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SOME PROPERTIES OF A SPECIAL SET
OF RECURRING SEQUENCES

H. C. WIiLLIAMS

Several number theoretic and identity properties of three
special second order recurring sequences are established.
These are used to develop a necessary and sufficient condi-
tion for any integer of the form 2734 — 1 (4 < 213" — 1)
to be prime. This condition can be easily implemented on
a computer.

1. Introduction. Various tests for primality of integers of
the form 2”4 — 1 and 3"A — 1 are currently available; for example,
Lehmer [2] and Riesel [5] have developed necessary and sufficient
conditions for 2"A — 1 to be prime when A < 2" and Williams [6]
has given a necessary and sufficient condition for the primality of
243" —1 when A < 4.3"—1. Of special concern to Riesel was
the determination of the primality of 342" — 1; in this paper we
present a simple necessary and sufficient condition for 2"3"4 — 1
to be prime when A < 2"*'3™ — 1. In order to obtain this result
we must first develop some properties of a special set of second
order linear recurring sequences.

Let a, b be two integers and put @ = a + bo, 8 = a + bp?, where
0*+ o+ 1=0. We define for any integer n

R, = pa” — 40::5""

?

o—p
glar — pB*
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We see that R, =1, S, = -1, T, =0, R,=a—b, S,= —a, T,=0b.
Putting G=a + B8 =20 — b and H = af = a* — ab + b, we get

Rn+2 = GRn+1 - I{an ’
(1'1) S'n.+2 = GSn+1 - HS'n ’
T..=GT,,— HT,.
It follows that R,, S,, T, are integers for any nonnegative integral
value of n.
In the next sections of this paper we present a number of

identities satisfied by the R,, S,, T, functions. We also develop
some of their number theoretic properties. It should be noted that
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the function 7', is simply a constant multiple b of the Lucas function
U= (a"— B")/(x — B); hence, many of its properties are easily deduced
from the well-known (see, for example, [2]) properties of the Lucas
functions.

2. Some identities, We first note that from the definition of
R,, S,, T, we obtain the fundamental identity

R, +8,+T,=0.
We can easily verify for any integers m, n that

Rm+n = RmRn - Tan ’
(2.1) Swin=T.T, — S,S, ,
Twin=32S.8,—R,R,=T,R,—8S,T,=R,T, — T,S, .

Putting m = 1, we get
Rn+1 = aRn + bSn ) Sn+1 = (CL - b)Sn - bRn ) Tn+1 = (b - a)Rn - aSn .
Putting n = m, we see that

2.2
also, by using these results and putting m = 2n above, we get

R, =S —38S,Ri— R., S, =R,—3SiR, - 8i,
T,, = —3R,S,T, = —(R% + 8% + T3). (Use —R:=(S, + T,%)

Since
HR_,=-8,, H"S_, = —R,, H'T ,=—-T,,
it follows that
(2.3) H"R,_, = T,T, — SR, , H"S, ,=R,S,—T,T,,
H*T, ,=S,.R,—R,S,=R,T,—T,R,=T,S,—R,T, .

If, in the first of these formulas, we put n = m, we have RH" =
T: — R,S,; hence, we can deduce the following:

T:+R,T.+ R,=R, +S,R, + S, =8, + TS, + T, = H",
T.S.+S.R, + R,T,=—H".

More generally, we have
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R, — Ry Ry =80 — 8p-nSusm = Tn — TaepTosn = H T,

Ry — TonSpin =81 — By pTin=Ts — Sy-pBusn = H" "R, ,

R — Su-nTasm =88 — TonBia = T — BuepSpin = H™S;, .
We also have

R35+m - Hszfzt—m = Tz'mSz'n y S')Zz—i-m - Hzmsfa——m = szRzn ’
T121+'m - HZmTqu_‘m = TZmTzn .

A great many other identities satisfied by these functions can
be developed; for example, since

R,+S,+T.,=0, R,S, + 8.T, + R, T, = —H",

we can use Waring’s formula (see, for example, [4] p. 5) to obtain

W (p — § — DI2F pripmss _
Hr—3m 24 —
ZOJ (2_7)!(7- — 3j)! (RnSnTn) (m 2”‘)

Lrdil (g — 1 — PDI2r + 1) Hr-1-30) j
r i) R”SnTn 2j+1
=27 + DI(r — 1 — 35)! ( )

Ry + 8¢+ Ty =

(m = 2r + 1)
(RS + (8, T)" + (T.R,)™

o m[mlb‘] _ J(m__zj_l)'m m—3i) v
= (-1 3 (- R I (R, 5, T )

for m > 0. From these we deduce the rather interesting identities

R, + S;, + T. = 2H™,

R, + S, + T ="H"R,S,T, ,

R+ SY + T = 2H™ + 16H*"R;S; T, ,
RS, + R\ T, + SiT,, = 5HR,S;T; — H™ .

The following identities are also of some interest:

(Su(Sz — 3H"))* 4 (TW(T% — 8H")* + (R.(R: — 38H™))
= 3(R.S.T.)

(RS (H™ + T + (R, T (H* + 8) + (S8, T.(H" + R3))*
= H*™ + 28H*(R,S,T.,) .

Both of these formulas can be derived by expanding the powers of
the binomials and using the formulas above for expressions of the
form R; 4+ Si + Ti and (R,S,) + (S,T.) + (T,R,).

If we put W,=R,—8S,, X,=8,—-T,=2S,+R,, Y, =T, —
R, = —2R, — S,, we have
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w,+X,+Y,=0,
3R, =W,—-Y,, 38, =X, —-W,, 3T, =Y, — X,
R,,=8,Y,, S, = R, X, , Ty =T, W, .
We also have
SWain = WW,+ Y, X, + Y, X,,
83X, =Y, Y, + X, W, + W,X,,
8Y,.=XX,+ Y, W, + W, Y,,
and from these we are able to derive
W,, = (W:+2X,Y,)/8=X,Y,+ H =W, — 2H",
Y., = (X:+2W,Y,))8=W,Y, + H* = X; — 2H",
X, = (Yy + 2X,W,)/8 =W, X, + H*=Y,; — 2H",
and
3X,, = X +3X}Y, - Y,
3Y,, = Y, + 3Y;X, — X,
W, = X, Y, W, .
Many other identities similar to those satisfied by the R,, S,, T.

functions are satisfied by W,, X,, Y, functions.

3. Some number theoretic results. In the discussion that
follows we will assume that a and b satisfy the following two
properties:

(1) (a, ) =1,
(2) a % —b(mod3).

It follows from (1) and (2) that (G, H) = 1. We can now develop
several divisibility properties of the R,, S,, T, functions. We will
also assume in what follows that %, m represent positive integers.

LemMA 1. For any n, (R,, H)=(S,, H) =(T,, H) = 1.

Proof. If p is any prime divisor of R, and H, then by (1.1) »
is a divisor of R,_,. By continuing this reasoning, we see that »|R,.
If p|R, and p|H, then R, =1 and p|G, which is impossible. In the
same way we see that (S,, H) = 1. Also, if »|(T,, H), then by
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the above reasoning p|T, = b. Since p|H, we have pla and con-
sequently »|G.

LEMMA 2. For any n, (R,, S,) = (S,, T,) = (T,, R,) = 1.

Proof. If p is any prime divisor of any two of R,, S,, T,,
then by (2.4) p must divide H, which is impossible by the preceding
lemma.

Since T, is a simple multiple of the Lucas function U,, {T,} is
divisibility sequence, i.e., T,|7T, whenever n|m. The analogous
properties of R, and S, are given in

THEOREM 1. Suppose n|m. If m/n = 1(mod3), then R,|R,
and S,|S.; &f m/n = —1(mod3), then R,|S,., S.|R.; tf m/n=0
(mod 3), then R,|T,, S,|T,.

Proof. From the identities of §1 we see that R,|S,., S.|R..,
Rn&TSni SniT?m' NOW Since T3n]T3lm)

R(3Io-§-tln = R'sknRtn - T3I:nTt'n
= RzlmRtn (mOd RnSn> °

Ift=1, R,|Rupron; if £t =2, S,|Riyrynn- The remaining results are
proved in a similar manner.
Let T, be the first term of the sequence

T17 Tz; TS; tt Tn ’

in which m occurs as a factor. We will call w = ®w(m) the “rank
of apparition” of m. From the theory of Lucas functions, it follows
that if m|T,, then w(m)|n and consequently that (T, T,) = Tiwm-
We also have the result that if (H, m) = 1, then w(m) always exists.

We now define @, = ®,(m) and ®, = @,(m) as analogues of w(m).
We say for a given m that R, and S,, are respectively the first
term of the sequences

(R}, and {S,}r=, which m divides.

It is not in general true that w,(m) or w,(m) exist for any m such
that (m, H) = 1. In the results that follow we give some characteri-
zation of those values of m such that @,(m) or w,(m) do exist. In
Theorems 2, 3, 4, and Lemma 3 we give results concerning R, and
o, only; however, analogous results involving S, and ®, for each of
these are also true and their proofs are similar.

THEOREM 2. If (m, H) =1 and o, exists, then w, ecxists, 3|w,
w, = ®/3 or 2w/3, and W, + W, = ®.
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Proof. Suppose w, = w. We have

w,=qo+7r O=Zr<wszw)

and
0=R, =Ru.R, — T,,T, = R,R, (mod m) .

Since m|T,, and (T,., R,.) = 1, we see that m|R,, which is impossi-
ble. Thus, w, < w.

Since m | Ty, we must have ®|3w,; since ® > w,, we see that
3lw and w, = w/3 or 20/3. Now

H*S, ,, = SuR,, — T,T,, = 0 (mod m) ;

thus, m|S,_,, and @, = w — @, < w. Since as with w,, m|T,,, it
follows that ®|3w,, so @, = w/3 or 2w/3. Now if w, = w, = 0/3 or
2w/[3, then R, + S, + T., = 0 implies m|T,,, which is a contradiction
since @, < w. Thus, since w, #* w,, we must have w, + @, = ®.

THEOREM 3. If (m, H) =1and m|R,, then o, exists and either
o, |n and n/o, =1 (mod 3) or w,|n, w, = ®,/2 and n/®, = —1 (mod 6).

Proof. Let n = 3w,g + 7 (0 = 7 < 3w,); then
0=R, = Ry,R, — Ty,T, = Ry R, (mod m)

and m|R,. We now distinguish two cases.

Case 1. w, = w/3. Here we have r» < @w and 3r < 3w. Since
m| Ty, we see that 8» = @ or 2w. If 3r = 2w, then » = ®@,, which,
since (R,, S,) =1, is impossible. Thus, » = 0/3 = @,, ®,|n and
n/®w, = 1 (mod 3).

Case 2. o, = 2w/3. In this case we see that r < 2w and
3r < 6w. Thus, 3 is one of w, 2w, 4w, 5w. If 3r = w or 4w, then
r = w, or 4®,. Since (R,, S,) = 1, this is impossible. Thus r = @,
or w + w,. If »r=w, we have w,|n and n/®w, = 1(mod 3); if r =
w + w, then n = 3w,q + ® + ®, = 6w,q + 3w, + 20, = (6q + 5)w,.

COROLLARY. Under the conditions of Theorem 3, we must have
n = ®, (mod 3***), where 3"||w,, vy = 0.

THEOREM 4. If m and n are integers such that (m, n) = 1, then
w,(mn) exists if and only if w,(m) and w,(n) exist and w,(m) = w,(n)
(mod 8**), where 3’||w,(m), v = 0.
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Proof. Suppose 2, = ®,(mn) exists; then clearly @, = w,(m) and
¥ = w,(n) exist and

2, = w, (mod 3*) @),
2, = of (mod 3™  (3"||w}) .

It follows that y = v* and w, = w; (mod 8**).
If w, and w} exist and w, = @} (mod 3**) (8*|| w,), put 2 = [w,, ®}].
We see that
2 _ 9
0, o
If 2/w, = 1(mod 3), then R, = 0 (mod mn); if 2/w = —1 (mod 3), then
S; = R,p = 0(mod mn). In either case we see that w,(mn) must
exist.

In order to continue our discussion of the existence of w,(m)
and w,(m) it is necessary to consider the question of the existence
of w,(p"), w,(p"), where p is a prime. This is done in the next
section.

= 0 (mod 8) .

4. Some results modulo p. From the theory of Luecas func-
tions we know that if p* > 2, and *||T, then »*"| T,,; also, if
p* =2 and 2|T,, then 4|T,,. We will attempt to discover similar
results for R, and S,. We must deal with the special case p = 8
separately.

LemmA 3. If 3*||R, when v=1, then 8*||R,., when n =1 (mod 3);
otherwise, 3t R,,,.

Proof. Certainly 3*|R,,, when n = 1 (mod 3) (Theorem 1); suppose
3| R,,. Now 3*|T,, and 8**|T,,. hence, 8" Ty, = (Tom Tomn)
which is impossible. If 3|R,, when n % 1 (mod 3), then since 3| R,
we have 3|(T,, R,) or 3|(R,, S,), neither of which is possible. i

We deal now with any prime p # 3.

THEOREM 5. Let p be any prime which is not 38 and suppose
x> 1. If p*+2 and p*||R,, then p***||R,, when p*= 1(mod3)
and p***||S.,» when p* = —1 (mod3). If p*+# 2 and 2*||S,, then
21| Sppr when p*= —1(mod 3) and p***||R,,» when p*= —1 (mod 3).
If 2|R,, then 4|8,,; ©f 28,, then 4|R,,.

Proof. From the definitions of R, and S, it is easy to show
that
lozsmp - loRmp = (Psz - ‘ORm)” ’
psmp - loszp = (psm - szm)? .
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Suppose p # 2. If p*||R,, then
0°Spp — ORny = 08}, — po* R, S5 (mod p**?) ,
OSuy — OBy, = 0°S}, — po*"' RS (mod p***) ;
therefore,
R,, = pR,S%* (mod p**?) when p = 1(mod 3)
and
S.., = pR,S%™ (mod p*t?) when p = —1(mod3).

We get similar results when p*||S,.. Thus the theorem is true for
v =1. That it is true for a general v can be easily shown by
induection on y. When p = 2 we prove the theorem by using the
identities (2.2).

When p = 3, we see that w,(p™) and w,(p") both exist when
w,(p) and ,(p) exist. We need now only consider the problem of
when ,(p), w,(p) exist. Since 3|7T,, we see that ®,(8") exists only
if 3*| R, or 3"|S, and similarly for w,(3").

Let p(+ 3) be a prime. If p = 1 (mod 3), let

T=7r+sp,

where = —1(mod3), 3|s and N&) =77 =7 — sr + §* = p; if
p=—1(mod3), let 7 =7 = p, N(x)=p>. We have w a prime in
the HEisenstein field Q(0) and we define [g¢¢|x] to the cubic character
of reQ[p] modulo =. That is

PN = [—i—] (mod 7)

and

Li=1, 0, or p*.
£]

T

THEOREM 6. If p = ¢(mod3), where l¢| =1, and [Ha|rw] = 07,
then D|R,—.,;s when 0 = 2, p|S,_0,; when 1 =1, and 0| T,—.,s when
7 =0.

Proof. We consider two possible cases.

Case 1. ¢ = +1. In this case N(x) = p,
a? = o (mod p), and (aH)*™/® = p7"(modnx);

hence,
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QRFTN/3RN/ = 07 (mod 7)
and
a(?'—l)/3 = ‘02773(1?_1)/3 (mOd 71') .
The theorem follows easily from this result and the definition
of R,, S, and T,.
Case 2. ¢ = —1. In this case N(7) = »%, a® = B (mod p),
(aH)(pz—l)/s = /8 = (@p~) ™03 = (Bla)® /% (mod p) .
It follows that
a(lﬁ'l)/s = ‘0277‘8(134'1)/3 (mod p) .

If =0 and p #¢ (mod9), then w,(p) and w,(») can not exist; for,
in this case, w|(p —¢)/3 and 8} w. If, on the other hand, 7 = 0,
then @, and w, do exist and

o, = 279(p — €)/3 (mod &)
@, = n(p — €)/3 (mod 3)
where 3'||p —e. The question of whether ®w, = 2w, or w, = ®,/2

seems to be rather difficult. We can give some simple results on
this but we first require

THEOREM 7. If p is a prime such that p = ¢(mod6), |¢| =1,
A= (p — )6, and o = (H|p) (Legendre symbol), then one and only
one of W,, X3, Y3, Ry, S;, T, is divisible by p and that one s given
in the table below according to the value of ¢ and 7).

] o 1 2

-1 W, X; Y,

1 T; Rz SZ

Proof. If e=1, e *=pr*=1(modp); if e = —1, a? = =pL""=
af = H (mod p); hence, we easily obtain the result that

Ry, = H92 S = —H'97 Ts; = 0 (mod p) .
Thus, W, = 2H"*"9/% and
2H9? = W3, — 2H* 92 = Wi, — 20 H*™9/2 (mod p) .
If 0 = —1, then »|W,; and since
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W. + 3T, = 4H",

p ¥ Ty. Now p|W,X,;Y, and the prime p can divide only one of W,
X, or Y;; for, if it divided any two of these it would divide the
third. It follows that it would also divide R,;, S;, and T, which
is impossible. If p|W, then p|T, and 7 = 0; if p|X;, then p|S,
and 7 = 1; if p|Y,, then p|R,; and 7 = 2.

If 0 =1, then pt W, and since T;; = 0 (mod p), we must have
p|Ty; thus, p)\T.S:R;. If p|T, then p|T, and n = 0; if p|S, then
p|R,; and 7 = 2; if p|R;, then p|S,; and » = 1.

When p is a prime, » = 1(mod 12), and (H|p) = 1, we can obtain
a further refinement of the results of Theorem 7. We first require

LEMMA 4. If p=1(mod12), «a =a + bp, pta* — ab + b, 7w, =
r + sp and T = (as — br|p) (Legendre symbol), then in Q)

a?™”? = 7 (mod 7,) .

Proof. The proof of this result is completely analogous to the
proof given by Dirichlet [1] of a similar result concerning the value
of a»v/2(mod ), when a, 7€ Q(z), * = 1.

THEOREM 8. Let p be a prime such that p = 1(mod12),
(Hlp)=1, m, =7+ sp. If = (as—br|p), v=1(H|p), and p=
(p — 1)/12, then ome and only one of W, X,, Y, R, S, T. s
divisible by p and that one 1s given in the table below according to
the value of v and 7.

N 0 1 2

-1 | w, Y, X,

1 T, Si R,

Proof. Since W,_,, = a?™/% 4 BE0/2 gnd a2 1/2 =1
(mod p), we see that W,_,,,, = 2t (mod 7,) and consequently W_,,, =
27 (mod p).

Now

—_ —1)/4 .
Wip-rse = Wip—pyye — 2HP™D/*

thus, p|W,, when v = —1 and p|7T;, when v = 1.

The remainder of the theorem follows by using reasoning similar
to that used in the proof of Theorem 7.

Using Theorem 7, we see that if 7 0, 0 = —1, and if (» — ¢)/3
has no prime divisors which are of the form 6t — 1, then w, = w,/2
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when 7 = 2 and w, = ®,/2 when 7 = 1. For suppose 7 =2, 0 = —1
and 2\ = (p — ¢)/3. Since Y, = 0 (mod p) we see that S; = 0 (mod p)
and R,;, = 0 (mod p).

Hence

2 = 0,8k + 1),
or

28 = w,(6k — 1), where o, = 2w, .
Since no prime factor of the form 6 — 1 divides A\, we must have

2n = w,8k + 1) .
If w, = 2w,, A = (8k + 1)w, and p|S,; which is not so; thus, w, = @,/2.
5. Primality testing and pseudoprimes. In this section we

require the symbol [A + Bp|C + Dp] of Williams and Holte [7]. In
[7] it is shown how this symbol may be easily evaluated. It is also
pointed out that if C + Dp is a prime of Q(o), then [A + Bp|C + Dp]

is the cubic character of A + Bp modulo C + Dp. We are now able
to give the main result of this paper.

THEOREM 9. Let N = 2"3"A — 1, where n > 1, A s odd, and
A< 23 — 1., If (H|N)= —1 (Jacobi symbol), [a + bpo|N] = p”
(7 # 0), then N is a prime if and only if

X; =0(mod N) when 7n =1
or

Y. = 0(mod N) when 7 =2.
Here L = (N + 1)/6.

Proof. If N is a prime, [a + bo|N] is the cubic character of
aH modulo N; hence, N|X,; when 7 =1 and N|Y, when 5 = 2.

If N|X;, then N|T,,. If » is any prime divisor of T,; or T,
then » must divide one of T,, W,, R;, S;,. From the simple identi-
ties which relate R,, S;, T, to W,, X, Y, we see that if p|X,,
then p must divide two of R;, S;, and T,, which is impossible;
hence (N, T,;) = (N, Ty;) = 1. Let p be any prime divisor of N and
let @ = w(p). We have w|6L but @}t 2L and w } 38L; thus, 2"|w and
3™|w. Since w|p + 1, we have

p=2"3"y +1.

Since N = pS for some S, we have S = 2"3"y + 1 and 4 = 2"3™uv +
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(v —u). Now A is odd and » > 1; hence, one of u, v must be even
and A = 2""'8" — 1, which is not possible; thus, N is a prime.
Similarly, it can be shown that if N|Y,, then N is a prime.

This eriterion for the primality of N can be easily implemented
on a computer by making use of the identities

Ry, = _Sk(ZRk + Sk)
Szk = Ry(2S, + R,)
R,., = aR, + bS,
S = (@ — b)S, — bR, .

The values of @, b can be easily found by trial and then R,, S,
determined modulo N by using the above identities in conjunction
with a power technique such as that of Lehmer [3].

It is of some interest to determine whether there exist composite
values of N = 2"8"A — 1 such that A = 2"*'3™ — 1, [a + bp|N] = p7,
n+0, (HN)= —1, and

X, = 0(mod N) when 7 =1
or
Y, = 0(mod N) when =2 (L= (N+1)/6).

Such values of N can be considered as a type of pseudoprime. In
fact, if N= —1(mod3), [H(a + bp)|N] = p?, 0 = (H|N), we define
N to be an a-pseudoprime to base a + bo if it divides the appropriate
entry of Table 1 with » = (N + 1)/6. For example, if ¢ = —1,
0 =2, N is an a-pseudoprime if

Y(N+1)/6 =0 (mod N) .

A systematic search of all composite a-pseudoprimes (<<10° to
base 2 + 3p produced the following:

N = 5777 = 53-109 p=1, o=1,
N = 31877 = 127-251 7=0, o=-1,
N =513197 = 41.12517 75=0, o= —1,
N =915983 = 47-19489 7=1, o=1.

None of these has both ¢ = —1 and 7 # 0. Such a-pseudoprimes
seem to be rather rare; however, they do exist. For example, let
q, v,, be primes such that ¢ = 1 (mod 3), p, = 6¢g — 1 and select a, b
such that [a + bo|p,] = 0* and (H|p,) = —1. If p, is prime such
that p, = 13 (mod 36), (p,, ».(2b —a)) =1 and Y, = 0(mod p,), then
N = p,p, is an a-pseudoprime to base a¢ + bp and
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NI X(N+1)/6 ’

(N|H) = —1, [a + bo|N] = p. To prove this we first note that p,|Y,
and p,|Y,; hence, N|Y,. We also have p,|R,,, p. S, and p,t R, =
Y,S,; therefore, w,(p,) = 2q, @,(p,) =49 and &(p,) = 6g. Since
o(p,)|p. — 1, we see that 12¢|p, — 1 and (p, — 1)/12¢ = 1 (mod 3);
consequently, R, .= 0 (mod p,), (H|p,) = +1, and [H(a + bp)|7,] = p.
Now p,p, + 1 = 0 (mod 6¢q) and (p,p, + 1)/6¢ = —1 (mod 6); hence,

Xipypgrnre = 0 (mod p,p,) ,
(H|p,p,) = (H|p)(H|p:) = —1, and
[‘}_i_bﬁ] — [a + bp][ H(a + bp) ][ Ha + bp)] _ [(a + bo)(a + b,oZ)]

D, P, T, T, T,
_ [(a + b0*)*(a + b,o)] _ [(a + bo)(a + bpz)]‘1 —p.

T, T,

If we put ¢ = 5449, p, = 32693, @ = 2, b = 3, we have (H|p,) =
—1, [a + bo|p] = p*. We also find that the prime 653881 divides
Y....; hence, N = 32693-653881 = 21377331533 is an a-pseudoprime to
base 2 + 30 and N| X yi1) /-
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