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ON THE GEOMETRY OF COMBINATORIAL
MANIFOLDS

MICHAEL A. PENNA

On a smooth manifold there are classical relations be-
tween vector fields and derivations of the smooth function
algebra, and between differential forms and alternating linear
maps of vector field tuples. In this paper similar relations are
obtained for combinatorial manifolds. As an application of
these results the existence of connexions and parallel trans-
lation on combinatorial manifolds is established.

0. Introduction. The basic theme of (6) and (7) is that there
is a striking similarity between the geometry of smoth manifolds
and the geometry of simplicial complexes. The purpose of this paper
is to continue this theme for smooth manifolds and combinatorial
manifolds. (Note: Henceforth a combinatorial n-manifold M is the
geometric realization of a simplicial complex for which the closed
star of each point can be mapped by a homeomorphism onto a com-
binatorial n-ball in R™ in such a manner that each simplex of M is
mapped affinely to a simplex in R". Furthermore all combinatorial
manifolds are assumed to have no boundary. See (1) and (9) for
related definitions.)

Section 1 is devoted to a brief review of some of the terminology
and results of (6) and (7). The goal of §2 is the characterization of
continuous vector fields on combinatorial manifolds. The main technical
results of this paper are proved in §3; these results are complied
in the following statement.

THEOREM. Let M be a combinatorial n-manifold, A(M) the ring
of piecewise smooth real-valued functions on M, 27(M) the A(M)-
module of continuwous vector fields on M, and E(M) the A(M)-module
of piecewise smooth 1-forms on M. Then:

(1) there is an A(M)-module tsomorphism between 727(M) and
the module Z(M) of derivations of A(M); consequently 22(M) is a
Lie algebra over R with respect to

X, YIf = X(Y ) —Y(XS)

for X, Ye 22(M) and fe€ AM),

(2) there is an A(M)-module isomorphism between E(M) and
the module Hom (2 (M), A(M)) of A(M)-linear maps from 22(M)
to A(M), A

(8) there is an A(M)-module isomorphism between A°E(M)
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and the module Alt,,(X?22(M), A(M)) of A(M)-linear alternating
maps from X 2 (M) to A(M), and

(4) if d: A*E(M)— A*E(M) is the differential of the de Rham
complex of M and 0¢e AE(M), then dfc AE(M) is given by the
formula

da(Xu T Xq+l) = Zj(_l)jHX:iﬁ(Xu MR Xa‘ °t % Xq+1)
+ 2.<(-1)i+50([Xiv Xj]r Xz'r M) Xv M) Xiy ) Xq+1)

fO’I' Xlr M) Xq+1 € é?;(M)'

In §4 these results are used to show that connexions exist on com-
binatorial manifolds, and that such connexions can be described (or
defined equivalently in terms of differential forms (Cartan connexions),
vector fields (Koszul connexions), or compatible collections of con-
nexions defined on individual simplices. Finally, such connexions are
interpreted geometrically in terms of parallel translation.

The main results of this paper are motivated by analogous smooth
results; these smooth analogs are presented in (2) and (8), for example.
Results similar to some of those presented in §3 appear in (3); these
results, however, are obtained from a much different point of view.
The present work is motivated by related work of Professor Howard
Osborn (see [4] and [5]); I am deeply indebted to him for all he taught
me.

1. Review. In this section, and throughout the sequel, simplicial
complexes will be locally finite and finite dimensional. A simplicial
complex is understood to be a space K together with a fixed triangula-
tion of K by simplices.

Let K be a simplicial complex. A small open neighborhood U
of x,e K is the intersection of the open star of x, with any other
open neighborhood of z,. The intersection U, of a small open neigh-
borhood U of x, with any simplex o, & K which contains z, is a wedge
of U. Each such wedge U, is affinely homeomorphic to an open subset
V, of

s"={x = (&;) e R"|x;, = OVi},

where n = n, = dimo,; a map +,:U,—V, & s* establishing this
homeomorphism is a simplicial chart. A small open subset U< K
is a subset which is a small open neighborhood of some point z, € K.
The set of small open subsets of K forms a basis for the topology
of K.
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A opiccewise smooth real-valued function f defined on a small
open subset U is a continuous function f:U — R whose restriction
to each wedge U, of U is smooth. If U is a small open neighborhood
of x,, a coordinate system on U with origin «, is a collection % =
{u;:U — R} of piecewise smooth real-valued functions defined on U
such that for each wedge U, of U and any simplicial chart «,:U,—V,,

oy Ve— Rluseu and u]., + 0)

is a coordinate system on V, with origin +(2,). For each u,cu we
let St u; denote the support of u,.

The rules for change of coordinates are:

(1) If w is a coordinate system on U with origin x, and WC U
is a small open neighborhood of «,€ U, then there is an induced
coordinate system on W with origin «, given by

w={u; — u(x): W—Rlu,cu and u,l|, # 0}

where u,(x,) is a constant function.

(2) If w and w are coordinate systems on U with origin x, then
there are real constants c¢;; for which u, = 3; ¢, ;w; for each w,cu
where w;€w. In fact if the first p functions of both v and w
coordinatize the p-simplex in whose interior z, is contained, then the
matrix (c;;) is of the form

invertible 0
» X p matrix
(¢:5) = ) A
invertible
* diagonal
matrix

There is a category, called the category of simplicial dbundles,
and a functor defined on the category of simplicial complexes with
values in the category of simplicial bundles, called the tangent
functor, which associates to each simplicial complex K a tangent
bundle z(K): TK — K.

For example, the tangent bundle 7(K): TK — K of the simplicial
complex K obtained by pasting two 1l-simplices together at a vertex
is illustrated in Diagram 1. Observe that in this example fibers are
veetor spaces, but ¢(K) is not a vector bundle since fiber dimensions
may vary from point to point. This bundle is the canonical example
of a simplicial bundle, and the property of varying fiber dimensions
is characteristic of simplicial bundles.



502 MICHAEL A. PENNA

7(K)

K

DiaGgraM 1

Tangent bundles are constructed as follows:

First let U < K be a small open subset and « a coordinate system
on U with origin x,. Let V(u) be the real vector space with basis
{(0/0w),, | u; € u}, and let T(U; u) be the subspace of U X V(u) consisting
of all (x, >); ¢i(0/0u,).,) such that ¢, is nonzero only if there is a wedge
U.CU for which xe€ U, and u,|,, is a coordinate function on U.,.
Projection onto the first factor gives a map «(U; w): T(U; w) —U.

Next let TK = 1L T(U; u)/~, the free union of T(U; u) over all
possible combinations of U and % modulo the equivalence relation ~:
For (x,, v,) € T(U,; ) and (%, v1) € I U; ), (o, Vo) ~ (23, v,) iff 2, = 2,
and, after inducing coordinate systems w, and w, on a small open
neighborhood W of z, = x, v, = >,;¢;(0/ow;) for w; e w, = v, =
> cic;i(0/ow;) for w, € w, where (c;;) is the transition matrix from
w, to w,. There is a map 7(K): TK — K induced by the maps z(U; u),
and this is the tangent bundle of K.

2. Continuous vector fields. A vector field on the simplicial
complex K is a funection (not necessarily a continuous function)
X: K— TK for which 7(K)oX = id; and which satisfies a certain
piecewise smoothness condition (see [7]). We are now interested in
studying continuous vector fields X: K — TK. Under the assumption
of continuity, the piecewise smoothness of a vector field X may be
described as follows.

DEFINITION 2.1. A continuous vector field on the simplicial complex
K is a (continuous) map X: K— TK for which 7(K)oX = id; and
such that for each xz,¢ K, for each small open neighborhood U of x,,
and for each coordinate system % on U with origin z,,
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X U—TU; w) U X V(u)

may be written in the form
X(@) = (2, S/ L@)0/0u.).,)

where each f;:U — R is piecewise smooth.

Observe that each f; in Definition 2.1 is necessarily identically
zero off St wu, because of the definition of T(U; ). Thus if X satisfies
the condition of Definition 2.1 over the small open neighborhood U
of x, with respect to the coordinate system %, then X automatically
satisfies the condition over any small open neighborhood W U of
2, € U with respect to the coordinate system on W with origin =,
induced by w. Furthermore if X satisfies the condition of Definition
2.1 with respect to the coordinate system u, then X automatically
satisfies the condition with respect to any other coordinate system
on U with origin x,. Consequently, if U is any small open subset
of K, then a continuous vector field

X:U—TU = LT(U; wl~ .

Furthermore X may be written with respect to a coordinate system
% on U in the form X = 3, fi(6/0u,), the value of X at xe U being
given by X(z) = 3}, fi(w)(0/ow,),.

The set -2°(U) of continuous vector fields on a small open subset
U of a simplicial complex K clearly forms a module over the ring
A(U) of piecewise smooth real-valued functions on U with respect
to pointwise operations. The set .2°(K) of globally defined continuous
vector fields on K similarly forms a module over the ring A(K) of
piecewise smooth real-valued functions on K.

We now focus on combinatorial manifolds. The reason for this
is that we may use the following result.

PROPOSITION 2.2. Let M be a combinatorial m-manifold. Let
x,€ M, let U be a small open netghborhood of x,, and let u={wu,, +--, uy}
be a coordinate system on U with origin x, for which {u, «--, u,}
coordinatizes U, = 0, N\ U where x, is contained in the interior of the
p-simplex o, & M. Then the support Stu, of u, is U +f and only

ifi=1,--+,p.

(Note: The set {u,, ---, w,} may be empty; this is the case, in
fact, iff x, is a vertex. In the event that z, is a vertex, Proposition
2.2 states, in particular, that St u, #U for every 1i.)

Proof. The “if” part is clear; it is, in fact, true for simplicial
complexes in general.
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For the “only if” part, using the standard metric on B” we write
R*=R*@R"". Let h:U—V < R" be a piecewise linear chart on
M for which the image of each wedge of U is a wedge of V and for
which #(U,) £ R*. Without loss of generality we may assume that
for e =p +1, -+, N, h,(0/0u,),, is in T, R*? and has unit length.
(See Diagram 2.)

)
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In this case » =3, p =1, and N =6.
DIAGRAM 2

If S* 77! is the unit sphere in R"?, then the triangulation of
M determines a triangulation of S"*7' with respect to which S
is a combinatorial manifold: The vertices v, of the triangulation are
the endpoints of the vectors h.(d/0u,),, for 1 =p +1,---, N, and
(vy, +++, ) is a k-simplex of the triangulation iff

{un cey Upy Uy =02y uik)

coordinatizes a (p + k)-wedge of U. To verify that this is a trian-
gulation of S* 7?7 one must verify that the intersection of any two
simplices is a simplex, and that S* ™" is covered by simplices. The
first assertion is obvious. The second assertion follows since for any
y e S* 7?7, the half line

{h(xo) + t(y — M(x)) |t € BT}

must intersect V in some point 3’ (since V is an open neighborhood
of h(x,)); if ¥’ € h(U,) for U, a wedge of U, and U; is coordinatized by

{uu coty Upy Uy * 00y uik}
then ye (v, -+, vy).

Now if i=p + 1, ---, N and St u, =U, then the closed star of
v, is S*7?7', But this is impossible since the closed star of every
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vertex of (the combinatorial manifold)S" *~* has boundary, and S*—*—!
does not.

The main results of this paper are stated for combinatorial
manifolds. There are simplicial complexes other than combinatorial
manifolds for which many of the following results are still valid,
however: One could just as well work with any simplicial complex
for which the conclusion of Proposition 2.2 holds. An example of
such a simplicial complex (which is not a combinatorial manifold) is
pictured in Diagram 3: There are five vertices and six l-simplices.

DiAGgrAM 3

Recall (see Introduction) that all combinatorial manifolds in this
paper are assumed to have no boundary. Observe (see Diagram 4)
that Proposition 2.2 is no longer valid if one considers combinatorial
manifolds with boundary: In this case U is the open star of the
vertex x, in K, there are mo coordinate functions which coordinatize
U, = {x,}, and the support St u, of the coordinate function w, is U
(see the Note following the statement of Proposition 2.2). Even so,
many later results can still be proved for combinatorial manifolds
with boundary (and in fact for simplicial complexes in general) by
using appropriate modifications of techniques presented here.

////////// ///////K//// < /////// m/{///// v

9/duy
%o

(a) (b)
DiAGrRAM 4

The following result characterizes continuous vector fields on
combinatorial manifolds locally.

PROPOSITION 2.3. Let M be a combinatorial manifold. Let U< M
be a small convex open meighborhood of x,, and let w = {u, ---, uy}
be a coordinate system on U with origin x, for which {w, -+, u,}
coordinatizes U, = 6, N\ U where x, is contained in the interior of
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the p-simplex 0, & M. Then X:U — TU s a continuous vector field
wff X 1s of the form

X = 57000 + 3 wg.6/ou)

where f,€ A(Stu,) = A(U) for i =1, ---, v, and g,€ A(St u,) for i =
p+ 1, ---, N, and St u, again denotes the support of u,.

Note. In this proposition, and frequently throughout the sequel,
for ge A(Stw,), i =p + 1, ---, N, we consider u,g as an element of
A(U) by (u,9)x = u(x)g(x) if xSt u,, and (u,g)x = 0 if x ¢ St u,.

Before proving Proposition 2.3, let us first recall (see [6]) that
one can think of elements f of the ring A(U) of piecewise smooth
real-valued functions on U as compatible tuples (f,)e X.A(U,) of
smooth real-valued functions f, e A(U,) defined on the wedges U, C U;
here “compatible” means that if U, and U, are wedges of U then
f,,r],,am,‘g = fpl[/anyﬂ. If functions are expressed in this manner then
for f = (fo) and g = (g9.) in A(U), f + g = (fa + go) and f+g = (fo o).

Also recall that for each u, € u there is a derivation d/ou,: A(U)—
A(St u,) defined by a compatible collection of derivations

{0/0uz: A(Us) — A(UL)}

defined for the wedges U, S U for which u,|,, = i is a coordinate
function on U,; here “compatible” means that if U, and U, are wedges
of U for which 9/oul, and 9/0u’ are defined, then

9fa = Ofs

== - Bl .
falvanvﬁ fﬂloanvﬁ 9, |vanvs b |vanvs

Observe that if 7 =1, ---, p then St u, = U so that d/ou;: A(U) — A(U).

Proof (of Proposition 2.3). If X = >}, f,(0/ou,), then f;:U — R is
identically zero off St u, for each u, € . Thus Proposition 2.2 implies
that for ¢ =p+ 1, ---, N, fi(x) = 0 if u,(x) = 0. Now by working
wedgewise and then checking for compatibility, we find that the
following calculation makes sense: If we consider f; as a function
of one variable, namely u, (i.e., holding u,, ---, 4, ---, uy fixed), we
have

t=uj;
Difi(uu b uN) = Di St:o Difi(uu ) t; ) uN)dt ’
where D, is differentiation with respect to the ith variable, so that

Fithy -+ vy wy) + C = S

t

DSy sty ey uy)dE
=0
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on Stu,. Evaluating at w, = 0 we find that C = 0 so that after a
change of variable (namely t = u,s),

s=1
fi(uu M) uN) = uis OD'tfi(ul’ ey SUy vy uN)ds .
8

Before stating the following corollary of Proposition 2.3, let us
first recall (see [6]) that for i+ =p + 1, .-+, N, any f <€ A(Stu,) can
be extended to an f € A(U); such extensions are not unique.

COROLLARY 2.4. The A(U)-module 2°(U) is finitely generated
by d/ow, for i=1;-+-, p, and u,0/ou;) for 1 =p+ 1, .-+, N. In fact
for f am A(U),

X = 3100w + 3, w.g.0/ou)
and

Y = S ho/ou) + S, uki(d/ou,)
=1 i=p+1

m Z2(U) we have

FX = S AR + 3 ulF 59 00w
and

X+Y = 50 + h@/ou) + i g, + k)W) .

Observe that 2°(U) is not, in general, free over A(U) since for
1=p+1, .-+, N, f’, f”e A(U) may agree on Stwu,, so that

S'(ui0/ous)) = w(f" | s1a, X(O/OU,)
= ut(f"lswi)(a/aut) = f"-(w(0/0u,)) ,

although f’ and f” clearly need not agree on all of U.
Continuous vector fields on combinatorial manifolds “lie along
simplices” in the following sense.

COROLLARY 2.5. Let M be a combinatorial manifold. If Xe
(M), then
(1) for every simplex o, < M there is a smooth wector field

X, 0,— To, defined on o, for which the following diagram commutes



508 MICHAEL A. PENNA

To, (o) ™
X, | | 7o) (M) |X
Oy M

where 1, denotes inclusion and (i,), denotes the Jacobian of %, and
(2) for simplices 0, 0, < M for which o,< 0,5, the following
diagram commutes naturally

T, (s Toy

X

[ 4

z(a,) z(og)| | X5

5
where 1z, denotes inclusion and (i,)* denotes the Jacobian of ig,.

Conversely, given any collection {X,: 0,— To,} of vector fields
defined on the simplices 0, & M which satisfies Condition 2 above,
there is a unique continuous vector field X: M — TM on M which
induces X,: 0, — To, on each simplex o, £ M and for which Condition
1 holds.

In particular, a continuous vector field on a combinatorial manifold
M has a zero at every vertex of M.

To state the next corollary, let us first recall (see [7]) that a
piecewise smooth flow F on a simplicial complex K -is a piecewise
smooth right action F: K X R — K of the additive group of reals on
K. Also recall that there is a distinguished type of vector field on
a simplicial complex, namely the integrable vector fields, and there
is a correspondence between integrable vector fields on K and piecewise
smooth flows on K.

COROLLARY 2.6. Let M be a combinatorial manifold. Then every
continuous vector field on M is integrable. Furthermore there is a
bijection between continuous vector fields on M and piecewise smooth
Slows F: M X R — M for which F: 6, X R— 0, for each stmplex 6, < M.

Proof. This is an immediate consequence of Corollary 2.5 and
the following lemma.
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LeMMA 2.7. Let U and W be open meighborhoods of
Oes?={r=(@)eR" |2, =20 for i=p+1,---, N}

for which the closure of W is contained in U. Then for every smooth
vector field

X = 3 70/0z) + 3, 29,000

on U there is a unique smooth flow F = (F,):W x I—-U for which

oF, | _ (fi for i=1,.--,p
ot lt=0  |gg, for i=p+1, -+, N

and F: (s, N W) x I— s, NU for each face s, of s™*.
This completes the proof of Corollary 2.6.

3. The main results, We will now prove the main results of
this paper. ’

THEOREM 3.1. Let M be a combinatorial manifold. There is an
A(M)-module isomorphism between the module 27(M) of continuous
vector fields on M and the module 2 (M) of derivations of A(M).

Proof. It suffices to prove this result locally, so let U be a small
convex open neighborhood of x,€ M, and let u = {u,, ---, uy} be a
coordinate system on U for which {u,, - - -, u,} coordinatizes U,=o,NU
where x, is contained in the interior of the p-simplex ¢, & M. We
define

F: 27(U)— 2(U)
by associating to the vector field (see Proposition 2.3)

P ' N

X = Z_a‘lfz(a/aui) +i=%luigi(a/aui)
the derivation
P N
F(X): f— éfx(af/aut) -+ i;})_;_luigi(af/aui) .

This makes sense: Since f, and df/ou, are in A(U) fori =1, ---, p,
fiof/ou,) e A(U). Since g, and of/ou, are in A(Stw,) for ¢ =p + 1,
-+, N, g,0f/ou,) € A(St u,); thus u,g,(0f/ou,) € A(U).

Clearly F:. 2°(U)— =2 (U) is an A(U)-module homomorphism.
Moreover it is injective: If X e . 2°(U) is a continuous vector field
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as above and F(X) =0, then (F(X)u; =0 for every ¢. If ¢+ =1,
«++, p, this means that f;=0 on U, and if t=9+ 1, ---, N, this
means that u#,9, = 0 on U. Thus X = 0.

Finally we show that F: 2°(U) — < (U) is surjective as follows:
Given a derivation D: A(U) — A(U), let f, = Du, for ¢+ =1, ---, N.
Then since D is a derivation it is easy to see that for <= p + 1,
e+, N, f®) = 0 for ¢ Stu,. Consequently f; = u,g;, for ¢ =p + 1,
-+-, N, where g, A(St u,) (see the proof of Proposition 2.3). The
surjectivity of F' will follow from showing that

D = 5. 1.0/0u) + 3, wg0/ou)
so that D = F(X) where

X = 3 700/u) + 3 ugoon,) -
To show this we need the following lemma.

LEMMA 38.2. Let W be a small open meighborhood of x, which is
star shaped with respect to x,, and let w be a coordinate system on
W with origin x,. Then for every fe A(W) and w,€ w there is a
piecewise smooth function ¢, € A(St w;) such that o,(x,)=(0.f/ow,)x, and
f=f(x)+ 3 we, on W (where f(x,) is a constant function on W).

This lemma is proved by first verifying a similar result on
each wedge of W (see (2) for the classical smooth analog), and then
verifying that these similar results are compatible with respect to
restriction.

Now to finish the proof of surjectivity (again compare with (2)),
let 2,e U, let W U be a small star shaped open neighborhood of
x,, and let

w = {u; — w(x):W— Rlu,eu and u;|, # 0}

be the coordinate system on W with origin «, induced by u. Observe
that for 2 =1, -+, p, w, = u;, — u,(xx,) is in w.

We let I denote the index set of w for convenience.

Given any fe A(U) we apply Lemma 3.2 to f|, and observe
that for each 7¢I, (0f/ow,)x, = (3f/du,)x, to obtain

(Df ), = (D(f | ),
- (D(ste) + Fu))e
= 2 D(w.poz,
= 3, (Dw)@; + w(Dp)),
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where @, = @, if Stw, =W, and where @, € A(W) is an extension of
@; € A(St w,) otherwise. Thus,

(Df)yw, = ZI (D(u; — u(2,)))p ),
= E; (Dw)@f [ow;)),

= (Sf6fuy + 3 fofou))e,
= (Sr0f/ou) +, 31 weoffou))a,

I={1,--,
» N
= (S 140f ou) + 35 wgof fou) .
the last equality following since wu,(x,) = 0 if 7 ¢ I.

COROLLARY 3.3. The A(M)-module Z (M) of continuous wvector
fields on a combinatorial manifold M is a Lie algebra over R with
respect to the bracket operation

[X, Y1f = X(Yf) - Y(Xf)
Jor X, Ye 2Z2(M) and f e A(M).

In fact it is easy to show that if F, G: M x R— M are integral
flows for X, Ye 2°(M), then [Y, X] is the derivative at 0e R* of
the map from M x R* to M given by

(x, t) — G(F(G(F(x, V't ), V't), —V't), —V't).

This is completely analogous to the smooth case (see [8]).

The next corollary is an application of Theorem 3.1 to PL mani-
folds. By a closed PL n-manifold M we mean a closed topological
n-manifold M together with an equivalence class of triangulations
T:M— M of M by closed combinatorial n-manifolds M, two tri-
angulations being equivalent iff they have a common subdivision;
the equivalence class is the “PL structure” of M.

If M is a closed PL nm-manifold, we let A(M) denote the ring of
continuous functions f: M — R such that for some triangulation
T: M — M in the PL structure of M, foT e A(M).

COROLLARY 3.4. Let M be a closed PL manifold, and let
D: A(M)— A)M) be a derivation which satisfies the following property:
for every triangulation T: M — M of M by a combinatorial manifold
M in the PL structure of M there ts a derivation D: A(M)— A(M)
for which the following diagram commutes
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A0 2 A

| |2
A(M) T AM
where (T™)*f = foT: M— R for feAM). Then D =0.

Proof. Let feA(M) and 2, M. We will show that (Df)x,=0:
Let T: M — M be a triangulation in the PL structure of M for which
foTe A(M) and for which T %(«x,) is a vertex of M. Then the as-
sociated derivation D of A(M) corresponds to a continuous vector
field on M which is necessarily zero at x,., Thus

(DS ), = D(T)*(fo Ty = (T7)*D(f o Ty = (D(f e TINT (o)) = 0 .

Now let K be a simplicial complex and let U be a small open
subset of K. Recall (see [6]) that the A(U)-module E(U) of piece-
wise smooth 1-forms on U consists of all compatible tuples (6,)€
X E(U,) of smooth 1-forms 6#,€ E(U,) defined on the wedges U, U;
here “compatible” means that if U, and U, are wedges of U then
0| Tanug = 0,9|Uanvﬂ. If 1-forms are expressed in this manner then for
f=(a in AU), 0= (6.) and @ = (9.) in E(U), -0 = (f.-0.) and
0+ ¢ = (0, + p.); i.e., operations are wedgewise.

Alternately, if u is a coordinate system on U then 6 € E(U) may
be expressed 6 = >, f,du, where each f, € A(Stw,), St u, denoting the
support of w,. If forms are expressed in this manner then for f
in A(U), 0 = 3, fidu, and P = 3 g:du; in EU), f-0 =3 (fIStui)fidui
and 6 + @ = 35 (fi + g)du,.

THEOREM 3.5. Let M be a combinatorial manifold. There is an
A(M)-module tsomorphism between the module E(M)of global piecewise
smooth 1-forms on M and the module Hom ,,,(2°(M), A(M)) of A(M)-
linear maps from 27(M) to A(M).

Proof. It again suffices to prove this result locally, so, with the
notation of Theorem 3.1, we define

F: E(U) — Hom,(Z(U), A(U))

by associating to the l-form 6 = > ,f,du; the homomorphism

b4 N ? N
F(6): E{ 9:(0/0w) +i=§;.l+1uihi(aaui) '_"’iglu 19 +i=§1 wifihy

This makes sense: Since f, and g, are in A(U) for 1 =1, ---, p,
clearly f.9;,€ A(U). Since f, and h, arein A(Stw,) fori =p + 1, ---,
N, we have f;h, € A(St u,;); thus w,f;h, € A(U).
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Clearly F: E(U)— Hom,(27(U), A(U)) is an A(U)-module homo-
morphism. Moreover it is injective: If 0 = 3, fidu, is in E(U) and
F(6) =0, then for ¢ =1, -+, », f; = (F(0))du, = 0 on U, and for 7 =
p+1,---, N, uf, = (F(0))u(o/ou,) = 0 on U; thus 6 = 0.

Finally we show that F": E(U) — Hom,,(2°(U), A(U))is surjective
as follows: Given f e Hom,,/(Z7(U), AU)), let f, = f(d/ow,) for © =
1, ---,p and f;, = f(u;(0/0u,)) for 1 =p + 1, ---, N. Since f is A(U)-
linear, it is easy to see that f, = f(u,(0/0u;)) = 0 off Stu, for 7 =
p+1,---, N. Thus, as before (see the proof of Proposition 2.3),
f. = u,9;,, for 1 =p + 1, ---, N, where g, € A(St u,;). Consequently if

0 =3 fdu, + 3 gadu,,

T=p+1

then clearly F(6) = f.

In order to generalize the previous result, recall (see [6]) that
if K is a simplicial complex and U is a small open subset of K then
the A(U)-module A'E(U) of piecewise smooth ¢-forms on U consists
of all compatible tuples (4,) € X, A°E(U,) of smooth ¢-forms 4, € A°E(U,)
defined on the wedges U, S U; here “compatibility” is defined as
before (i.e., as for E(U)), and the module operations are again
wedgewise.

Alternately, if u is a coordinate system on U then 6 ¢ A'E(U)
may be expressed 0 = >}, fidu,; - du;, where the summation is taken
over all ¢ = (4, -+, 1,) for which there is a wedge U, S U such that
Wiy lvg =+ Uy |y, are all coordinate functions on U, and where f; €
A(Ni-; St u,;); for convenience we will use multi-index notation to
write 0 = >, f.du, where f,€ A(Stu,). If g-forms are expressed in
this manner, then for f in A(U), 0 = 3, fidu;, and ¢ = >, g.du,; in
AEU), -6 =3 (flswz)fzduz ond 6 + P =4 (fi + go)du,.

Observe that since the index of summation for ¢ = 3, fidu, in
A'E(U) is restricted, A'E(U) is wmot the ¢-fold exterior product of
E(U): Actually A°E(U) is the g-fold exterior product E(U) with the
added relation that du,, --- du,, = 0 if there is no wedge U, U for
which w,; [y, *+-, uquua are all coordinate functions on U,. We will
continue to use the notation AE(U) for the module of piecewise
smooth ¢-forms on U since the ¢-fold exterior product of E(U) will
not be used in the sequel.

THEOREM 3.6. Let M be a combinatorial manifold. There s
an A(M)-module isomorphism between the module A'E(M) of global
piecewise smooth g-formson M and the module Alt, (X 27(M), A(M))
of A(M)-linear alternating maps from the g-fold product X .2°(M)
of Z(M) to A(M).
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Proof. Once again it suffices to prove the result locally, so again
with the notation of Theorem 3.1 we define

F: PE(U) — Alt jon(X* Z7°(U), A(U))

by defining it on forms f,du; and extending to A'E(U) by A(U)-
linearity; the map F(fdu, --- du,) takes (g;(0/0u;), ---, 9;,(0/0u;,))
to (=1)fig;, - -+ 95, if there is a permutation 7« taking ¢ = (¢,, +- -, ¢,)
to (4, *++, J,), and 0 otherwise. (Note that for j=»+1, ---, N,
we write w;h;(0/0u;) = g;(0/ou;).) As before it is easy to verify that
F is well defined and an isomorphism.

Finally recall (see [6]) that if K is a simplicial complex, U is
a small open subset of K, and % is a coordinate system on U, then
the differential d of the de Rham complex (A*E(U), d) of U is defined
wedgewise but may alternately be described by
df = d(3. fidw,, « -+ du,) = 3 (0f /0w )du, du,, - - - du,, ,

i0s%

the summation taken over all 4, ¢ for which (3f;/0u, )du, du,, - - - du,,
is a (¢ + 1)-form on U.

THEOREM 3.7. Let M be a combinatorial manifold. If d: A*E(M)—
A*E(M) s the differential of the de Rham complex of M and 6 € A'E(M),
then df c A™E(M) is given by the formula

A

dﬁ(Xv Sty Xq+1) = 924 <_1)j+1Xj0(X1’ ) Xj ) Xq+1)
+ 2 ("‘1)“—‘70([‘){” Xj]; Xu °t Xi; ) Xa‘y M) Xq+1)

i<j

for X, +++, X,y € 27(M).

Proof. Working locally with the notation of Theorem 3.1 and
using the fact that d, ¢, and X,,---, X,., are all additive, one need only
prove the result in the case 6 = fdu,,---,du,, and X, = g, (3/0u;),- -,
X, = 9;,0/0u;,) (where for j =p+1, ---, N we again write u;h;(3/0u;) =
g/0/0u;)). The result in this case is a straightforward calculation.

4 Connexions on combinatorial manifolds. Connexions exist
(in tangent bundles) on smooth manifolds, and can be described in
various equivalent ways; also such connexions can be interpreted
geometrically in terms of parallel translation. The goal of this section
is to establish analogous results for combinatorial manifolds. In
particular we will establish the existence of connexions on combinatorial
manifolds, and show that such connexions can be described (or defined)
equivalently in terms of differential forms (Cartan connexions), vector
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fields (Koszul connexions) or compatible collections of. connexions
defined on individual simplices. Finally, such connexions are in-
terpreted geometrically in terms of parallel translation.

Throughout this seection, M will be a combinatorial n-manifold
(without boundary).

DEFINITION 4.1. For every small open subset U S M, let E(U) X
E(U) denote the set of all tuples

0 = () = (S0 ®gt) e X (BU) @ BU.)

the product taken over all wedges U, S U, for which a),,,ll,am,ﬁ =
a)plganyﬂ for wedges U, Uﬁ c U, where

wall/aﬂU = Zﬁilz/anv R Pelvnr, € BU.NUg) @ EU.NUy).
8 7 B 8 AT GNT )

Clearly E(U) ® E(U) is an A(U)-module with respect to wedgewise
operations. The construction of F(U)® E(U) is natural with respect
to restriction to small open subsets W C U, and hence defines a
presheaf on M. The associated sheaf is fine since piecewise smooth
partitions of unity subordinate to covers of M by small open subsets
exist on M (see [6]).

DEFINITION 4.2. The A(M)-module E(M)Q E(M) is the module
of global sections of the sheaf over M associated to the presheaf
which assigns to each small open subset U S M the A(U)-module
E(U)® EU).

As in the case of piecewise smooth forms, if u is a coordinate
system on the small open subset U & M, then each we E(U)® E(U)
may be written in the form w = >, ; f;;du; ® du; where the summa-
tion is taken over all 2 and j for which there is a wedge U, SU
such that %, ,,, and u; ., are coordinate functions on U,, and where
fii€ A(St w, N St u;), St u, N St u; the intersection of the supports of
u; and w;. Furthermore for f in A(U), v = > ;fi;du; @ du; and
® = 33,;9:;du; ® du; in E(U)Q E(U), »

Sop = 121 (fISLuiﬂStuj)fijdui ® du;
and
v+ @ = E (f” + g:5)du; & du;

where the summations are restricted as above.
Since the index of summation for elements w = 3, ; fi;du, Q du;
of E(U)® E(U) is restricted, E(U)Q E(U) is not the tensor product
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of E(U) with itself; actually E(U) & E(U) is the tensor product of
E(U) with itself with the added relation that duw, Q du; = 0 if there
is no wedge U, S U for which u,,,, and u;,, are both coordinate
functions on U,. We will continue to use the notation E(U) & E(U)
since the tensor product of E(U) with itself will not be used in the

sequel.
We now describe connexions on M by differential forms.

DEFINITION 4.3. A Cartan connexion on M is a real linear map
D:EM)— E(M) R E(M)

for which D(f0) = df Q0 + fD@ for fe A(M) and 6 € E(M).
As in the smooth case, a Cartan connexion D on M uniquely
determines a Cartan connexion

D,: E(U)— E(U)R E(U)

for every small open subset U & M.
Henceforth “Z”” denotes “set complement”, and St u, again denotes
the support of the coordinate funection wu,.

THEOREM 4.4. Let U S M be a small open subset, and let u be
a coordinate system on U. Then

D: E(U)— E(U)® E(U)
18 a Cartan connexion on U +ff there are piecewise smooth functions

vie im A(St w; N St ), for each <, 3, and k, for which
D(du,) = Zk, Yidu, Q du;

and for which Vi, =0 on &(Stu,) N Stw; N St w,.

J

Proof. Given D, the existence of the 7i, is obvious. The fact
that vé, = 0 on & (St w,) N St w; N St u, follows since D is an A(U)-

derivation.
Conversely, given vi, in A(Stu; N Stwu,) for which ¥i{, =0 on
< (St w;) N St w; N St u,, define D by

D(; fidu,.) - D(z‘, ﬁod%)

T

= 3 (df: ® du; + F.D(dw)
= 3 (0F @ du, + F( 3 7o dus @ du;))

where f, = f, if Stu, =U, and f, € A(U) is an extension of f, € A(St u,)
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otherwise. Toshow that this makes sense, first observe that if 6 ¢ E(U)
and 6 =0 on St u,, then § Qdu, c E(U)RQ E(U)is 0. (If 6 = >.;9;du;,
then 6 = 0 on Stwu, implies that either u; su,nsw; # 0, in which case
g; =0 on St u, NSt uy, O U; s, 5u; = 0. In the first case
Giist;nsnAU; Q du; = 0,
and in the latter du; ® du, = 0.) Thus given extensions fi and f}'
of f, df: — dfy =0 on Stu, so that
afi Q du; — df; Q@ du, = (df; — df)) @ du, =0 .

Second observe that since f; is well defined on u;, and 7% =0 on
Z (St u;)) N St u; U St u,, clearly (ﬂ,swinszuk)ﬁ’;k is well geﬁned on
St w; N St w,. Since this is the support of du, ® du;, f;D(dw,) is
independent of the extension f; of fi.

COROLLARY 4.5. Cartan connexions exist on M.

Proof. Let {@};.; be a piecewise smooth partition of unity sub-
ordinate to a locally finite cover {U.};c; of M by small open subsets
For each 7 €I, define the Cartan connexion

on U, by letting D,(dw;) = 0 for each j. It is easy to verify that
the map

D: EM)— E(M)® E(M)
given by D8 = 3, @ D(0|,) is a Cartan connexion on M.

We now describe connexions on M by continuous vector fields.

DEFINITION 4.6. A Koszul connexion on M is a real-bilinear map

V: 2(M) x Z(M)— 2 (M)
X, Y)—r,Y
such that VY = fF,Y and Vo fY = X(f)Y + fV,Y for f e A(M) and
X, Yez2(M).
Again, as in the smooth case, a Koszul connexion // on M deter-
mines a Koszul connexion

Ve: Z2(U) X 2(U) — 27(U)
for every small open subset U & M.

THEOREM 4.7. Let U S M be small open meighborhood of x,, let
U = {"y, ++, Uy} be a coordinate system on U with origin x, for which
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{tyy =+, u,} coordinatizes U, = 6, N U where x, is contained in the
interior of the p-simplex o, & M, and let

- a/aui fO’r‘ ’l;: 1’ oo, p
T ui<a/aui) fO’I" ’i:p—!—l,...,N_

Then
V. 27(U) x 2(U)— 2°(U)

18 a Koszul connexion on U iff there are piecewise smooth functions
0%, in A(St w.), for each 1, j, and k, for which

VXij = Z. 5§-k X;
and for which 6% = 0 on St u, N Z(St u; N St u,).

Proof. Given F, the existence of the ¢%, is obvious. The fact
that 6%, =0 on Stu, N (St u; N St w,) follows since VY is A(U)-
linear in X and an A(U)-derivation in Y.

Conversely, given 0% in A(Stw,) for which 6%, =0 on Stu;N
& (St u; N St u,), we first let

VfXij = VJ_’Xij = f_‘ijXk = f—<§g 0% Xz)

where f = f if Stu; =U, and fe A(U) is an extension of f ¢ A(St ;)

otherwise. This makes sense since f is well defined on St u; and

‘e = 0 on St w, N (St u; N St %) so that F0i, € A(St u,) is well defined.
Next define

ijka——"VX,-JiXk B
= X)X, + fVX,-Xk

= X(DX, + (S 0uX,)

where f = f if Stw, =U, and fe A(U) is an extension of f € A(St u,)
otherwise. To see that this makes sense, first notice that since X;
is a derivation, f = 0 on St w, implies that X,(f) =0 on Stu,, so
that X,(f)X; = 0 on U; thus given extensions f, and f of f;,

XX, — X,(FNX: = X(fi — FHX. =0

since f;, — f/ =0 on Stu,. Second observe that f(30:,X,) is well
defined; this is precisely the same argument as above for fB;’-,,.

Finally define /7 on all of 27(U) x 2°(U) by extending by real-
linearity.
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THEOREM 4.8. There 1s a bijection between the set of Cartan
connexions on M and the set of Koszul connexions on M.

Proof. It is not difficult to show that for every X € 27(M) there
is a real-linear map

evaly: E(M)Q E(M)— E(M)

which is given locally, on a small open subset U € M, by
evaly(30. ® @) = 3 (X, 900,

where “{—, —)” denotes “evaluation” (see Theorem 3.5). One now
defines the bijection between Cartan connexions D on M and Koszul
connexions 7 on M by imposing the contraction formula

FzY, 0) = XY, 0) + <Y, eval,Db)
where X, Y e 2°(M) and 6 ¢ E(M).

To describe the correspondence of Theorem 4.8 locally, let U be
a small open neighborhood of x,€ M, let w = {u,, ---, uy} be a coord-
inate system on U with origin #, such that {u, ---, u,} coordinatizes
U,=0,NU where z, is contained in the interior of the p-simplex
o, M, and let

_ [0/ous for ¢=1,---,p
= u(0/ow;) for 4+ =p+1,---,N.

If the Cartan connexion D on U given by D(du,;) = 3; . Yidu, ® du;
and the Koszul connexion // on U given by Vg, X, = >, 04X, corre-
spond to each other via Theorem 4.8, then the relations between v,
and ¢!, are given by:

if ¢= if j= if k= relation
1, -4, p 1, -0, p 1,0, D 8% = T
1,4, p 1, -4, p+1, 00, N 8= w7
1,"',20 p+1, -, N 1, .-, p 3§k:uj’Y§'k
1, -4, p p+1 -, N p+1 -, N 8 = ujuvsy
p+]_,...,N 1’...’p 1,"',19 uiﬁjszyj.k
p+1,---,N 1, -4, p P41, 00, N wdly = urh,
p+1,--,N p+1,+«,N 1, ---,p Wby = U7

W0% = Uy Ye, if 154 7

p+14+, N p+1,--, N p+1,---, N ori=k

Lo=14unt, ifi=j=k.
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The following result is an immediate consequence of Theorem 4.8
and Corollary 4.5.

COROLLARY 4.9. Koszul connexions exist on M.

It is easy to show that if p is a Koszul connexion on M then
for every z,e M and X, Y e 2°(M), the value of Y at x, depends
only on X, and the values of ¥ on some curve that fits X, .

THEOREM 4.10. A Koszul connexion V on M is equivalent to a
collection
Voo Z(0,) X Z(0,) — Z(0.,)

of Koszul connexions |, defined on the simplices 0, = M which are
compatible in the following sense: If o, 0, & M are simplices for
which 0, S 04 %, 15 in the interior of 0., X € T, 0., and Y is a smooth

vector field on some smooth curve im o, which fits X, then
(Da)xY = (Dp)ugpox(tpa)s ¥

(T5a)« denoting the Jacobian of the imclusion iz 0, — 05.

Proof. Given a Koszul connexion / on M, let U be a small open
neighborhood of x,€ M and let # = {u;} be a coordinate system on U
with origin «,. For each wedge U, S U, let u, = {u’} denote the
coordinate system on U, induced by u. If

D: E(M)— E(M) ® E(M)
is the Cartan connexion on M associated to / and
D: E(U)— E(U)® E(U)
is the induced Cartan connexion on U, given in coordinate form by
D(du,) = Jzk‘, Yadw, @ du; ,
then for every wedge U, CU there is a unique Koszul connexion
Var 27(Us) X 2°(Us) —> 27(Us)
given by
Padajani 0/0ue = 35 (Vi )0/0wc) -
This construction is natural, and hence a Koszul connexion

Va: g(ga) X 2&(0-0‘) - 2;(0-&)



ON THE GEOMETRY OF COMBINATORIAL MANIFOLDS 521

is defined on each simplex o, < M. The compatibility of these con-
nexions is immediate.

Conversely, given a compatible collection of connexions as deseribed
in the hypothesis, let X, Y€ 2°(M). To define DY at x,€ M, let
0., < M be the simplex in whose interior x, is contained. By Corollary
2.5 there are smooth vector fields X,, Y, € -2°(a,) for which (7,),. X, =
X and (¢,)x Y, =Y on g,. There is clearly a smooth curve in g, which

fits X,,, and since Y, is defined along this curve we may let
(VXY)zo = (ia)*(Da)(Xa),,OYa .

This clearly defines a Koszul connexion on M and the proof is complete.

We will next use Theorem 4.10 to interpret connexions geome-
trically. First, however, recall (see [7]) that a piecewise smooth
curve f:[a,b]— M in M is a map for which there is a finite sub-
division
(*) a=¢<e< e <cy=»b

of [a, b] such that for each? =0, -+, N — 1 there is a simplex 0, & M
for which f:[e,, ¢:.1] — 0. is @ smooth curve in g,.

DEFINITION 4.11. A continuous wector field along a piecewise
smooth curve f:[a,b]— M is a map Y:[a, b] > T'M which is smooth
on each subinterval of the subdivision (*) of [a, b] and for which
(MY = f.

Now let /7 be a Koszul connexion on M. Let 0,0, < M be n-
simplices whose intersection o, is a p-simplex of M, and let 7, and
Vs be the (compatible) connexions on ¢, and o; induced by /. Finally
let f:[a, b] — M be a piecewise smooth curve for which there is a
c€(a, b) such that

fa = fl[a,c]: [a! c]——_)o-a ’
fo = Flewtle, b]—> 05,

are smooth curves in o, and o, respectively.

THEOREM 4.12. For each t €[a, b] there is a p-dimensional subspace
V.S TyyM such that for every Y,e V, there is a continuous vector
field Y =Y, on f for which Y, eV, for each tela,b], Y, =Y, Y, =
Y|, ts parallel along f, with respect to [,, and Y, =Y\, s

parallel along fs; with respect to j.

Proof. With respect to 7,, for every Y, e Ty.,0, there is a unique
smooth vector field Y, = (Y,), on o, such that (Y,), =Y, and Y, is
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parallel along f,, and a linear isomorphism
Py Troy— Ty

called parallel translation along f, from f(a) to f(¢); similarly for
gs. With the notation of Corollary 2.5, for ¢ €[a, c] we let

Vi = ()P Car)s Tr00r & Trn M
and for ¢t e[c, b] we let
Vi = (09)«(PE)(t6r)5 Tr00r S TrnM 5

observe that V, is well defined for ¢t =¢. For Y,eV,, we define
Y=Y, on f by

. (ia)*(Pg,t)('ia);lyo for te [a,, C]
C (P 1)R ) (PR Y,  for tele, b].

Observe that P,, is independent of ¢ since 7, and V; are compatible.

Thus there is a map P, ,:V,—V, defined by P, (Y, =Y, which
is a linear isomorphism and which can reasonably be called parallel
translation along f from f(a) to f(t).

Theorem 4.12 is still valid under the hypothesis that o, 0, & M
are simplices of arbitrary dimension whose intersection is a p-simplex
o, of M.
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