into ΠΓ=i S' given by f(p) = (p) is an isometry
and is continuous with respect to the ε, X-topology.

From [5] we know that the ε, λ-topology of a PM space with an
Archimedean ί-norm T is metrizable by the metrics dz(p, q) =
—log CτFpq(z), for any z > 0, where Gτ is the Γ-conjugate transform
for the semigroup (J+, ττ), i.e., Cτ is defined for any FeJ+ via:

CτF(z) = sup e~xzhF{x) , for all z ^ 0 ,

where h is a fixed multiplicative generator of T and ftF 6 A+ is given
by

\h(F(x)), 0<x.

Combining this with Theorem 1.2 and using the Tm-conjugate trans-
form (h(x) = ex~x), we obtain:

COROLLARY 1.3. The product topology in S is metrizable by
the metric dz(p, q) = - logsup^exp (Σ£i 2"'(i^<(r<(a?) - zx - 1)), for
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any z > 0. This metric is equivalent to the metric d'(p, q) =
Σ?=i 2""* Min [ — log sup^o exp (FPiqt(x) — s4αs — 1), 1], wftere z< > 0 for

all ieN.

2. On τ-products*

DEFINITION 2.1. Let {(Sif ^ \ τt) \ i e N) be a countable family
of PM spaces. The τ-product is the space (ΠΓ=i S,, G)f where
G'-ΐlΐ-iSiX ΠS=iS<->J+, is the mapping given by G((p,), (ft)) =
r<% ̂ ' ( p « , ft) = w - l im Λ _ τ(^\plf qx\ , ̂ •(p», gj), for any se-
quences (^.), (^) in Πf=iS<.

As in the preceding section, we adopt the conventions, S =
ΠΓ= 1 Sif GTq =

THEOREM 2.1. If each of the PM spaces (Sif ^ \ τt) is such that
τt ^ τ, where τ is a continuous triangle function, then the τ-product
(S, G) is a PM space under τ.

Proof. If G-fq = ε0 then Fp.q. = ε0, for any i, so (pt) = (ft). Con-
versely Gpg — τT=i ε0 = ε0. The symmetry of G is obvious and the
triangle inequality follows from

τ(G-p-q, G-qT) = τ(w - lim τ(FPιqι, , FPnJ, w - lim τ ( F , i r i , , FWΛ))
n—»oo it—»oo

= w - lim τ τ(Fw Fq.r.) ^ w - lim τ τ^Fnqi} Fq.r.)

^ w — lim r Fp.r. = Gpr .
p.r.

At first this result, which is a straightforward generalization
from finite products to countably infinite ones, seems to be satisfac-
tory. However, two difficulties arise immediately. The first is the
fact that since the sequence {τ?=1 Fp.q. | n e N) is nonincreasing its
weak limit may be zero everywhere, i.e., the infinite product may
diverge. This question has recently been studied by R. Moynihan
[4]. The second difficulty is of a topological nature.

THEOREM 2.2. Let each of the PM spaces (Sif ^ \ τt) be endowed
with the ε, X-topology. Then the product topology is weaker than
the ε, X-topology in (S, G).

Proof. Let U = IK=i NPi(etf λ<) x Uΐ=n+i St be a standard neigh-
borhood in the product topology. Choose e = Min{ε1, •• , ε j , λ =

λu - - ^ λ j and let qeNp(ε,X). Then, since Gpq ^ Fp .q. for all
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i, we have l - λ < ^ l - λ < Gpq(ε) ^ Fp.q.(ε) ^ i ^ . f e ) . Whence
N-P(ε, λ) c Π?=i N9i(e, λ) c U.

From the above proof it is clear that, in general, the two
topologies are not equal. For if this were the case, given Np(ε, λ)
there would exist a product neighborhood U = Π£i Np.(εi9 xt) x
Πϊ°=iSi+m such that UcNp(ε, λ) c Π£ι-WP<(e, λ), which implies that
S£ = ΛΓ^ε, λ) for all i ^ m, a very strong condition. It follows that
statements such as Corollary 1.2 also fail in general.

The reason for the difference between Theorems 1.4 and 2.2 is
easily understood if one pays attention to the probabilistic inter-
pretation of the ε, λ-neighborhoods in the respective products spaces:
If Np(ε, λ) is a neighborhood in the J-product then (gt) e Np(ε, λ)
implies that, with probability greater than 1 — λ, at least one of
the Pi is at a distance less than ε from the corresponding qt. On
the other hand, if Np(ε, λ) is a neighborhood in the τ-product, and
(qt) e Np(ε, λ) then, with probability greater than 1 — λ, all the pt

are at a distance less than ε from the corresponding qt.

3. Algebraic convexifϊcations* For a PM space {S,^",τ) the
Wald-betweenness relation which is defined by W(p, q, r) if and only
if τ(Fpq, Fqr) = Fvr has recently been studied in [5]. In accordance
with the concepts developed there, we make the following:

DEFINITION 3.1. A probabilistic semi-metric space is τ-convex
if, for every pair of distinct points p, r in &, there exists a point q
S, pφqφr, such that τ(Fpq, Fqr) = Fpr.

DEFINITION 3.2. An algebraic convexification [12] of a PM space
(S, ^ 7 τ) is any extension of this space which is τ-convex.

THEOREM 3.1. // (S, J?~) is a probabilistic semi-metric space,
then there exists an extension (S*, ά^*) which is ΠTm-convex.

Proof. For any p(n) = (pίf p2, •••, pj in Sn, let (p(n), *) denote

the element of ΠΓ=iS obtained by repeating the finite string p(n)
infinitely often: thus (p(n), *) = (plf p2, , pn, plf p2, . . . , pnf . . ) . Let

S* = {(p(2k), *) I k e N and p(2k) e S*k) .

In the i -product (Π£i S, ^~) let F* be the restriction of F to
S* x S* and /: S->S* the injection given by f(p) = (p, p, p, - --).
Note that / is distance preserving in the sense that Fpq = F}{p)f{q)

for any p,qeS. Thus (S*,^~*) is an extension of (S, ̂ ~). To
establish the Πτ -convexity of S* let p(2{) = (p19 p2, , j>2<) and
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f(2j) = (ru r2, , r2;) be any two fixed elements of S** and S23,
respectively, and assume, without loss of generality, that i <; j .
Let a = (p(2*), *) and 7 = (r(2y), *); and note that α = 7 if and only
if r(20 is the string obtained by repeating the string p(2*) exactly
2J~i times. Now suppose aΦΊ. Let

2i~i times

and let β = (g(2i+1), *). If β = a then, as one readily sees, α = 7,
which cannot be. Thus β Φ a and, similarly β Φ 7. Since <z(2i+1)
breaks up into two strings, each of length 2j, it follows that for
any k e N, either βk = ak or βk = 7fc, whence we have that for any
x > 0, Fajcβk(x) + Fβkrk(x) — 1 is equal to e i ther Fβkrjc(x) or Fakβje(x).

An appeal to Definition 1.1 then yields that Tm(F*β(x), Ffr(x)) = F%r(x),
i.e., ΠτJFϊβ, F%) = ^α*r.

COROLLARY 3.1. For eαcfc PikΓ space, (S, ̂ 7 /7Γm), ίλβrβ
a convex extension (S*, J^~*, ΠTm).

An analogous result also holds for τ-products (that is again
subject to the defect that the infinite τ-products involved may
diverge).

THEOREM 3.2. Let (S, ̂  τ) he a PM space with τ continuous.
Then there exists a pair of mappings (/, g) from (S, ̂ 7 r) mίo α
τ-convex PM space (S*, *^**, τ) ŝ cfc ί/̂ αί /: S —» S* is α^ injection
and g: Δ+ —> Δ+ is a τ-morphism that satisfies ά?~* ° f x f = g

Proof. Consider the space S* constructed in Theorem 3.1 endow-
ed with the relative structure of the τ-product (ΠΠ=i Sf G, τ). Let
/: S —> S* be the injection defined in the preceding proof; and let
g: Δ+ -* Δ+ be given by g(F) = τ?=1 F, for every FeΔ+. Clearly the
pair (/, g) satisfies the required properties. Let a, β, 7 be as in
the preceding proof. As above, for any k e N, either βk = ak or
βk = ΊkJ so that, τ(Fa]eβk, FβkTk) = Fak7k. Since τ is continuous, we
have

τ(F*p, F*βr) =

~ τ

whence (S*, ̂ ^*, τ) is r-convex.



300 CLAUDI ALSINA

R E F E R E N C E S

1. R. J. Egbert, Products and quotients of probabilistic metric spaces, Pacific J. of
Math., 24 (1968), 437-455.
2. V. Istratescu and I. Vaduva, Products of statistical metric spaces, Acad. R. P.
Roumaine Stud. Cere. Math., 12 (1961), 567-574.
3. K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28 (1942), 535-537.
4. R. Moynihan, Infinite ττ products of probability distribution functions, (to appear).
5. R. Moynihan and B. Schweizer, Betweenness relations in probabilistic metric spaces,
(to appear).
6. B. Schweizer, Probabilistic metric spaces—The first 25 years, The New York Statis-
tician, 19 (1967), 3-6.
7. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 1O (1960),
313-334.
8. B. Schweizer, Multiplications on the space of probability distribution functions,
Aeq. Math., 12 (1975), 151-183.
9. H. Sherwood and M. D. Taylor, Some PM structures on the set of distribution func-
tions, Rev. Roum. Math. Pures et Appl., 19 (1974), 1251-1260.
10. R. Tardiff, Topologies for probabilistic metric spaces, Pacific J. Math., 65 (1976),
233-251.
11. E. Trillas, Sobre distancias estadίsticas, Thesis, Pub. Univ. Barcelona (1972).
12. E. Trillas, C. Alsina and N. Batle, Espacios metricos generalizados de Riesz, (unpub.)
(1968).
13. A. F. S. Xavier, On the product of probabilistic metric spaces, Portugal, Math.,
27 (1976), 137-147.

Received April 13, 1977 and in revised form July 19, 1977. I want to thank B.
Schweizer (U. Massachusetts) and E. Trillas (U. Politecnica Barcelona, Spain) for their
suggestions in the preparation of this manuscript. This research was supported by a
grant of the Ministerio de Educaciόn y Ciencia (Spain) through the Universidad Politecnica
de Barcelona (Spain).

UNIVERSITY OF MASSACHUSETTS

AMHERST, MA 01003




