SETS WITH (d-2)-DIMENSIONAL KERNELS

MARILYN BREEN

This work is about the dimension of the kernel of a starshaped set, and the following result is obtained: Let S be a subset of a linear topological space, where S has dimension at least $d \ge 2$. Assume that for every (d + 1)-member subset T of S there corresponds a collection of (d-2)-dimensional convex sets $\{K_T\}$ such that every point of T sees each K_T via S, (aff K_T) $\cap S = K_T$, and distinct pairs aff K_T either are disjoint or lie in a d-flat containing T. Furthermore, assume that when T is affinely independent, then the corresponding set K_T is exactly the kernel of T relative to S. Then S is starshaped and the kernel of S is (d-2)-dimensional.

We begin with some preliminary definitions: Let S be a subset of a linear topological space, S having dimension at least $d \ge 2$. For points x, y in S, we say x sees y via S if and only if the corresponding segment [x, y] lies in S. Similarly, for $T \subseteq S$, we say x sees T (and T sees x) via S if and only if x sees each point of T via S. The set of points of S seen by T is called the kernel of T relative to S and is denoted ker_S T. Finally, if ker_S $S = \ker S$ is not empty, then S is said to be starshaped.

This paper continues a study in [1] concerning sets having (d-2)-dimensional kernels. Foland and Marr [2] have proved that a set S will have a zero-dimensional kernel provided S contains a noncollinear triple and every three noncollinear members of S see via S a unique common point. In [1], an analogue of this result is obtained for subsets S of R^d having (d-2)-dimensional kernels. Here it is proved that, with suitable hypothesis, these results may be extended to include subsets S of an arbitrary linear topological space.

As in [1], the following terminology will be used: Conv S, aff S, cl S, bdry S, rel int S and ker S will denote the convex hull, affine hull, closure, boundary, relative interior and kernel, respectively, of the set S. If S is convex, dim S will represent the dimension of S.

2. Proof of the theorem.

THEOREM. Let S be a subset of a linear topological space, where S has dimension at least $d \ge 2$. Assume that for every (d + 1)-member subset T of S there corresponds a collection of (d - 2)-dimen-

MARILYN BREEN

sional convex sets $\{K_T\}$ such that every point of T sees each K_T via S, $(aff K_T) \cap S = K_T$, and distinct pairs $aff K_T$ either are disjoint or lie in a d-flat containing T. Furthermore, assume that when T is affinely independent, then the corresponding set K_T is exactly the kernel of T relative to S. Then S is starshaped and the kernel of S is (d-2)-dimensional.

Proof. The proof of the theorem is motivated by an argument in [2, Lemma 3], and it will be accomplished by a sequence of lemmas.

LEMMA 1. Assume that $\operatorname{conv} (K \cup \{x\}) \cup \operatorname{conv} (K \cup \{y\}) \subseteq S$, where K is a convex set of dimension d-2, $x \notin \operatorname{aff} K$ and $y \notin \operatorname{aff} (K \cup \{x\})$. Then the set $S \cap \operatorname{aff} (K \cup \{x, y\})$ is starshaped, and its kernel is a (d-2)-dimensional set containing K.

Proof. The argument is identical to the proof of the main theorem in [1].

LEMMA 2. Assume that $\operatorname{conv} (K \cup \{x\}) \cup \operatorname{conv} (K \cup \{y\}) \subseteq S$, where K is a convex set of dimension d - 2, $x \notin \operatorname{aff} K$ and $y \notin \operatorname{aff} (K \cup \{x\})$. Assume there exists some $q \in S \sim \operatorname{aff} (K \cup \{x, y\})$ such that q does not see K via S. Then if z sees d - 1 affinely independent points of K via S, $z \in \operatorname{aff} (K \cup \{x, y\})$.

Proof. By Lemma 1, the d-dimensional set $S \cap \operatorname{aff} (K \cup \{x, y\})$ is starshaped, and its kernel K' is a (d-2)-dimensional set containing K. Hence without loss of generality we may assume that K = K'. Let $\pi = \operatorname{aff} (K \cup \{x\}), \ \pi' = \operatorname{aff} (K \cup \{y\})$, and let k_1, \dots, k_{d-1} be d-1affinely independent points in K seen by z. The affinely independent points $k_1, \dots, k_{d-1}, q, x$ see via S a unique (d-2)-dimensional convex set $A = (\operatorname{aff} A) \cap S$, and $A \subseteq \pi$ by [1, Corollary 1 to Lemma 1]. Similarly $k_1, \dots, k_{d-1}, q, y$ see a (d-2)-dimensional set A', and $A' \subseteq \pi'$. Clearly each of A, A' sees K via S. There are two cases to consider.

Case 1. If K, z, and q are not in a (d-1)-dimensional flat, then the affinely independent points $k_1, \dots, k_{d-1}, z, q$ see a unique (d-2)-dimentional set R, $(aff R) \cap S = R$, and R must lie in aff $(K \cup \{z\})$: Otherwise, $\{k_1, \dots, k_{d-1}, z\} \cup R$ would contain a set T of d+1 affinely independent points with corresponding segments in S, contradicting the fact that K_T is a convex set of dimension d-2. Again by Lemma 1, the d-dimensional set $S \cap aff(K \cup \{z, q\})$ is starshaped, and its kernel must be R. Thus K sees R via S, so R, A, A' all see $K \cup \{q\}$ via S. Hence $R \cup A \cup A'$ cannot contain d + 1affinely independent points, and $R \subseteq \operatorname{aff} (A \cup A') \subseteq \operatorname{aff} (\pi \cup \pi')$. Since q sees R but not K via S, $R \neq K$, and $\operatorname{aff} (K \cup R)$ is (d - 1)-dimensional. Then $\operatorname{aff} (K \cup \{z\}) = \operatorname{aff} (K \cup R)$, and $z \in \operatorname{aff} (K \cup R) \subseteq \operatorname{aff} (\pi \cup \pi')$, the desired result.

Case 2. If K, z, and q lie in a (d-1)-dimensional flat, then since $q \notin aff(K \cup \{x\}) \cup aff(K \cup \{y\})$, neither x nor y is in that flat. However, K, z, q, x lie in a d-dimensional flat, and this flat is exactly $aff(K \cup A \cup \{z, q\}) = aff(K \cup A \cup \{q\})$. Since $conv(K \cup A) \cup conv(A \cup \{q\}) \subseteq S$, by Lemma 1, A is the kernel of $S \cap aff(K \cup A \cup \{q\})$, and z sees A via S. Since S cannot contain d + 1 affinely independent points with corresponding segments in S, $K \cup A \cup \{z\}$ must lie in a (d-1)-dimensional flat, and $z \in aff(K \cup A) \subseteq aff(\pi \cup \pi')$. (In fact, $z \in K$.) This completes Case 2 and finishes the proof of Lemma 2.

LEMMA 3. Assume that $\operatorname{conv}(K \cup \{x\}) \cup \operatorname{conv}(K \cup \{y\}) \subseteq S$, where K is a convex set of dimension d-2, $x \notin \operatorname{aff} K$, and $y \notin \operatorname{aff}(K \cup \{x\})$. If $q \in S \sim \operatorname{aff}(K \cup \{x, y\})$, then q sees K via S.

Proof. Assume on the contrary that q does not see K via S to reach a contradiction. As in the previous lemma, we may assume that K is the kernel of $S \cap \operatorname{aff}(K \cup \{x, y\})$. Let $\pi = \operatorname{aff}(K \cup \{x\})$, $\pi' = \operatorname{aff}(K \cup \{y\})$, and let A, A' denote the (d-2)-dimensional subsets of π , π' seen by k_1, \dots, k_{d-1} , q, x and by k_1, \dots, k_{d-1} , q, y, respectively, where k_1, \dots, k_{d-1} are affinely independent points in K. Then A and A' see $K \cup \{q\}$ via S, so $A \cup A'$ cannot contain d+1 affinely independent points, and $A \cup A'$ lies in a (d-1)-dimensional flat. By hypothesis, since A and A' both correspond to $K \cup \{q\}$ and $K \cup \{q\} \cup$ $A \cup A'$ does not lie in a d-flat, the distinct sets aff A and aff A' are disjoint, and these sets must be parallel in aff $(A \cup A')$. Furthermore, since K and A' lie in π' , aff $K \cap$ aff $A \subseteq$ aff $(K \cup A') \cap$ aff $(A \cup A') = a$ ff A', and aff $K \cap a$ ff $A \subseteq a$ ff $A' \cap a$ ff $A = \emptyset$. Hence aff K and aff A are parallel in π . Similarly, aff K and aff A' are parallel in π' , and it is easy to see that aff $K \cap \text{aff} (A \cup A') = \emptyset$.

Select some point u in rel int conv $(A \cup \{q\})$, and examine the d-dimensional flat aff $(A \cup A' \cup \{u\})$, which contains q. Clearly aff $(A \cup A' \cup \{u\})$ intersects aff $(\pi \cup \pi')$ in exactly aff $(A \cup A')$. Hence for any point v in rel int conv $(A' \cup \{q\}) \subseteq$ aff $(A \cup A' \cup \{u\})$, the line L(u, v) determined by u and v does not intersect aff K, and K, u, vaffinely span a full d-dimensional set. Furthermore, for any point k in aff K, the plane aff (k, u, v) intersects aff $(\pi \cup \pi')$ in a line containing k, and this line cannot intersect aff $(A \cup A')$: Otherwise k would lie in aff $(A \cup A' \cup \{u, v\}) \cap$ aff $(\pi \cup \pi') =$ aff $(A \cup A')$, impossible. Hence aff $(K \cup \{u, v\}) \cap$ aff $(A \cup A') = \emptyset$, and the *d*-dimensional flats aff $(K \cup \{u, v\})$ and aff $(\pi \cup \pi')$ intersect in a (d - 1)-dimensional flat in aff $(\pi \cup \pi')$ parallel to aff $(A \cup A')$.

To complete the proof, we will find some nonempty subset F of S contained in $\operatorname{aff}(A \cup A') \cap \operatorname{aff}(K \cup \{u, v\})$, giving the desired contradiction. Let $E \equiv (\operatorname{aff} E) \cap S$ denote the (d-2)-dimensional subset of S seen by k_1, \dots, k_{d-1}, u , and v. By Lemma 2, each point of E lies in aff $(\pi \cup \pi')$, and since K is the kernel of $S \cap \text{aff} (\pi \cup \pi')$, each point of E sees K via S. Hence $E \cup K$ cannot contain d+1 affinely independent points, and dim aff $(E \cup K) \leq d - 1$. Clearly $K \neq E$: Otherwise u and v would see K via S and by Lemma 2, $u, v \in$ aff $(K \cup \{x, y\})$, impossible by our choice of u and v. Therefore aff $(E \cup K)$ is a (d-1)-dimensional subset of aff $(\pi \cup \pi')$, and E, K, $\{q\}$ affinely span a d-flat. By selecting d affinely independent points in $E \cup K$, these points together with q see a (d-2)-dimensional subspace F of S, and it is easy to see that $F \subseteq \operatorname{aff}(E \cup K) \subseteq \operatorname{aff}(\pi \cup \pi')$. Hence F sees K via S. We conclude that F, A, A' all see $K \cup \{q\}$ via S, so $F \cup A \cup A'$ cannot contain d + 1 affinely independent points, and $F \subseteq \operatorname{aff} (A \cup A')$.

Finally, we show that $F \subseteq \operatorname{aff} (K \cup \{u, v\})$. Observe that $u \notin \operatorname{aff} (\pi \cup \pi')$, so the set $K \cup E \cup \{u\}$ contains d + 1 affinely independent points, and by Lemma 1, the kernel of $S \cap \operatorname{aff} (K \cup E \cup \{u\})$ is E. Also, there exist points in $S \sim \operatorname{aff} (K \cup E \cup \{u\})$ which do not see E via S: In particular, at least one of the sets A, A' cannot lie in the d-flat $\operatorname{aff} (K \cup E \cup \{u\})$, for otherwise $u \in \operatorname{aff} (K \cup E \cup \{u\}) = \operatorname{aff} (K \cup A \cup A') = \operatorname{aff} (\pi \cup \pi')$, impossible. If $A \nsubseteq \operatorname{aff} (K \cup E \cup \{u\})$, then A cannot see E via S (for otherwise $K \cup E \cup A$ would contain d + 1 affinely independent points with corresponding segments in S). Similarly, if $A' \nsubseteq \operatorname{aff} (K \cup E \cup \{u\})$, then A' cannot see E via S. Thus the set conv $(K \cup E) \cup \operatorname{conv} (E \cup \{u\})$ satisfies the hypothesis of Lemma 2, and we may apply that lemma to conclude that $v \in \operatorname{aff} (K \cup E \cup \{u\})$. Therefore $K \cup E \cup F \cup \{u, v\}$ lies in a d-flat, and since $K \cup \{u, v\}$ contains d + 1 affinely independent points, this flat must be exactly aff $(K \cup \{u, v\})$. Hence $F \subseteq \operatorname{aff} (K \cup \{u, v\})$.

We conclude that $F \subseteq \operatorname{aff} (A \cup A') \cap \operatorname{aff} (K \cup \{u, v\}) = \emptyset$. This yields the desired contradiction, our opening assumption is false, and q sees K via S, finishing the proof of Lemma 3.

The rest of the proof is easy. Select a set T consisting of d+1 affinely independent points of S, and let $K = \ker_S T$. Since dim K = d - 2, we may select points x, y in T with $x \notin \operatorname{aff} K$ and $y \notin \operatorname{aff} (K \cup \{x\})$. Then K, x, y satisfy the hypotheses of Lemmas 1 and 3, and by the lemmas, $K \subseteq \ker S$. Since $\ker S \subseteq \ker_S T = K$, we conclude that $K = \ker S$. Hence S is a starshaped set whose kernel is (d-2)-dimensional, completing the proof of the theorem.

We conclude with the following analogue of [1, Corollary 3]:

COROLLARY. The hypothesis of the theorem above provides a characterization of subsets S of a linear topological space, S having dimension at least $d \ge 2$, for which $K \equiv \ker S$ has dimension d - 2, (aff K) $\cap S = K$, and the maximal convex subsets of S have dimension d - 1.

Proof. If S satisfies the properties above, then to each (d + 1)member subset T of S, the set $K \equiv \ker S$ will be a suitable K_T set. For K_1 and K_2 distinct K_T sets, we assert that T, K_1 , and K_2 lie in a d-flat: At least one of the sets K_1 , K_2 is not K, so without loss of generality assume that $K_1 \neq K$. Since maximal convex subsets of S have dimension d - 1, clearly each K_i set lies in a (d - 1)dimensional flat containing K, i = 1, 2, and it is easy to see that each point of T lies in the (d - 1)-flat aff $(K_1 \cup K)$. Furthermore, if $T \not\subseteq K$, then K_2 must also lie in aff $(K_1 \cup K)$, finishing the argument. In case $T \subseteq K$, then since both K_1 and K_2 lie in (d - 1)flats containing K, the set $K_1 \cup K_2 \cup K$ lies in a d-flat, and this flat contains $K_1 \cup K_2 \cup T$, again the desired result.

The remaining steps of the proof are identical to those of [1, Corollary 3].

REFERENCES

1. Marilyn Breen, Sets in \mathbb{R}^d having (d-2)-dimensional kernels, Pacific J. Math., 75 (1977), to appear.

2. N. E. Foland and J. M. Marr, Sets with zero dimensional kernels, Pacific J. Math., **19** (1966), 429-432.

Received June 20, 1977 and in revised form November 7, 1977.

UNIVERSITY OF OKLAHOMA NORMAN, OK 73019