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SOME PROPERTIES OF A SPECIAL SET
OF RECURRING SEQUENCES

H. C. WILLIAMS

Several number theoretic and identity properties of three
special second order recurring sequences are established.
These are used to develop a necessary and sufficient condi-
tion for any integer of the form 2n3mA — 1 (A < 2n+1Sm — 1)
to be prime. This condition can be easily implemented on
a computer.

1* Introduction. Various tests for primality of integers of
the form 2nA — 1 and ZnA — 1 are currently available; for example,
Lehmer [2] and Riesel [5] have developed necessary and sufficient
conditions for 2%A — 1 to be prime when A < 2n and Williams [6]
has given a necessary and sufficient condition for the primality of
2A2>n — 1 when A < 4 3U — 1. Of special concern to Riesel was
the determination of the primality of 3A2% — 1; in this paper we
present a simple necessary and sufficient condition for 2n3mA — 1
to be prime when A < 2n+1Zm — 1. In order to obtain this result
we must first develop some properties of a special set of second
order linear recurring sequences.

Let a, b be two integers and put a = a + bp, β — a + bp2, where
p2 + p + 1 = 0. We define for any integer n

Rn —
p — p

e __ p2a% — pβn

o % — ,

p-p2

Γtl ^ * Γ"'

n~ p-p2

We see that Ro = 1, SQ = - 1 , To = 0, Rx = a -b, S, = -a, Tx = 6.
Putting G = a + β = 2a - b and H - aβ = α2 - ab + &2, we get

(1.1) Sn+2 = GS%+1 - flS. ,

It follows that J?w, SΛ, Tn are integers for any nonnegative integral
value of n.

In the next sections of this paper we present a number of
identities satisfied by the Rn, Sn, Tn functions. We also develop
some of their number theoretic properties. It should be noted that

273



274 H. C. WILLIAMS

the function Tn is simply a constant multiple b of the Lucas function
U=(an — βn)l(a — β); hence, many of its properties are easily deduced
from the well-known (see, for example, [2]) properties of the Lucas
functions.

2* Some identities* We first note that from the definition of
Rn, Sn, Tn, we obtain the fundamental identity

Rn + Sn + Tn = 0 .

We can easily verify for any integers m, n that

(2.1) Sn+n = Γ.T. -

— RmRn = Twi2% — SmTn = RmTn •— TmSn

Putting w = 1, we get

Λ.+i = αΛ. + &SΛ , Sn+1 = (α - 5)SW - &#„ , ΓΛ+1 = (6 -

Putting n = m, we see that

(2 2) Btn

Γâ  = Tn{Rn — Sn)

also, by using these results and putting m = 2n above, we get

Rsn = SI - SSja - Λi , S3Λ = β - - 8SiΛ. - S^ ,
Γ Λ = -ZRnSnTn - -(121 + Si +" K). (Use - « = (S. + Γ.) .

Since

it follows that

(2.3) if*12.-» = ΓWΓ% - SmRn , iΓ S,-, - i2mSw - TmTn ,

HmTn-m = Smi2% — i2wSw = RmTn — Γwi2% = TwS,, — i2m2\ .

If, in the first of these formulas, we put n = m, we have
Tl — i2%S%; hence, we can deduce the following:

(2.4) Tl - RnSn = 5 i - 2\S% = Si - Γ.Λ. - ίί% ,

Tl + i2%Tw + R\ = Rl + Swi2. + Si - Si + Tβn + Tl = Hn ,

Γ A + S A + RnTn = -if- .

More generally, we have
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r>2 J? T? Q2 Q f Q Φ 2 rp rp XJn—mrpi

r>2 ΛΓT Q C2 T? ΠP φ2 C Γ> IJίi-mp2

JB» — Sn-mTn+m — Si — Tn..mRm+n = Ti — Rn-wSm+n — Hn~mSi,.

We also have

r>2 τT2mτ>2 „ Φ O Cf2 __ TJ2mO2 __ nτ» r>

Γ2 τi2mrp2 rp rp

A great many other identities satisfied by these functions can
be developed; for example, since

R% + SΛ+T. = Of RnSn + SnTn + RnTn = -Hn ,

we can use Waring's formula (see, for example, [4] p. 5) to obtain

'-'^R&TJ' (m = 2r)

r V (^ 1 j
h

(m = 2r + 1)

= ( i r Σ ( D : }}}

j=o (m — 3 ^ ) ! J !

for TO > 0. From these we deduce the rather interesting identities

S* + Si + Tt =

R1: + Sϊ + n°
RISί + RITl + SITl = minRlSlTl -

The following identities are also of some interest:

= H8n % % n n )

Both of these formulas can be derived by expanding the powers of
the binomials and using the formulas above for expressions of the
form Ri + Si + Tί and (R&y + (SnTu)' + (TJtJ.

If we put Wn = R%- Sn> Xn = Sn-Tn = 2SK + Rn, Yn=Tn-
Rn = — 2Rn — Sn, we have
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W. + Xn + Yn = 0 ,

ZRn =Wn-Yn, 3Sn = Xn-Wnf ZTn = Yn-Xn

Rin = SnYn , S2n = RnXn , Tin = TΛWn .

We also have

ZWm+% = WmWn + YmXn + YnXm ,

ZXn+κ =YmYn + XmWn + WmXn ,

3ΓTO+K = XmXn + YmW% + WmYn ,

and from these we are able to derive

Win = {Wl + 2Z.Γ.)/3 = X»ΓM + H = PP.1 - 2H ,

n)IZ =WnYn + H" = XI - 2H« ,

.)/3 = WnXn + H»= Yl - 2H ,

and

PΓ3ίl - XnYnWn .

Many other identities similar to those satisfied by the Rn, Sn, Tn

functions are satisfied by Wn9 Xn9 Yn functions.

3* Some number theoretic results* In the discussion that
follows we will assume that a and 6 satisfy the following two
properties:

(1) (α, δ) = 1 ,

(2) a & -b (mod 3) .

It follows from (1) and (2) that (G, H) = 1. We can now develop
several divisibility properties of the Rnf S%, Tn functions. We will
also assume in what follows that n, m represent positive integers.

LEMMA 1. For any n, (Rn, H) = (Sn, H) = (Tn, H) = 1.

Proof. If p is any prime divisor of Rn and ίZ", then by (1.1) p
is a divisor of Rn-X. By continuing this reasoning, we see that p\Rt.
If p I Rx and p \ H, then Ro = 1 and p \ G, which is impossible. In the
same way we see that (SΛ, H) = 1. Also, if p\(Tn,H), then by
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the above reasoning p\T1 = b. Since p\H, we have p\a and con-

sequently p\G.

LEMMA 2. For any n, (Rn, Sn) - (S%, Tn) = (Tn, Rn) = 1.

Proof. If p is any prime divisor of any two of Rn, Sn, Tn,
then by (2.4) p must divide if, which is impossible by the preceding
lemma.

Since Tn is a simple multiple of the Lucas function Un, {Tn} is
divisibility sequence, i.e., Tn\Tm whenever n\m. The analogous
properties of Rn and Sn are given in

THEOREM 1. Suppose n\m. If m/n = 1 (mod 3), then Rn\Rm

and Sn\Sm; if m/n = — I(mod3), then Rn\Sm, Sn\Rm; if m/n = 0
(mod 3), then Rn\Tm, Sn\Tm.

Proof. From the identities of §1 we see that Rn\S2n, Sn\R2n,
Rn I Γ3W, Sn I Γ8n. Now since Γ8n | Γ8fcn,

= i?8fcΛΛtΛ (mod i^SJ .

If ί = 1, Rn\R(z]c-H)κ'> if £ = 2, SΛ|J?(3Jfc+t)Λ The remaining results are
proved in a similar manner.

Let Γω(m) be the first term of the sequence

Γ T T . . . T

in which m occurs as a factor. We will call β) — ω(m) the "rank
of apparition" of m. From the theory of Lucas functions, it follows
that if m\T%, then ω(m)\n and consequently that (Γw, Tn) — Tim,n).
We also have the result that if (H, m) = 1, then ω(/m) always exists.

We now define ω1 — co^m) and ω2 = O)2(m) as analogues of α>(m).
We say for a given m that i?ωi and Sω2 are respectively the first
term of the sequences

{Rk}ΐ=1 and {SjJϊU which m divides .

It is not in general true that ωt(m) or ωz{m) exist for any m such
that (m, ΣΓ) = 1. In the results that follow we give some characteri-
zation of those values of m such that ω^m) or ωz{m) do exist. In
Theorems 2, 3? 4, and Lemma 3 we give results concerning Rn and
co1 only; however, analogous results involving Sn and ω2 for each of
these are also true and their proofs are similar.

THEOREM 2. // (m, H) — 1 cmc? ^ exists, then ω2 exists, 31
>! = ω/Z or 2α>/3,
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Proof. Suppose ωλ ^ ft). We have

ωι = qω + r (0 g r < ft) <; ft)J

and

0 = Rωi = RgωRr - TqωTr = RqωRr (mod m) .

Since m\Tqω and (Γgtϋ, Rqω) = 1, we see that m|J? r, which is impossi-
ble. Thus, ω1 < ω.

Since m|Γ3β>1, we must have ω\Zω{; since ω > ω19 we see that
31 ft) and ωλ = ft)/3 or 2ft)/3. Now

H^Sω-ωi = SωRωi - ΓωTω i = 0 (mod m)

thus, m|S ω _ ω i and ft)2 ̂  ft) — ft)x < ω. Since as with ft)x, m|T 3 ω 2 , it
follows that ft) 13ω2, so α)2 = ω/S or 2ft)/3. Now if ω1 — ω2 = ω/3 or
2ω/3, then Jίβ,1 + Sω i + Γβ l = 0 implies m \ Tωι, which is a contradiction
since ωγ < ω. Thus, since ^ Φ ω2, we must have ωγ + α>2 = ft).

THEOREM 3. // (m, ί ί ) = 1 α^ώ m|JBΛ, ίfeew ft)x exists α^d either
ω^n and n/ω1 = I(mod3) or w2\n, ft)2 = ωJ2 and n/ω2 = — I(mod6).

Proof. Let w = Sft)^ + r (0 <; r < 3ft)!); then

0 = Rn - i23(yigi2r - Γ3 ω i gΓ r = i23ωigi2r (mod m)

and m|i2 r . We now distinguish two cases.

Case 1. ft)x = ft)/3. Here we have r < ω and 3r < 3ft). Since
m I TZr, we see that 3r = ft) or 2ft). If 3r = 2ft), then r = ft)2, which,
since (J2r, Sr) = 1, is impossible. Thus, r = ft)/3 = ωl9 ωλ\n and
^/ft)i Ξ 1 (mod 3).

Case 2. ωt = 2ft)/3. In this case we see that r < 2ft) and
3r < 6ft). Thus, 3r is one of ft), 2ft), 4ft), 5ft). If 3r = ft) or 4ft), then
r = ft)2 or 4ft)2. Since (J?r, Sr) = 1, this is impossible. Thus r = ft)x

or ft) + ft)lβ If r = ωlt we have ωx\n and %/α)! = I(mod3); if r =
ft) + ft)1? then tι = 3ft)^ + ft) + ft)i = Qω2q + 3ft)2 + 2ft)2 = (6# + 5)ft)2.

COROLLARY. Under the conditions of Theorem 3, we must have
n = ft)i (mod 3V+1), lί fcβre 3*110)!, v ^ 0.

THEOREM 4. // m and n are integers such that (m, n) = 1, then
co^mn) exists if and only if ft)x(m) and (ϋ^n) exist and ft)x(m) = (ϋ^n)
(mod3v+1), where S^llω^m), v ^ 0.
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Proof. Suppose Ωx = ωt(mn) exists; then clearly ωί = ω^m) and
= ω^ri) exist and

Ωx == ωx (mod3v+1) ( β Ί l α ϋ ,

Ωx = ωf (mod

It follows that j ; = v* and ωx = ω? (mod 3V+1).
If ωx and ωf exist and ωx = ωx (mod 3V+1) (3*11 αO, put 42 = [ωlf <o*].

We see that

— - — * 0 (mod 3) .

If Ω/ω1 = 1 (mod 3), then ϋ ^ = 0 (mod mn); if i2/ω = —1 (mod 3), then
SΩ = R2Ω = 0 (mod mn). In either case we see that ω^mri) must
exist.

In order to continue our discussion of the existence of ωx(m)
and ά)8(m) it is necessary to consider the question of the existence
of oOjip^t (02(pn), where p is a prime. This is done in the next
section.

4* Some results modulo p. From the theory of Lucas func-
tions we know that if pλ > 2, and pλ\\Tn then px+v\\Tnpv; also, if
pλ = 2 and 2 |Γ n , then 4|Γ2 %. We will attempt to discover similar
results for Rn and Sn. We must deal with the special case p = 3
separately.

LEMMA 3. 7/3 V | |R m when v^l, then 3 y | |R m n when n = l (mod 3);
otherwise, 3JfRmn.

Proof. Certainly &\Rmn when n = 1 (mod 3) (Theorem 1); suppose
&+1\Rmn. Now 3*+2|Γ9m and 8^1 ίΓ,,.; hence, &+>\T3m = (T9m, T3mn),
which is impossible. If 2>\Rmn when n φ. 1 (mod 3), then since 3 | Rm,
we have 3|(Γm, ΛΛ) or 3 |(JBW, S J , neither of which is possible.

We deal now with any prime p Φ 3.

THEOREM 5. Let p he any prime which is not 3 and suppose
λ > 1. If pλφ2 and pλ\\Rm, then px+lf\\Rmp» when pv Ξ=l(moάZ)
and pλ+v\\Smpv when pu = -1 (mod 3). If pλ Φ 2 and px\\Sm, then
Px+Ί\SmP» when p" = ~ l ( m o d 3 ) and pλ+v\\Rmpv when pu = - 1 (mod 3).
If 2\Rm, then 4 |S 2 w ; if 2S W , then i\R2m.

Proof. From the definitions of Rn and Sn it is easy to show
that

p*Smp - PRmp -
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Suppose p Φ 2. If pλ\\Rmf then

p2Smp - pRmp = p2*Si - vp2p-γRmSl

pSmp - p2Rmp = ^ S ί - ppp+1RmS*rι ( m o d p* + 2 )

therefore,

i?m2) = pRnSζΓ1 (mod p*+2) when p = 1 (mod 3)

and

Sm?3 = pRmSp

r~
ι (mod pA+2) when p = - 1 (mod 3) .

We get similar results when pλ\\Sm. Thus the theorem is true for
v = 1. That it is true for a general v can be easily shown by
induction on v. When p = 2 we prove the theorem by using the
identities (2.2).

When p Φ 3, we see that ω^p*) and ω2(p%) both exist when
oύ^p) and α>2(p) exist. We need now only consider the problem of
when ω^p), (O2(p) exist. Since 3|T3, we see that (offi) exists only
if 3 * 1 ^ or 3^1^ and similarly for ω2(Zn).

Let p(Φ 3) be a prime. If p = 1 (mod 3), let

π = r + sp ,

where r = —1 (mod 3), 3|s and N(π) = ππ = r2 — sr + s2 = p; if
p Ξ — I(mod3), let π — π — p, N(π) = p2. We have π a prime in
the Eisenstein field Q(p) and we define [μ\π] to the cubic character
of μeQ[p] modulo π. That is

and

( m o d 7Γ)

or

THEOREM 6. If p = ε(mod3), where \e\ = 1, α^d [£Γα|τr] = ρ\
then j>| jB ( p_ β ) / 3 ^feβ?i η — 2, p\S{p-ε)/3 when η = 1, α ^ d /θ |Γ ( p_ β ) / 8 when

Proof. We consider two possible cases.

Case 1. ε = + 1 . In this case N(π) = p,

ap = a (mod p) , and (aH){p-l)/z = pη (mod π)

hence,
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a2(p-ί)/Sβ(p-l)/B Ξ pη ( m 0 ( J π )

and

The theorem follows easily from this result and the definition
of Rn, Sn and Tn.

Case 2. e = — 1. In this case N(π) = p2, a? = /3(modp),

{aHγpt-iυ* = a^2~1)/5 = (^" 1 ) ( ί ) + 1 ) / 3 = (β/ay»+1)/z (mod p) .

It follows that

If 77 = 0 and p i e (mod 9), then ω^p) and α)2(p) can not exist; for,
in this case, <# | (p — ε)/3 and 3 1 ό). If, on the other hand, η Φ 0,
then <#! and ft)2 do exist and

- ε)/3 (mod 3V)

where 3*1 | p — ε. The question of whether ωx — 2ω2 or ωx = α>8/2
seems to be rather diίBcult. We can give some simple results on
this but we first require

THEOREM 7. If p is a prime such that p = e (mod 6), |ε| = 1,
λ = (p — ε)/6, cmc? σ = (ϋΓ|p) (Legendre symbol), then one and only
one of Wλ, Xx, Yλ, Rλ, Sλ, Tλ is divisible by p and that one is given
in the table below according to the value of σ and Ύ].

\ V

-^

1

0

wx

1

Rx

2

Yx

Sx

Proof. If ε = 1, a"-ε = β*-° = 1 (mod p); if e = - 1 , a"-s = βp~ε =
oίβ = H{m.o^.p); hence, we easily obtain the result that

J? — ϊT(l-e)/2 Q — TjΓ(l-ε)/2
J^6λ — J J f O 6 ^ = JLL ,

Thus, Wu = 2H^/2 and

If a = — 1, then p | TF3; and since

~ 0 (mod p) .

"ε)/2 (mod p) .
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Wl + ZTl

p\ T3λ. Now p\WχXχYλ and the prime p can divide only one of Wλ,
Xλ or Yx; for, if it divided any two of these it would divide the
third. I t follows that it would also divide Rλ, Sλ, and Tλ, which
is impossible. If p\Wλ, then p\T2λ and η = 0; if p\Xλ, then p\S2λ

and η = 1; if p | Γj, then 2? | i?2λ and 77 = 2.
If σ = 1, then p I PΓ3λ and since Γ6λ = 0 (mod 3?), we must have

p|2V, thus, p)TχSxRχ. If p | Γ λ , then p | Γ 2 λ and η = 0; if p\Sx then
p|i?2;ι and 77 = 2; if ί>|i?^, then p\S2λ and 57 = 1.

When p is a prime, p = 1 (mod 12), and (JET|p) = 1, we can obtain
a further refinement of the results of Theorem 7. We first require

LEMMA 4. If p = 1 (mod 12), α = α + bp, p Jf a2 — ab + b\

r + sp and τ = (as — δr |p) (Legendre symbol), then in Q(p)
πp =

Proof. The proof of this result is completely analogous to the
proof given by Dirichlet [1] of a similar result concerning the value
of a{p~1)/2 (mod π), when a, π e Q(i), i2 = 1.

THEOREM 8. Let p be a prime such that p == 1 (mod 12),
(JBΓ|p) = 1, πp = r + sp. If τ — (as — br\p), v = τ(JΪ |^) 4 , α^d μ =
(p — 1)/12, then one and only one of Wμ, Xμ, Yμ> Rμ, Sμ, Tμ is
divisible by p and that one is given in the table below according to
the value of v and ΎJ.

- 1

1

0

τμ

1

Y.

sμ

2

Σμ

Rμ

Proof. Since W{p.1)/2 = a{p~1)/2 + β{p~1)/2 and a^~1)2β^l)/2 = 1

(mod p), we see that TF(J>_1)/2 = 2r (mod πp) and consequently Wip-1)/2 =
2τ (mod p).
Now

OIJ(p-i)/4Ύxr pi72
r r (p-l)/2 v r (p- _..

thus, p I Wsμ when v = — 1 and p \ T3μ when v = 1.
The remainder of the theorem follows by using reasoning similar

to that used in the proof of Theorem 7.
Using Theorem 7, we see that if η Φ 0, σ = — 1, and if (p — e)/3

has no prime divisors which are of the form 6t — 1, then ωt = ω2/2
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when η = 2 and ω2 = ωJ2 when )? = 1. For suppose η — 2, σ = —1
and 2λ = (p — e)/3. Since ^ = 0 (mod p) we see that Sλ =£ 0 (mod p)
and i?2̂  Ξ 0 (mod p).
Hence

or

2λ = ω2(6k — 1) , where ω1 = 2ft>2 .

Since no prime factor of the form 6ί — 1 divides λ, we must have

2λ = ω&k + 1) .

If ωx = 2ω2, X = (3k + ϊ)ω2 and p | Sλ which is not so; thus, ω1 = ωJ2.

5* Primality testing and pseudoprimes* In this section we
require the symbol [A + Bρ\C + Dp] of Williams and Holte [7]. In
[7] it is shown how this symbol may be easily evaluated. It is also
pointed out that if C + Dp is a prime of Q(p), then [A + Bp | C + Dp]
is the cubic character of A + Bp modulo C + Dp. We are now able
to give the main result of this paper.

THEOREM 9. Let N = 2nSmA — 1, where n > 1, A is odd, and
A < 2 +18 - 1. If (H\N) = - 1 (Jacobi symbol), [a + bp\N] = p*

(γj φ 0), then N is a prime if and only if

XL = Q (mod N) when η = 1

or

YL = 0 (mod N) when η = 2 .

Here L = (N + l)/6.

Proof. If N is a prime, [α + fyo|iNΓ| is the cubic character of
aH modulo N; hence, N\XL when η = 1 and iVΊ F^ when 37 = 2.

If iVI-Xz, then N\T6L. If p is any prime divisor of T2L or T3L,
then p must divide one of TL, WL, RL, SL. From the simple identi-
ties which relate Rk, Sk, Tk to Wk, Xkf Yk, we see that if p\XL,
then p must divide two of RL, SL, and TLf which is impossible;
hence (N, T2L) = (N, TZL) = 1. Let p be any prime divisor of N and
let ω = α)(p). We have ω|6L but ω | 2 L and ωJfZL; thus, 2Λ |ω and
3m|α>. Since ω\p ± 1, we have

p = 2*3mw ± 1 .

Since N ~ pS for some S, we have S = 2nSmv ± 1 and A = 2n3muv ±
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(v — u). Now A is odd and n > 1; hence, one of u, v must be even
and A ^ 2w+13m — 1, which is not possible; thus, N is a prime.
Similarly, it can be shown that if N\ YL, then N is a prime.

This criterion for the primality of N can be easily implemented
on a computer by making use of the identities

+ Sk)

Rk)

Rk+1 = αi2fc + bSk

Sk+1 = (a — b)Sk — bRk .

The values of a, b can be easily found by trial and then RL, SL

determined modulo N by using the above identities in conjunction
with a power technique such as that of Lehmer [3].

It is of some interest to determine whether there exist composite
values of N = 2n3mA - 1 such that A ^ 2n+12m - 1, [a + bp \ N] = ρ\
ηφO, (H\N) - - 1 , and

I Z Ξ 0 (mod N) when η = 1

or

YL = 0 (mod N) when ^ = 2 (L = (N + l)/6) .

Such values of JV can be considered as a type of pseudoprime. In
fact, if N= -I(mod3), [H(a + bρ)\N] = p\ σ = (H\N), we define
JV to be an a-pseudoprime to base a + bp if it divides the appropriate
entry of Table 1 with λ = (ΛΓ+l)/6. For example, if σ = - 1 ,
p — 2, JW is an α-pseudoprime if

Yw+i)/* Ξ 0 (mod N) .

A systematic search of all composite α-pseudoprimes (<106) to
base 2 + 2>ρ produced the following:

N - 5777 = 53-109 7 = 1, σ = l,

N = 31877 = 127-251 7 = 0, σ = - 1 ,

N = 513197 = 41-12517 7 = 0, σ = - 1 ,

N = 915983 = 47-19489 7 = 1, tf = 1 .

None of these has both σ = — 1 and 7 ^ 0 . Such α-pseudoprimes
seem to be rather rare; however, they do exist. For example, let
q, plf be primes such that q == 1 (mod 3), px = 6q — 1 and select α, 6
such that [a + ί^lpj = p2 and (H\p^ = — 1. If p2 is prime such
that p2 = 13 (mod 36), (p2, pt(2& — α)) = 1 and Γg = 0 (mod p2), then
iV = p ^ is an α-pseudoprime to base a + bp and
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(JV+D/6 9

(N\H) = — 1, [a + bp\N] = p. To prove this we first note that p,\Yq

and p2\Yq'y hence, N\Yq. We also have p2\R2q, p2)f Sg and p2\R2 =
therefore, co^p^) — 2q, (O2(p2) = 4g and α>(pa) = 6q. Since

— 1> w β see that 12g|p2 — 1 and (p2 — l)/12g = 1 (mod 3);
consequently, RiP2-1)/6 = 0 (mod p2), (H\p2) = + 1 , and [iJ(α + bp)\π2] = ^.
Now p ^ + 1 = 0 (mod 6?) and (ptp2 + l)/6g Ξ — 1 (mod 6); hence,

= (H\Pl)(H\p2) = - 1 , and

Γα + bpλ _ Γα + bpΎH(a + bp) ΊΓH(a + bp)Ί _ Γ(α + bp)\c
P1P2 L p x JL τr2 JL π2 J L 7Γ2

= |-(o + bp)(a + bpyj = |-(o + δp) (α + bp )j = ^

If we put q = 5449, pL = 32693, α = 2, 6 = 3, we have (Hip,) =
— 1, [α + bplpj] = |O2. We also find that the prime 653881 divides
Γ5449; hence, iVr= 32693-653881 = 21377331533 is an α-pseudoprime to
base 2 + 3^ and N\X{N+1)/6.
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