SETS WITH ($d-2$)-DIMENSIONAL KERNELS

Marilyn Breen

Abstract

This work is about the dimension of the kernel of a starshaped set, and the following result is obtained: Let S be a subset of a linear topological space, where S has dimension at least $d \geqq 2$. Assume that for every ($d+1$)member subset T of S there corresponds a collection of ($d-2$)dimensional convex sets $\left\{K_{T}\right\}$ such that every point of T sees each K_{T} via S, (aff K_{T}) $\cap S=K_{T}$, and distinct pairs aff K_{T} either are disjoint or lie in a d-flat containing T. Furthermore, assume that when T is affinely independent, then the corresponding set K_{T} is exactly the kernel of T relative to S. Then S is starshaped and the kernel of S is ($d-2$)dimensional.

We begin with some preliminary definitions: Let S be a subset of a linear topological space, S having dimension at least $d \geqq 2$. For points x, y in S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. Similarly, for $T \subseteq S$, we say x sees T (and T sees x) via S if and only if x sees each point of T via S. The set of points of S seen by T is called the kernel of T relative to S and is denoted $\operatorname{ker}_{S} T$. Finally, if $\operatorname{ker}_{S} S=\operatorname{ker} S$ is not empty, then S is said to be starshaped.

This paper continues a study in [1] concerning sets having (d-2)-dimensional kernels. Foland and Marr [2] have proved that a set S will have a zero-dimensional kernel provided S contains a noncollinear triple and every three noncollinear members of S see via S a unique common point. In [1], an analogue of this result is obtained for subsets S of R^{d} having ($d-2$)-dimensional kernels. Here it is proved that, with suitable hypothesis, these results may be extended to include subsets S of an arbitrary linear topological space.

As in [1], the following terminology will be used: Conv S, aff S, cl S, bdry S, rel int S and $\operatorname{ker} S$ will denote the convex hull, affine hull, closure, boundary, relative interior and kernel, respectively, of the set S. If S is convex, $\operatorname{dim} S$ will represent the dimension of S.
2. Proof of the theorem.

Theorem. Let S be a subset of a linear topological space, where S has dimension at least $d \geqq 2$. Assume that for every $(d+1)$ member subset T of S there corresponds a collection of (d-2)-dimen-
sional convex sets $\left\{K_{T}\right\}$ such that every point of T sees each K_{T} via S, (aff $\left.K_{T}\right) \cap S=K_{T}$, and distinct pairs aff K_{T} either are disjoint or lie in a d-flat containing T. Furthermore, assume that when T is affinely independent, then the corresponding set K_{T} is exactly the kernel of T relative to S. Then S is starshaped and the kernel of S is ($d-2$)-dimensional.

Proof. The proof of the theorem is motivated by an argument in [2, Lemma 3], and it will be accomplished by a sequence of lemmas.

Lemma 1. Assume that conv $(K \cup\{x\}) \cup \operatorname{conv}(K \cup\{y\}) \subseteq S$, where K is a convex set of dimension $d-2, x \notin \operatorname{aff} K$ and $y \notin \operatorname{aff}(K \cup\{x\})$. Then the set $S \cap \operatorname{aff}(K \cup\{x, y\})$ is starshaped, and its kernel is a (d-2)-dimensional set containing K.

Proof. The argument is identical to the proof of the main theorem in [1].

Lemma 2. Assume that conv $(K \cup\{x\}) \cup \operatorname{conv}(K \cup\{y\}) \subseteq S$, where K is a convex set of dimension $d-2, x \notin$ aff K and $y \notin \operatorname{aff}(K \cup\{x\})$. Assume there exists some $q \in S \sim \operatorname{aff}(K \cup\{x, y\})$ such that q does not see K via S. Then if z sees $d-1$ affinely independent points of K via $S, z \in \operatorname{aff}(K \cup\{x, y\})$.

Proof. By Lemma 1, the d-dimensional set $S \cap \operatorname{aff}(K \cup\{x, y\})$ is starshaped, and its kernel K^{\prime} is a ($d-2$)-dimensional set containing K. Hence without loss of generality we may assume that $K=K^{\prime}$. Let $\pi=\operatorname{aff}(K \cup\{x\}), \pi^{\prime}=\operatorname{aff}(K \cup\{y\})$, and let k_{1}, \cdots, k_{d-1} be $d-1$ affinely independent points in K seen by z. The affinely independent points $k_{1}, \cdots, k_{d-1}, q, x$ see via S a unique ($d-2$)-dimensional convex set $A=($ aff $A) \cap S$, and $A \subseteq \pi$ by [1, Corollary 1 to Lemma 1]. Similarly $k_{1}, \cdots, k_{d-1}, q, y$ see a ($d-2$)-dimensional set A^{\prime}, and $A^{\prime} \cong \pi^{\prime}$. Clearly each of A, A^{\prime} sees K via S. There are two cases to consider.

Case 1. If K, z, and q are not in a (d-1)-dimensional flat, then the affinely independent points $k_{1}, \cdots, k_{d-1}, z, q$ see a unique (d-2)-dimentional set R, (aff $R) \cap S=R$, and R must lie in aff $(K \cup\{z\})$: Otherwise, $\left\{k_{1}, \cdots, k_{d-1}, z\right\} \cup R$ would contain a set T of $d+1$ affinely independent points with corresponding segments in S, contradicting the fact that K_{T} is a convex set of dimension $d-2$. Again by Lemma 1, the d-dimensional set $S \cap \operatorname{aff}(K \cup\{z, q\})$ is starshaped, and its kernel must be R. Thus K sees R via S, so R,
A, A^{\prime} all see $K \cup\{q\}$ via S. Hence $R \cup A \cup A^{\prime}$ cannot contain $d+1$ affinely independent points, and $R \subseteq \operatorname{aff}\left(A \cup A^{\prime}\right) \subseteq \operatorname{aff}\left(\pi \cup \pi^{\prime}\right)$. Since q sees R but not K via $S, R \neq K$, and aff $(K \cup R)$ is ($d-1$)-dimensional. Then aff $(K \cup\{z\})=\operatorname{aff}(K \cup R)$, and $z \in \operatorname{aff}(K \cup R) \subseteq \operatorname{aff}(\pi \cup$ π^{\prime}), the desired result.

Case 2. If K, z, and q lie in a ($d-1$)-dimensional flat, then since $q \notin \operatorname{aff}(K \cup\{x\}) \cup$ aff $(K \cup\{y\})$, neither x nor y is in that flat. However, K, z, q, x lie in a d-dimensional flat, and this flat is exactly $\operatorname{aff}(K \cup A \cup\{z, q\})=\operatorname{aff}(K \cup A \cup\{q\})$. Since conv $(K \cup A) \cup \operatorname{conv}(A \cup$ $\{q\}) \subseteq S$, by Lemma $1, A$ is the kernel of $S \cap \operatorname{aff}(K \cup A \cup\{q\})$, and z sees A via S. Since S cannot contain $d+1$ affinely independent points with corresponding segments in $S, K \cup A \cup\{z\}$ must lie in a (d-1)-dimensional flat, and $z \in \operatorname{aff}(K \cup A) \subseteq \operatorname{aff}\left(\pi \cup \pi^{\prime}\right)$. (In fact, $z \in K$.) This completes Case 2 and finishes the proof of Lemma 2.

Lemma 3. Assume that conv $(K \cup\{x\}) \cup$ conv $(K \cup\{y\}) \subseteq S$, where K is a convex set of dimension $d-2, x \notin$ aff K, and $y \notin \operatorname{aff}(K \cup\{x\})$. If $q \in S \sim \operatorname{aff}(K \cup\{x, y\})$, then q sees K via S.

Proof. Assume on the contrary that q does not see K via S to reach a contradiction. As in the previous lemma, we may assume that K is the kernel of $S \cap \operatorname{aff}(K \cup\{x, y\})$. Let $\pi=\operatorname{aff}(K \cup\{x\})$, $\pi^{\prime}=\operatorname{aff}(K \cup\{y\})$, and let A, A^{\prime} denote the ($d-2$)-dimensional subsets of π, π^{\prime} seen by $k_{1}, \cdots, k_{d-1}, q, x$ and by $k_{1}, \cdots, k_{d-1}, q, y$, respectively, where k_{1}, \cdots, k_{d-1} are affinely independent points in K. Then A and A^{\prime} see $K \cup\{q\}$ via S, so $A \cup A^{\prime}$ cannot contain $d+1$ affinely independent points, and $A \cup A^{\prime}$ lies in a $(d-1)$-dimensional flat. By hypothesis, since A and A^{\prime} both correspond to $K \cup\{q\}$ and $K \cup\{q\} \cup$ $A \cup A^{\prime}$ does not lie in a d-flat, the distinct sets aff A and aff A^{\prime} are disjoint, and these sets must be parallel in aff ($A \cup A^{\prime}$). Furthermore, since K and A^{\prime} lie in π^{\prime}, aff $K \cap \operatorname{aff} A \subseteq \operatorname{aff}\left(K \cup A^{\prime}\right) \cap$ aff $\left(A \cup A^{\prime}\right)=\operatorname{aff} A^{\prime}$, and aff $K \cap \operatorname{aff} A \subseteq \operatorname{aff} A^{\prime} \cap \operatorname{aff} A=\varnothing$. Hence aff K and aff A are parallel in π. Similarly, aff K and aff A^{\prime} are parallel in π^{\prime}, and it is easy to see that aff $K \cap \operatorname{aff}\left(A \cup A^{\prime}\right)=\varnothing$.

Select some point u in rel int $\operatorname{conv}(A \cup\{q\})$, and examine the d-dimensional flat aff $\left(A \cup A^{\prime} \cup\{u\}\right)$, which contains q. Clearly aff $\left(A \cup A^{\prime} \cup\{u\}\right)$ intersects aff ($\pi \cup \pi^{\prime}$) in exactly aff $\left(A \cup A^{\prime}\right)$. Hence for any point v in rel int $\operatorname{conv}\left(A^{\prime} \cup\{q\}\right) \subseteq \operatorname{aff}\left(A \cup A^{\prime} \cup\{u\}\right)$, the line $L(u, v)$ determined by u and v does not intersect aff K, and K, u, v affinely span a full d-dimensional set. Furthermore, for any point k in aff K, the plane aff (k, u, v) intersects aff ($\left.\pi \cup \pi^{\prime}\right)$ in a line containing k, and this line cannot intersect aff ($A \cup A^{\prime}$): Otherwise k would lie in aff $\left(A \cup A^{\prime} \cup\{u, v\}\right) \cap \operatorname{aff}\left(\pi \cup \pi^{\prime}\right)=\operatorname{aff}\left(A \cup A^{\prime}\right)$, impos-
sible. Hence aff $(K \cup\{u, v\}) \cap$ aff $\left(A \cup A^{\prime}\right)=\varnothing$, and the d-dimensional flats aff ($K \cup\{u, v\}$) and aff ($\pi \cup \pi^{\prime}$) intersect in a ($d-1$)-dimensional flat in aff ($\pi \cup \pi^{\prime}$) parallel to aff ($A \cup A^{\prime}$).

To complete the proof, we will find some nonempty subset F of S contained in aff $\left(A \cup A^{\prime}\right) \cap \operatorname{aff}(K \cup\{u, v\})$, giving the desired contradiction. Let $E \equiv($ aff $E) \cap S$ denote the ($d-2$)-dimensional subset of S seen by $k_{1}, \cdots, k_{d-1}, u$, and v. By Lemma 2, each point of E lies in aff ($\pi \cup \pi^{\prime}$), and since K is the kernel of $S \cap$ aff ($\pi \cup \pi^{\prime}$), each point of E sees K via S. Hence $E \cup K$ cannot contain $d+1$ affinely independent points, and dim aff $(E \cup K) \leqq d-1$. Clearly $K \neq E$: Otherwise u and v would see K via S and by Lemma $2, u, v \in$ aff ($K \cup\{x, y\}$), impossible by our choice of u and v. Therefore aff $(E \cup K)$ is a ($d-1$)-dimensional subset of aff ($\pi \cup \pi^{\prime}$), and $E, K,\{q\}$ affinely span a d-flat. By selecting d affinely independent points in $E \cup K$, these points together with q see a ($d-2$)-dimensional subspace F of S, and it is easy to see that $F \cong \operatorname{aff}(E \cup K) \subseteq \operatorname{aff}\left(\pi \cup \pi^{\prime}\right)$. Hence F sees K via S. We conclude that F, A, A^{\prime} all see $K \cup\{q\}$ via S, so $F \cup A \cup A^{\prime}$ cannot contain $d+1$ affinely independent points, and $F \subseteq \operatorname{aff}\left(A \cup A^{\prime}\right)$.

Finally, we show that $F \subseteq \operatorname{aff}(K \cup\{u, v\})$. Observe that $u \notin$ aff ($\pi \cup \pi^{\prime}$), so the set $K \cup E \cup\{u\}$ contains $d+1$ affinely independent points, and by Lemma 1, the kernel of $S \cap \operatorname{aff}(K \cup E \cup\{u\})$ is E. Also, there exist points in $S \sim \operatorname{aff}(K \cup E \cup\{u\})$ which do not see E via S : In particular, at least one of the sets A, A^{\prime} cannot lie in the d-flat aff $(K \cup E \cup\{u\})$, for otherwise $u \in \operatorname{aff}(K \cup E \cup\{u\})=$ aff $\left(K \cup A \cup A^{\prime}\right)=\operatorname{aff}\left(\pi \cup \pi^{\prime}\right)$, impossible. If $A \nsubseteq \operatorname{aff}(K \cup E \cup\{u\})$, then A cannot see E via S (for otherwise $K \cup E \cup A$ would contain $d+1$ affinely independent points with corresponding segments in S). Similarly, if $A^{\prime} \not \equiv \operatorname{aff}(K \cup E \cup\{u\})$, then A^{\prime} cannot see E via S. Thus the set $\operatorname{conv}(K \cup E) \cup \operatorname{conv}(E \cup\{u\})$ satisfies the hypothesis of Lemma 2, and we may apply that lemma to conclude that $v \in$ aff $(K \cup E \cup\{u\})$. Therefore $K \cup E \cup F \cup\{u, v\}$ lies in a d-flat, and since $K \cup\{u, v\}$ contains $d+1$ affinely independent points, this flat must be exactly aff $(K \cup\{u, v\})$. Hence $F \cong \operatorname{aff}(K \cup\{u, v\})$.

We conclude that $F \subseteq \operatorname{aff}\left(A \cup A^{\prime}\right) \cap \operatorname{aff}(K \cup\{u, v\})=\varnothing$. This yields the desired contradiction, our opening assumption is false, and q sees K via S, finishing the proof of Lemma 3.

The rest of the proof is easy. Select a set T consisting of $d+1$ affinely independent points of S, and let $K=\operatorname{ker}_{s} T$. Since $\operatorname{dim} K=d-2$, we may select points x, y in T with $x \notin$ aff K and $y \notin \operatorname{aff}(K \cup\{x\})$. Then K, x, y satisfy the hypotheses of Lemmas 1 and 3 , and by the lemmas, $K \subseteq \operatorname{ker} S$. Since $\operatorname{ker} S \subseteq \operatorname{ker}_{S} T=K$, we conclude that $K=\operatorname{ker} S$. Hence S is a starshaped set whose kernel is ($d-2$)-dimensional, completing the proof of the theorem.

We conclude with the following analogue of [1, Corollary 3]:
Corollary. The hypothesis of the theorem above provides a characterization of subsets S of a linear topological space, S having dimension at least $d \geqq 2$, for which $K \equiv \operatorname{ker} S$ has dimension $d-2$, (aff K) $\cap S=K$, and the maximal convex subsets of S have dimension $d-1$.

Proof. If S satisfies the properties above, then to each $(d+1)$ member subset T of S, the set $K \equiv \operatorname{ker} S$ will be a suitable K_{T} set. For K_{1} and K_{2} distinct K_{T} sets, we assert that T, K_{1}, and K_{2} lie in a d-flat: At least one of the sets K_{1}, K_{2} is not K, so without loss of generality assume that $K_{1} \neq K$. Since maximal convex subsets of S have dimension $d-1$, clearly each K_{i} set lies in a ($d-1$)dimensional flat containing $K, i=1,2$, and it is easy to see that each point of T lies in the $(d-1)$-flat aff $\left(K_{1} \cup K\right)$. Furthermore, if $T \nsubseteq K$, then K_{2} must also lie in aff $\left(K_{1} \cup K\right)$, finishing the argument. In case $T \subseteq K$, then since both K_{1} and K_{2} lie in (d-1)flats containing K, the set $K_{1} \cup K_{2} \cup K$ lies in a d-flat, and this flat contains $K_{1} \cup K_{2} \cup T$, again the desired result.

The remaining steps of the proof are identical to those of $[1$, Corollary 3].

References

1. Marilyn Breen, Sets in R^{d} having (d-2)-dimensional kernels, Pacific J. Math., 75 (1977), to appear.
2. N. E. Foland and J. M. Marr, Sets with zero dimensional kernels, Pacific J. Math., 19 (1966), 429-432.

Received June 20, 1977 and in revised form November 7, 1977.
University of Oklahoma
Norman, OK 73019

