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CHEBYSHEV CENTERS AND UNIFORM

CONVEXITY

D A N A M I R

If E is a uniformly convex Banach space and T is any
topological space, then in the space X — C(T,E) of E-valued
bounded continuous functions on E, every bounded set has
a Chevyshev center. Moreover, the set function A -»Z(A),
corresponding to A the set of its Chebyshev centers, is uni-
formly continuous on bounded subsets of the space &(X) of
bounded subsets of X with the Hausdorff metric. This is
contrasted with the fact that a normed space X in which
Z(A) is a singleton for every bounded A is uniformly convex
iff A->Z(A) is uniformly continuous on bounded subsets of

Let (X, d) be a metric space. Denoto by &(X) the space of
nonempty bounded subsets of X and let h be the Hausdorff semi-
metric on

h(A, B) = max (sup inf d(u, v), sup inf d(u, v)) .
ueAveB veB ueA

For x e X, r ^ 0, let B(x, r) = {y e X; d(x, y) ^ r} be the closed

r-ball around x. For Ae&(X) and xeX denote r(x, A) = inf {r ^ 0;

B(x9 r)i) A}, r(A) = mtx&xr(x, A) is the Chebyshev radius of A, and
Z(A) = {xeX; r(x, A) — r(A)} is the set of Chebyshev centers of A.
For YczX we can consider also the relative Chebyshev radius of
A in Y, rγ(A) = mtyeγr(y, A), and the set of relative Chebyshev
centers of A in Y, ZY(A) = {y eY; r(y, A) = rγ(A)}. In the case that
A — {x} is a singleton, then ZY(A) is just the set of best approxima-
tions in Y to x, Pγx.

We say that X admits centers if every bounded set in X has
Chebyshev centers. The classical Banach spaces, i.e., the spaces
Lv(μ), 1 ^ p ^ CXD, over any measure space and the spaces C{T) of
continuous real-valued functions on compact Hausdorff T, admit
centers ([1], [3]). However, Garkavi ([1]) gave an example of a 3-
point set in a maximal subspace H of C[0,1] which has no Chebyshev
center in H. The problem of characterizing all Banach space which
admit centers is still open.

Ward ([5]) proved that the space C(T, E) of E-valued bounded
continuous functions on the topological space T, with the norm
\\x\\ = sup^r l|8(ί)||> admits centers in each of the following two
cases: (a) E is a finite-dimensional strictly convex (hence uniformly
convex) normed space and T is paracompact. (b) £ is a Hubert
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space and T is normal. Ward asked whether both results can be
strengthened by taking in (b) any uniformly convex Banach space
E. Our first result shows that the answer is in the affirmative.

We use the following characterization of uniform convexity,
due to Ruston ([4]). We include a proof for completeness sake.

I* LEMMA. A normed space E is uniformly convex iff for every
ε > 0 there is δ'(έ) > 0 such that if x, y e E and φeE* are such that
\\x\\ = \\y\\ = i = \\φ\\ == <p(y) and φ{x) > 1 - S'(ε), then \\x - y\\ < e.
We can take, of course, δ'(ε) ̂  l/2ε.

Proof. If E is uniformly convex, then <5(ε) = inf {1 — \\(u — v)/2\\;
\\u\\ = \\v\\ = 1, \\u - v\\ ̂  ε} is positive. Take δ'(ε) < 2δ(ε). If
\\x -vW^e then \\(x,+ y)/2\\ ^ 1 - δ(ε) hence (φ(x) + l)/2 = φ((x + y)/2) S

1 - <5(ε) and 0(α?) ̂  1 - 2S(ε) < 1 - <S'(ε).
Conversely, we claim that δ(ε) ̂  δ'(ε/4). Indeed, if \\x\\ = ||τ/|| = 1

and ||α - y|| > ε, take ^ G J S * with ||0|| = 1, φ{x + y) = ||x + i/||. Then
either ||(α? + »)/2|| < 1 - ε/4 ^ 1 - δ'(ε/4), or ||(a? + y)/2\\ ̂  1 - ε/4,
hence ||(x + y)/2 - (x + 2/)/||x + τ/|| || ^ ε/4 and \\x - (x + y)/\\x + y\\ \\ ̂
ε/4, \\y - (x + y)/||a? + y | | | | ^ ε/4, hence φ{x) ̂  1 - δ'(ε/4), ^ ) ^ 1 -
δ'(ε/4) and ||x + y|| = φ(x + y) ^ 2(1 - δ'(ε/4)).

2* THEOREM. If E is a uniformly convex Banach space and
T is any topological space, then C(T, E) admits centers.

Proof. Given any bounded AcC(Γ, E) we may assume, without
loss of generality, that r(A) = 1. Given ε > 0, choose any f0 e C(T, E)
with r(/0, A) ^ 1 + δ\έ). We claim that there is fxeG{T, E) with
r(flf A) ^ 1 + δ'(ε/2) and ||Λ - /0 | | ^ 2ε. Indeed, take any g e C(T, E)
with r(g, A) ^ 1 + <5'(ε/2) and define:

(1 if llff(«)-/o(ί)ll^2e

i f IWO ~/oWH > 2ε

β(t)(g(t) -

Clearly, Λ 6 C(Γ, ̂ ) and ||Λ - /0|| ^ 2ε. Take any aeA. We have
to show that \\fγ(t) - a(t)\\ ̂  1 + <5'(ε/2). This is clear if β(t) = 1,
since then/^t) = flr(t), or if /3(ί) < 1 but \\g(t) - α(ί)|| ^ ll/o(*) - α(t)||,
since fx{t) lies on the segment [/0(ί), flr(ί)]. Therefore we may assume
1 + δ\έ) ^ ||/0(ί) - α(ί)|| > ||0(ί) - α(t)||. Denote w = /0(ί) - α(ί), v =
g(t)-a(t), so that ||v|| ^ 1 + δ'(e/2) and 1 + δ'(ε) ^ ||u|| > \\v\\ and
we want to show that going a distance of 2ε from u towards v, we
enter the (1 + δ'(ε/2))-ball around 0. Since this is true if \\v\\ = 0,
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it suffices to show it when \\v\\ = 1 + <5'(ε/2).
In the 2-dimensional space spanned by u and v let z be on the

11 v 11-sphere, on the same side of the line through 0 and u as v is, such
that the line uz supports the sphere. Extend this line to a hyper-
plane H = ψ~xl supporting the ||v||-ball in E. Let φ = \\v\\ψ, x = u/\\u\\9

V = z/\\z\\. T h e n \\ψ\\ = φ{y) = 1 = \\y\\ = \\χ\\ a n d φ(x) = 1 / N | ^
1/(1 + <S'(ε)) > 1 - δ'(ε), h e n c e \\x - y\\ < ε a n d \\u -z\\<ε + \\u - x\\ +
\\z — y\\ ̂  ε + δ'(e) + δ'(e/2) < 2ε. This proves our claim, since the
distance from u to the ||v||-ball in the direction of v is less than the
maximal of the distances in the directions of x (which is ^ S'(ε)) and
z (which is < 2ε).

Inductively, we find fn+1 with \\fn+1 - fn\\ ^ 2ε/2 and r(fn+1, A)£
1 + δ\ε/2n+1). The Cauchy sequence (/J converges to some / with
| |/ - /oil ^ 2ε. r(/, A) ^ lim r(Λ, A) ^ 1, hence r(/, A) = 1 and / is
a Chebyshev center for A. (See Remark 6.)

3. COROLLARY. If X = C(T9 E), E a uniformly convex Banach
space, then the mapping A —> Z(A) in &{X) is uniformly continuous
on bounded subsets of

Proof. By the proof of Theorem 1, if r(/ 0, A) ^ (1 + δ'(ε))r(A),
then there is feZ(A) with \\f - fo\\ ^ 4εr(A). Given i2 and ε > 0,
let 0 < δ ^ Rδ'(έ)/2. If r(A) ^ i2, r(J5) ̂  i? and h(A, B) < δ, then
for every x we have \r(x9 A) — r(α?, B)\ < δ (given ueA, find veB
with d(%, t;) < δ and then d(x, u) <d(x, v) + δ etc.), hence \r(A) — r(B)\ <
δ, and for every z e JSΓ(il) we have r(z, B) < r(A) + δ < r(B) + 2δ ^
(1 + δ'(ε))r(JS). Therefore we can find w e Z(B) with \\w - z\\ ^ 4εi2.
Similarly sup w 6 Z ( 5 ) <Z(w, Z(A)) ̂  4εi?, i.e., h(Z(A), Z(B)) ^ 4εi?.

4* COROLLARY. IfX—C(T)and Y is a closed linear sublattice
of X, then for every bounded AaX there is a relative Chebyshev
center in Y, and A —> ZY(A) is uniformly continuous on bounded
subsets of

Proof. In the proof of the theorem, if f0 and g are chosen in
Y, then by the lattice property also f e Y.

The continuity property of the operation A —> Z(A) in the "most
square" space X — C(Γ), obtained in Corollary 3, is somewhat sur-
prising in view of the next theorem.

5* THEOREM. A Banach space X is uniformly convex iff for
every Ae&(X) Z{A) is a singleton, and A->Z(A) is uniformly
continuous on bounded subsets of
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Proof. Assume first that X is uniformly convex. Since X is
reflexive Z(A) Φ 0 for every A e &(X), while uniform convexity
guarantees that Z(A) is a singleton ([1]). It is known (and easily
proved) that if ||a?||, ||y|| ^ M and \\x - y\) ̂  ε, then \\(x + y)/2|| ^
(1 - δ(e/M))M. Suppose now z = Z(A), w = Z{B)f r(A) < R and
h(A, B) < Ύ] < 1. Then r(B) ^ r(s, J5) < r(s, A) + η = r{A) + η, and
r(A) ^ r(w, A) < r(JB) + η < r(A) + 2η. Therefore for ueAwe have
\\u - «|| ^ r(A), \\u - w|| < r(A) + 2)7 and

z + w {{u — z) + (u -

But \\u — (z + W)I2\\ 2; r(A), for some ueA, hence if \\z — w\\ ̂  ε
then

r(A)δι

2 VJ? + 2

Thus if η < r(A)δ(ε/(R + 2))/2 then ||« - w|| < ε. So that fixing η =
εδ(ε/(R + 2))/4 we have either r(A) ^ ε/2 and then \\z — w|I < ε, or
r(A) < ε/2 and then taking any ueA we have \\z ~ w\\ ̂  ||« — u\\ +
||% - w\\ < r(A) + r(A) + 2η < ε.

Conversely, if Jί/ is not uniformly convex, there are xn, yneE
with \\xn\\ = \\yn\\ = 1, IK - ^ | | - ε and \\xn + yn|| -> 2. Let

\K + Vn\\
Bn -= c o n v {fljΛ, sΛ, - i 2 Λ , - y Λ } .

Then h(An, Bn) -> 0, but (xn - τ/J/4 e Z(AJ while 0 e Z(Bn). Thus if
Z(An) and Z(βn) are singletons, we have h(Z(An), Z(Bn)) =
life - 1/J/4|| - e/4.

REMARKS. (1) By the proof it is clear that it is enough to
check the uniform continuity of A —> Z(A) on the 2-dimensional sub-
sets A of the unit ball of X.

(2) There are nonuniformly convex spaces in which Z(A) is
a singleton for every bounded nonempty A. It is known ([1]) that
if X is reflexive then Z(A) Φ 0 for every A e .^{X) while the condi-
tion that Z{A) is at most a singleton for every Ae^(X) is equi-
valent to X being u.c.e.d (uniformly convex in every direction,
w h i c h m e a n s t h a t δz(ε) = i n f {1 - \\(x + y)/2\\; \\x\\ = \\y\\ = 1, x - y =
λz, ||# — #11 ̂  ε} > 0 for every z Φ 0). Since every separable space
can be equivalently renormed to be u.c.e.d ([6]) while only super-
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reflexive spaces can be renormed to be uniformly convex ([2]), every
reflexive but nonsuperreflexive separable X can be renormed so that
Z(A) is a singleton for every A e &(X), while A —> Z(A) is not
uniformly continuous.

(3) If we wish to drop the condition that Z(A) is a singleton,
the same proof yields.

"A normed space X is uniformly convex iff every selection for
the set-valued map Z: A —> Z(A) is uniformly continuous on bounded
subsets of the domain of definition of Z in &(X)."

Indeed, An and Bn in the proof above have Chebyshev centers,
while continuity of every selection of Z implies that Z is single-
valued. Again, we may restrict ourselves to 2-dimensional sets of
the type An, Bn.

(4) Say that X is "uniformly convex with respect to Y",
where 7 is a closed subspace of X, if 3γ(ε) = inf {1 — \\(x + y)/2\\;
\\x\\ = 112,11 = 1, \\x _ y\\ ̂  ε, x - y e Y} > 0 for every ε > 0. The
same proof will yield: The Banach space X is uniformly convex
with respect to its subspace Y iff A —> ZY(A) is a locally uniformly
continuous function from &(X) (or even the 2-dimensional sets in
&(X)) to Y.

(5) A related result is the following theorem of P. Smith (cf.
[7], p. 188): If E is an "i?-space" (i.e., a Banach space with a
Frechet differentiable dual or, equivalently, a reflexive strictly

convex space in which xn —> x, \\xn\\ —> ||sc|] => xn —> x) then A —> Z{A)
is a continuous single-valued map from the space of compact subsets
of E (in the Hausdorff metric) into E.

(6) Theorem 2 has been obtained, independently, by Ka-Sing
Lau, who proved in a similar way the following more general result:
For any bounded set-valued map ψ from a topological space X into
a uniformly convex Banach space E and for every closed C(X)~
submodule M in C(X, E) there is a best approximation from M to ψ.
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