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ON THE GEOMETRY OF COMBINATORIAL
MANIFOLDS

MICHAEL A. PENNA

On a smooth manifold there are classical relations be-
tween vector fields and derivations of the smooth function
algebra, and between differential forms and alternating linear
maps of vector field tuples. In this paper similar relations are
obtained for combinatorial manifolds. As an application of
these results the existence of connexions and parallel trans-
lation on combinatorial manifolds is established.

()• Introduction* The basic theme of (6) and (7) is that there
is a striking similarity between the geometry of smoth manifolds
and the geometry of simplicial complexes. The purpose of this paper
is to continue this theme for smooth manifolds and combinatorial
manifolds. (Note: Henceforth a combinatorial n-manifold M is the
geometric realization of a simplicial complex for which the closed
star of each point can be mapped by a homeomorphism onto a com-
binatorial %-ball in Rn in such a manner that each simplex of M is
mapped affinely to a simplex in Rn. Furthermore all combinatorial
manifolds are assumed to have no boundary. See (1) and (9) for
related definitions.)

Section 1 is devoted to a brief review of some of the terminology
and results of (6) and (7). The goal of §2 is the characterization of
continuous vector fields on combinatorial manifolds. The main technical
results of this paper are proved in §3; these results are complied
in the following statement.

THEOREM. Let M be a combinatorial n-manifold, A(M) the ring
of piecewise smooth real-valued functions on M, <%f(M) the A{M)~
module of continuous vector fields on M, and E(M) the A(M)-module
of piecewise smooth 1-forms on M. Then:

(1) there is an A{M)-module isomorphism between <^{M) and
the module &(M) of derivations of A(M); consequently J3f{M) is a
Lie algebra over R with respect to

[X, Y]f = X(Yf)-Y(Xf)

for X, Ye^f{M) and feA(M),
(2) there is an A(M)-module isomorphism between E(M) and

the module HomA{M)(<^f(M), A{M)) of A{M)-linear maps from <£f{M)
to A(M),

(3) there is an A(M)-module isomorphism between ΛqE(M)
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and the module AltAiM)(Xq <&^(M), A(M)) of A(M)-linear alternating
maps from Xq <S?(M) to A(M), and

(4) if d: Λ*E{M) -* Λ*E(M) is the differential of the de Rham
complex of M and θeΛqE(M), then dθeΛq+1E(M) is given by the
formula

dθ(xlf , x q + ί ) = Σ {-ιy+ιxΛx» •••,-£„•••, x, + ι )

+ Σ (~ιy+jθ([Xi, XJ], Xt, , %, , Xj, , χq+1)

for Xlf -.;Xq+ίe

In §4 these results are used to show that connexions exist on com-
binatorial manifolds, and that such connexions can be described (or
defined equivalently in terms of differential forms (Cartan connexions),
vector fields (Koszul connexions), or compatible collections of con-
nexions defined on individual simplices. Finally, such connexions are
interpreted geometrically in terms of parallel translation.

The main results of this paper are motivated by analogous smooth
results; these smooth analogs are presented in (2) and (8), for example.
Results similar to some of those presented in §3 appear in (3); these
results, however, are obtained from a much different point of view.
The present work is motivated by related work of Professor Howard
Osborn (see [4] and [5]); I am deeply indebted to him for all he taught
me.

1* Review. In this section, and throughout the sequel, simplicial
complexes will be locally finite and finite dimensional. A simplicial
complex is understood to be a space K together with a fixed triangula-
tion of K by simplices.

Let K be a simplicial complex. A small open neighborhood U
of x0 e K is the intersection of the open star of x0 with any other
open neighborhood of x0. The intersection Ua of a small open neigh-
borhood U of xQ with any simplex σaζkK which contains x0 is a wedge
of U. Each such wedge Ua is affinely homeomorphic to an open subset
Va of

sn = {x = (χi)eRn\xi ^ OVi} ,

where n = na = dim σa; a map ψa: Ua-*Va £ sn establishing this
homeomorphism is a simplicial chart. A small open subset U £ K
is a subset which is a small open neighborhood of some point x0 e K.
The set of small open subsets of K forms a basis for the topology
of K.
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A piβcewise smooth real-valued function / defined on a small
open subset U is a continuous function f:U~^R whose restriction
to each wedge Ua of U is smooth. If U is a small open neighborhood
of x0, a coordinate system on U with origin #0 is a collection u =
[Ui'.U-^R] of piecewise smooth real-valued functions defined on U
such that for each wedge Ua of U and any simplicial chart ψa: Ua —> Vβ,

{^ o^r"1: Fα >i2|wίew and ui\UaΦϋ]

is a coordinate system on Va with origin ψa(x0). For each uteu we
let St t6c denote the support of ut.

The rules for change of coordinates are:
(1) If u is a coordinate system on U with origin #0 and WQ U

is a small open neighborhood of x1 e U, then there is an induced
coordinate system on W with origin x1 given by

w — {ui :W R\uteu and 0}

where ^(c^) is a constant function.
( 2 ) If u and w are coordinate systems on U with origin xQ then

there are real constants ei3 for which ^ = Σ/ c ϋ ^ i for e^ch ^ 6 %
where w3 ew. In fact if the first p functions of both u and w
coordinatize the p-simplex in whose interior x0 is contained, then the
matrix (ctί) is of the form

/invertible

p x p matrix
0

invertible

diagonal

matrix

There is a category, called the category of simplicial bundles,
and a functor defined on the category of simplicial complexes with
values in the category of simplicial bundles, called the tangent
functor, which associates to each simplicial complex K a tangent
bundle τ(K):TK-+K.

For example, the tangent bundle τ(K): TK-+K of the simplicial
complex K obtained by pasting two 1-simplices together at a vertex
is illustrated in Diagram 1. Observe that in this example fibers are
vector spaces, but τ(K) is not a vector bundle since fiber dimensions
may vary from point to point. This bundle is the canonical example
of a simplicial bundle, and the property of varying fiber dimensions
is characteristic of simplicial bundles.
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TK

τ(K)

K

DIAGRAM 1

Tangent bundles are constructed as follows:
First let U £ K be a small open subset and u a coordinate system

on U with origin x0. Let V{u) be the real vector space with basis
{(d/du^xjui eu}, and let T(U; u) be the subspace of U x V(u) consisting
of all (x, X,f Ci(d/dUi)Xo) such that ct is nonzero only if there is a wedge
UaQU for which xeUa and ut\Ua is a coordinate function on Ua.
Projection onto the first factor gives a map τ(U; u): T(U; u)->U.

Next let TK = JJL 2W; w)/~, the free union of Γ(C7; u) over all
possible combinations of U and % modulo the equivalence relation ~ :
For (x0, vQ) 6 JΓ(C70; U0) and (&„ v j 6 T(ϋΊ; uj, (x0, v0) - (xlf vλ) iff a?0 = xt

and, after inducing coordinate systems w0 and tϋj_ on a small open
neighborhood TF of x0 = xu v1 = ΣjCjid/dWj) for wy 6 wt => τ;0 =
Σ ϋ CjCijid/dWi) for w< 6 ^ 0 where (ctS) is the transition matrix from
w0 to wx. There is a map τ(ϋΓ): TK—> K induced by the maps τ{U\ u),
and this is the tangent bundle of K.

2. Continuous vector fields* A vector field on the simplicial
complex K is a function (not necessarily a continuous function)
X: K —> TK for which τ(K)ol= id^ and which satisfies a certain
piece wise smoothness condition (see [7]). We are now interested in
studying continuous vector fields X: K —> TK. Under the assumption
of continuity, the piecewise smoothness of a vector field X may be
described as follows.

DEFINITION 2.1. A continuous vector field on the simplicial complex
K is a (continuous) map X: K —> TK for which τ(K)°I= id# and
such that for each x0 e K, for each small open neighborhood U of x09

and for each coordinate system u on U with origin xOf
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X: U > T(U; u) QU x V(u)

may be written in the form

where each f^U-^R is piecewise smooth.
Observe that each f€ in Definition 2.1 is necessarily identically

zero off St w< because of the definition of T(U; u). Thus if X satisfies
the condition of Definition 2.1 over the small open neighborhood U
of x0 with respect to the coordinate system u, then X automatically
satisfies the condition over any small open neighborhood W Q U of
Xj.eU with respect to the coordinate system on W with origin xx

induced by u. Furthermore if X satisfies the condition of Definition
2.1 with respect to the coordinate system u, then X automatically
satisfies the condition with respect to any other coordinate system
on U with origin xQ. Consequently, if U is any small open subset
of K, then a continuous vector field

X:U >TU= MT(U; u)/~ .

Furthermore X may be written with respect to a coordinate system
u on U in the form X = Σίfi(d/du.), the value of X at xe U being
given by X(x) = Σ«/<(S)(3/3N,)..

The set <%f{JJ) of continuous vector fields on a small open subset
Z7 of a simplicial complex K clearly forms a module over the ring
A(U) of piecewise smooth real-valued functions on U with respect
to pointwise operations. The set ^f(K) of globally defined continuous
vector fields on K similarly forms a module over the ring A(K) of
piecewise smooth real-valued functions on K.

We now focus on combinatorial manifolds. The reason for this
is that we may use the following result.

PROPOSITION 2.2. Let M be a combinatorial n-manifold. Let
x0 6 My let U be a small open neighborhood of x0, and let u={ulf , uN}
be a coordinate system on U with origin x0 for which {ulf * -,up}
coordinatizes Ua = σa Π U where x0 is contained in the interior of the
p-simplex σa £ M. Then the support St ut of ut is U if and only
if i = 1, •••, p.

(Note: The set {ulf •• ,̂ J,} may be empty; this is the case, in
fact, iff xQ is a vertex. In the event that x0 is a vertex, Proposition
2.2 states, in particular, that St ut Φ U for every i.)

Proof. The "if" part is clear; it is, in fact, true for simplicial
complexes in general.
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For the "only if" part, using the standard metric on Rn we write
R* = Rp 0 Rn~p. Let h:U-*V QRn be a piecewise linear chart on
M for which the image of each wedge of U is a wedge of V and for
which h(Ua) Q Rp. Without loss of generality we may assume that
for i = p + 1, •••, JV, h^(d/dUi)Xo is in Th{χo)R

n~p and has unit length.
(See Diagram 2.)

In this case n = 3, p = 1, and N = 6.

DIAGRAM 2

If S*-*-1 is the unit sphere in Rn~p, then the triangulation of
M determines a triangulation of S*-*-1 with respect to which S7l~3)""1

is a combinatorial manifold: The vertices v% of the triangulation are
the endpoints of the vectors h*(d/dUi)XQ, for i = p + 1, , N, and
(̂ <x» * * f vik) is a ^-simplex of the triangulation iff

{ u l f -- , u p , u h , •••, u i f c }

coordinatizes a (p + fc)-wedge of Z7. To verify that this is a trian-
gulation of S"~~ί)~1 one must verify that the intersection of any two
simplices is a simplex, and that S71"^"1 is covered by simplices. The
first assertion is obvious. The second assertion follows since for any
yeSn~p~\ the half line

must intersect V in some point yr (since V is an open neighborhood
of h(xQ)); if y' e h(Uβ) for Uβ a wedge of U, and Uβ is coordinatized by

{uly - . . , uP9 uh, •••, uίfc}

then ye(vh, •••, v<fc).
Now if i = p + 1, , iV and St ^ = ί7, then the closed star of

vt is S71-^-1. But this is impossible since the closed star of every
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vertex of (the combinatorial manifold)S% p 1 has boundary, and Sn~p~~ι

does not.

The main results of this paper are stated for combinatorial
manifolds. There are simplicial complexes other than combinatorial
manifolds for which many of the following results are still valid,
however: One could just as well work with any simplicial complex
for which the conclusion of Proposition 2.2 holds. An example of
such a simplicial complex (which is not a combinatorial manifold) is
pictured in Diagram 3: There are five vertices and six 1-simplices.

DIAGRAM 3

Recall (see Introduction) that all combinatorial manifolds in this
paper are assumed to have no boundary. Observe (see Diagram 4)
that Proposition 2.2 is no longer valid if one considers combinatorial
manifolds with boundary: In this case U is the open star of the
vertex x0 in K, there are no coordinate functions which coordinatize
Ua = {x0}, and the support St uL of the coordinate function ut is U
(see the Note following the statement of Proposition 2.2). Even so,
many later results can still be proved for combinatorial manifolds
with boundary (and in fact for simplicial complexes in general) by
using appropriate modifications of techniques presented here.

(b)
DIAGRAM 4

The following result characterizes continuous vector fields on
combinatorial manifolds locally.

PROPOSITION 2.3. Let Mbe a combinatorial manifold. Let UQM
be a small convex open neighborhood of xOf and let u = {ulf , nN)
be a coordinate system on U with origin x0 for which {ulf , up}
coordinatizes Ua = σa(ΛU where x0 is contained in the interior of
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the p-simplex σa Q M. Then X: U —> TU is a continuous vector field
iff X is of the form

X = tW/du,) + Σ nigi(d/dut)

where ft e A(St ut) = A(£7) /or i = 1, , p, and gt e A(St ut) for i =
p + 1, •••, JV, cmci St^i again denotes the support of ut.

Note. In this proposition, and frequently throughout the sequel,
for g 6 A(St Ui), ί = p + 1, -, iSΓ, we consider w^ as an element of
A(Ϊ7) by (utg)x = (̂αOsK )̂ if xeSti^, and (u^x = 0 if αsgStt&i.

Before proving Proposition 2.3, let us first recall (see [6]) that
one can think of elements / of the ring A(U) of piecewise smooth
real-valued functions on U as compatible tuples (fa) e XαA(i7α) of
smooth real-valued functions fa e A( Ua) defined on the wedges Ua Q U;
here "compatible" means that if Ua and Uβ are wedges of U then
fa\uanuβ = fβ\uanuβ If functions are expressed in this manner then
for > - (/β) and 0 - (</α) in A(C7), f + g = (fa + ga) and / . f f = (fa.ga).

Also recall that for each uteu there is a derivation d/du^. A(U) —>
A(St u^ defined by a compatible collection of derivations

{d/duU A(Ua) >A(Ua)}

defined for the wedges UaQU for which ui\ϋa = ui is a coordinate
function on Ua; here "compatible" means that if Ua and Uβ are wedges
of U for which d/dui and d/du^ are defined, then

xΓiUβ du%β uanuβ

Observe that if i = 1, , p then St ut=U so that d/dut: A(U) ~> A(U).

Proof (of Proposition 2.3). If X = Σnfi(d/dut)f then f.iU-^R is
identically zero off St ut for each ^ e u. Thus Proposition 2.2 implies
that for i == p + 1, , N, ft{x) = 0 if ^(a) = 0. Now by working
wedgewise and then checking for compatibility, we find that the
following calculation makes sense: If we consider ft as a function
of one variable, namely ut (i.e., holding ulf *"fuif

 m ,uN fixed), we
have

J-JijixU^y , t , * * * > U]y)av ,

where A is differentiation with respect to the ith variable, so that

ft(ulf , uN) + C - I %DJlu» - -, ί, , wiV)d£
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on St ut. Evaluating at ut — 0 we find that C = 0 so that after a
change of variable (namely t = i^s),

S 8 = l

Before stating the following corollary of Proposition 2.3, let us
first recall (see [6]) that for i = p + 1, •••, N, any f eA(Stut) can
be extended to an fe A(U); such extensions are not unique.

COROLLARY 2.4. The A{U)-module ^{U) is finitely generated
by d/dUi for i = lf , p, αwώ Ui(d/dut) for i = p + 1, , ΛΓ.
/or / in ii(U)f

X - fiftf/dut) + Σ UiQi
i=l i=p+l

and

Y = Σ ^(3/3^) + Σ u
i l i l

in J%*(U) we have

and

X + r = Σ (/* + W/dtO + Σ ^(Λ + h
ii ΐ+l

Observe that <%?(U) is not, in general, free over -4.(17) since for
i = p + 1, . . . , jV, /', / " e -4.(17) may agree on St ui9 so that

although / ' and / " clearly need not agree on all of U.
Continuous vector fields on combinatorial manifolds "lie along

simplices" in the following sense.

COROLLARY 2.5. Let M be a combinatorial manifold. If Xe
<%r(M), then

(1) for every simplex σa £ M there is a smooth vector field
Xa- βa —> Tσa defined on σa for which the following diagram commutes
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Tσ.

where ia denotes inclusion and (ia)* denotes the Jacobian of ia9 and
( 2 ) for simplices σa, σβ £ M for which σa £ σβ, the following

diagram commutes naturally

where iβa denotes inclusion and (iβa)* denotes the Jacobian of iβa.

Conversely, given any collection {Xa: σa -» Tσa} of vector fields
defined on the simplices σa £ M which satisfies Condition 2 above,
there is a unique continuous vector field X: M —•> TM on M which
induces Xa: σa —> Tσa on each simplex σa £ M and for which Condition
1 holds.

In particular, a continuous vector field on a combinatorial manifold
M has a zero at every vertex of M.

To state the next corollary, let us first recall (see [7]) that a
piecewise smooth flow ί1 on a simplicial complex K is a piecewise
smooth right action F: K x R -» K of the additive group of reals on
K. Also recall that there is a distinguished type of vector field on
a simplicial complex, namely the integrable vector fields, and there
is a correspondence between integrable vector fields on K and piecewise
smooth flows on K.

COROLLARY 2.6. Let Mbe a combinatorial manifold. Then every
continuous vector field on M is integrable. Furthermore there is a
bijection between continuous vector fields on M and piecewise smooth
flowsF: Mx R —>M for which F: aa x R —>σa for each simplex σaQM.

Proof. This is an immediate consequence of Corollary 2.5 and
the following lemma.
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LEMMA 2.7. Let U and W be open neighborhoods of

Oesnp = {x = (xt)eR*\xt ^ 0 for i = p + 1, , N]

for which the closure of W is contained in U. Then for every smooth
vector field

p N

ί=l ί=p+ί

on U there is a unique smooth flow F = (Fi):W x I'—*U for which

{ft for i = 1, •••, p

gt for i = p + 1, , Ndt

and F: (sa f) W) x I -+ sa f) U for each face sa of sn>p.

This completes the proof of Corollary 2.6.

3* The main results. We will now prove the main results of
this paper.

THEOREM 3.1. Let M be a combinatorial manifold. There is an
Ά(M)-module isomorphism between the module <£f(M) of continuous
vector fields on M and the module 3${M) of derivations of A(M).

Proof. It suffices to prove this result locally, so let U be a small
convex open neighborhood of xoeM, and let u = {ulf , uN) be a
coordinate system on U for which {uu , up} coordinatizes Ua—σaf)U
where x0 is contained in the interior of the p-simplex σa £ M. We
define

by associating to the vector field (see Proposition 2.3)

X - £fi(d/dut) + Σ
i=l i=p+l

the derivation

F(X): f i >±Wf/dui) + Σ
i=l i=p+l

This makes sense: Since ft and df/du^ are in A{U) for i — 1, , p,
fi(df/dUi)eA(U). Since gt and df/dut are in A(Stut) for i = p + 1,
. ., N, g^df/dut) e A(St ut); thus u^ldfjdu,) e A(U).

Clearly F: <^f(U)-+ &{U) is an Λ(i7)-module homomorphism.
Moreover it is injective: If Xz^fiJJ) is a continuous vector field
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as above and F(X) = 0, then (FiX))^ = 0 for every i. If i = 1,
• , p, this means that / t = 0 on £7, and if i = p + 1, , N, this
means that u^ = 0 on £7. Thus X = 0.

Finally we show that J7: £f{JT) —> ϋ^(Z7) is surjective as follows:
Given a derivation D\ A(U)-* A(U), let /, = DM, for i = 1, ••-, JV.
Then since I? is a derivation it is easy to see that for i = p + 1,
• , N, fi(x) = 0 for x ί St w€. Consequently /< = %<&, for i = p + 1,
• *,N, where gteA(βtut) (see the proof of Proposition 2.3). The
surjectivity of F will follow from showing that

i=l i=p+l

so that D = ^(X) where

X=±Md/dui)+ Σ
1=1 <=p+l

To show this we need the following lemma.

LEMMA 3.2. Lβί W &e α small open neighborhood of x^ which is
star shaped with respect to xlf and let w be a coordinate system on
W with origin xx. Then for every f eA(W) and wtew there is a
piecewise smooth function φt e A(8twt) such that 9?i(a51) = (9//3te;<)a51 and
f = f(χt) + Σ< Wiψi on W (where f(Xj) is a constant function on W).

This lemma is proved by first verifying a similar result on
each wedge of W (see (2) for the classical smooth analog), and then
verifying that these similar results are compatible with respect to
restriction.

Now to finish the proof of surjectivity (again compare with (2)),
let xx eUy let W £ U be a small star shaped open neighborhood of
xlf and let

lf

w = {Ui — u^Xj): W —> RI Ui e u and ut \ w Φ 0}

be the coordinate system on W with origin x1 induced by u. Observe
that for i = 1, , p, wt = ut — u^x^) is in w.

We let I denote the index set of w for convenience.
Given any feA(U) we apply Lemma 3.2 to f\w and observe

that for each i e I, (df/dw^Xt = (df/du^ to obtain
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where φt — ψi if St wt = W, and where φt e A( W) is an extension of
otherwise. Thus,

= Σ ((Dui)(df/dwi))χ1
iel

Σ
{l

= (tWfβu,) + Σ w

t) + Σ
i=p+l

the last equality following since ^(cO = 0 if i ί I.

COROLLARY 3.3. The A(M)-module <£f{M) of continuous vector
fields on a combinatorial manifold M is a Lie algebra over R with
respect to the bracket operation

[X, Y]f = X(Yf)~Y(Xf)

for X, YeJ??{M) and feA(M).

In fact it is easy to show that if F, G: M x B —> M are integral
flows for X, YeJίf(M), then [Y, X] is the derivative at 0eR+ of
the map from M x R+ to M given by

(a?, t) i > G(F(G(F(x, VT\ VT), -VT), ~VT) .

This is completely analogous to the smooth case (see [8]).
The next corollary is an application of Theorem 3.1 to PL mani-

folds. By a closed PL n-manifold M we mean a closed topological
^-manifold M together with an equivalence class of triangulations
T: M-> M of M by closed combinatorial ^-manifolds M, two tri-
angulations being equivalent iff they have a common subdivision;
the equivalence class is the "PL structure" of M.

If M is a closed PL w-manif old, we let A(M) denote the ring of
continuous functions f:M—>R such that for some triangulation
T: M->M in the PL structure of M, f<>TeA(M).

COROLLARY 3.4. Let M be a closed PL manifold, and let
D: A{M)~->A)M) be a derivation which satisfies the following property:
for every triangulation T: ikf —> M of Mby a combinatorial manifold
M in the PL structure of M there is a derivation D: A(M) —> A(M)
for which the following diagram commutes
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A{M) —~~-^-+ A(M)

D\

where (ϊ7"1)*/ = /° T~ι: M-^Rforfe A(M). Then D-=0.

Proof. Let fe A(M) and xoeM. We will show that (2y> 0 = 0:
Let T: M —> M be a triangulation in the PL structure of M for which
/oTei(Jl i) and for which T~\xQ) is a vertex of M. Then the as-
sociated derivation D of A(M) corresponds to a continuous vector
field on M which is necessarily zero at x0. Thus

(Df)x0 = D(T-γ(foT)xQ = (T-TD(foT)x0 = (D(/oΓ))(Πfl50)) = 0 .

Now let K be a simplicial complex and let U be a small open
subset of K. Recall (see [6]) that the A(Z7)-module E(U) of piece-
wise smooth 1-forms on U consists of all compatible tuples (θa) e
XaE(Ua) of smooth 1-f orms θaeE(Ua) defined on the wedges Ua £ U;
here "compatible" means that if Ua and Uβ are wedges of U then
θa\uanuβ — θβ\uanuβ If 1-forms are expressed in this manner then for
/ = V « ) in A(U),θ = (θa) and ?> = (?>β) in E{U), f-θ = (fa θa) and
# + <p = (ββ + φa); i.e., operations are wedgewise.

Alternately, if u is a coordinate system on £7 then θeE(U) may
be expressed θ = ΣifidUi where each / 4 e A(Stt6έ), Stt6i denoting the
support of ut. If forms are expressed in this manner then for /
in A(U), θ = Σ«fidut and y = Σi Qidu, in E(U),f θ =
and ^ + ̂  = Σi (/i +

THEOREM 3.5. Lβ£ M be a combinatorial manifold. There is an
A{M)-module isomorphism between the module E{M) of global piecewise
smooth 1'forms on M and the module Ή.omA{M)(<^f(M), A(M)) of A(M)-
linear maps from <%f{M) to A(M).

Proof. It again suffices to prove this result locally, so, with the
notation of Theorem 3.1, we define

F: E{U) > Hoπw)(jr(£7), A{U))

by associating to the 1-form θ = Σi/ΐ^^ϊ the homomorphism

F{θ): Σ gad/duo + Σ uMdduJ > Σ/*Λ + Σ
ΐ l i + l i l < l

This makes sense: Since /« and ^ are in A(C7) for i = 1, --
clearly /<& e A(C7). Since /, and fc< are in A(St ut) for i = p + 1,
N, we have fthi eA(St Ut); thus
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Clearly F: E{U) -+ B.omA{u){Mf(U)f A{U)) is an A(£/>module homo-
morphism. Moreover it is injective: If Θ — Σ Ϊ / A is in E(U) and
F(θ) = 0, then for i = 1, , p, ft = (F(θ))dut = 0 on ?7, and for i =
p + 1, , N, uJi = (F(θ))uldldUi) = 0 on C7; thus 0 = 0.

Finally we show that F: J5(Z7) -> H o π w ^ ^ t f ) , A(U)) is surjective
as follows: Given / e Hom^(C7)(<^(ί7), A(ί7)), let /< = /(δ/3%,) for i =
1, , p and /< = fiu^d/du,)) for ί = p + 1, , N. Since / is A(U)-
linear, it is easy to see that /< = •f(ui(d/dui)) — 0 off S t ^ for i —
p + 1, •••, N. Thus, as before (see the proof of Proposition 2.3),
/. = u^i, for i — p + 1, , N, where gt e A(St ut). Consequently if

θ =

then clearly F(θ) = /.

In order to generalize the previous result, recall (see [6]) that
if K is a simplicial complex and U is a small open subset of K then
the A(?7)-module ΛqE(U) of piecewise smooth g-forms on U consists
of all compatible tuples (θa) e Xa ΛqE{Ua) of smooth g-forms θa e ΛqE(Ua)
defined on the wedges Ua £ Z7; here "compatibility" is defined as
before (i.e., as for E(U)), and the module operations are again
wedge wise.

Alternately, if u is a coordinate system on U then θeΛqE(U)
may be expressed θ = Σ< fiduh d^ where the summation is taken
over all i = (ΐly , iq) for which there is a wedge Ua QU such that
w«! \ua, - , ^ α I r/t, are all coordinate functions on Ua and where /< 6
-̂ •(Π?=i St w .̂); for convenience we will use multi-index notation to
write θ = Σ i / ΐ ^ i where /* e A(St u j . If q-ίorms are expressed in
this manner, then for / in A(U\ θ = 2 Ϊ / A and <p = Σ i ^ ^ i in
Λ'#(Z7), /.<? - Σ*(/ls t . 4 )/ i^ ond ί + φ - Σ*(Λ + Λ)^*

Observe that since the index of summation for θ — ΣifidUi in
ΛqE(U) is restricted, ΛqE(U) is woί the #-fold exterior product of
J£(Z7): Actually ^ί^(J7) is the q-fold exterior product E(U) with the
added relation that duh duiq = 0 if there is no wedge Ua<Σ=U for
which uh\Ua, '"fuiq\Ua are all coordinate functions on Ua. We will
continue to use the notation ΛqE(U) for the module of piecewise
smooth g-forms on U since the g-fold exterior product of E(U) will
not be used in the sequel.

THEOREM 3.6. Let M be a combinatorial manifold. There is
an A(M)-module isomorphism between the module ΛqE(M) of global
piecewise smooth q-forms on Mand the module A\tAiM)(Xq <Sf(M), A(M))
of A(M)-linear alternating maps from the q-fold product Xq

of JT(M) to A(M).
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Proof. Once again it suffices to prove the result locally, so again
with the notation of Theorem 3.1 we define

F: Λ«E(U) > A1W,(X« JZf(U), A(U))

by defining it on forms ftdUi and extending to Λ9E(U) by A(U)-
linearity; the map Fifidu^ duiq) takes (gh(d/duh), , gjq(d/dujq))
to { — iYfig3l - g3q if there is a permutation π taking i — (iίf , iq)
to (jlf , jq), and 0 otherwise. (Note that for j = p + 1, , N,
we write uβh3(dlduό) = g3{d/du3).) As before it is easy to verify that
F is well defined and an isomorphism.

Finally recall (see [6]) that if K is a simplicial complex, U is
a small open subset of K, and u is a coordinate system on U, then
the differential d of the de Rham complex (Λ*E(U), d) of U is defined
wedgewise but may alternately be described by

dθ = d(Σfiduh duj = Σ (dfjduio)duioduh dto, ,

the summation taken over all i0, i for which (dfi/duio)duiQduh dwί<7

is a (g + l)-form on i7.

THEOREM 3.7. Let Mhea combinatorial manifold. If d: Λ*E(M) —>
A*E(M) is the differential of the de Rham complex of M and θ e ΛqE(M),
then dθ e Λq+1E(M) is given by the formula

. . . , xq+ι) - Σ (-ly+'XMXu •••,!„•••, xq+ί)

+ Σ (-l)t+iθ([Xt, X,l Xu Xi,--; X,; , , Xq+ί)
i<j

for X19 .-',Xg+1

Proof. Working locally with the notation of Theorem 3.1 and
using the fact that d, θ, and Xί9 , Xq+1 are all additive, one need only
prove the result in the case θ — fduh, , duiq, and Xx — Qijid/du^, ,
Xq = gjq(d/dujq) (where for j = p + 1, , N we again write u5hό{dldnό) =

)). The result in this case is a straightforward calculation.

4 Connexions on combinatorial manifolds. Connexions exist
(in tangent bundles) on smooth manifolds, and can be described in
various equivalent ways; also such connexions can be interpreted
geometrically in terms of parallel translation. The goal of this section
is to establish analogous results for combinatorial manifolds. In
particular we will establish the existence of connexions on combinatorial
manifolds, and show that such connexions can be described (or defined)
equivalently in terms of differential forms (Cartan connexions), vector
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fields (Koszul connexions) or compatible collections of connexions
defined on individual simplices. Finally, such connexions are in-
terpreted geometrically in terms of parallel translation.

Throughout this section, M will be a combinatorial -^-manifold
(without boundary).

DEFINITION 4.1. For every small open subset U Q M, let E(U)(x)
E(U) denote the set of all tuples

ω = (ωa) = ( Σ # ® φί) e X*(E(U*) <g> E(Ua)) ,

the product taken over all wedges Ua £U, for which <oa\UaΓιUβ =
a>β\uanuβ for wedges Ua, Uβ QU, where

<*>«\uanuβ = Σ ^ « U β n ^ ® ^ U β n ^ 6 JE?(J7β Π ^ ^ E{Ua Π Uβ) .uanuβ ^ ^

Clearly E( U) (x) E{ U) is an A( C7)-module with respect to wedgewise
operations. The construction of E{ U) (g) E{ U) is natural with respect
to restriction to small open subsets WQU, and hence defines a
presheaf on M. The associated sheaf is fine since piecewise smooth
partitions of unity subordinate to covers of M by small open subsets
exist on M (see [6]).

DEFINITION 4.2. The A(M)-module E(M)(g)E(M) is the module
of global sections of the sheaf over M associated to the presheaf
which assigns to each small open subset U £ M the A(ί7)-module

As in the case of piecewise smooth forms, if u is a coordinate
system on the small open subset U Q M, then each ω e E(U) ® E{U)
may be written in the form ω = Σ i , i / ϋ ^ i ® duό where the summa-
tion is taken over all i and j for which there is a wedge Ua Q U
such that Ui, U(χ and us \ U(x are coordinate functions on Z7α, and where
fi3' e A(St u{ Π St %y), St Mf Π St My the intersection of the supports of
^ and Uj. F u r t h e r m o r e for / i n A(U), ψ — Σί.jfijdUi® duj and

x) dwy in S(17) ® E(U),

/• t = Σ (/ I StuiHStu Jfijdili (X) ίίMy

and

ψ + ώ) = Σ (/ϋ + 0</)dtti (x) dMy

where the summations are restricted as above.
Since the index of summation for elements ω = Σi^ fijdUiξQdUj

of E(U)(g)E(U) is restricted, E(U)®E(U) is wo£ the tensor product
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of E(U) with itself; actually E{U)®E(U) is the tensor product of
E(U) with itself with the added relation that dut (x) du, = 0 if there
is no wedge Ua QU for which uilUa and uύWa are both coordinate
functions on Ua. We will continue to use the notation E(U)(g) E(U)
since the tensor product of E( U) with itself will not be used in the
sequel.

We now describe connexions on M by differential forms.

DEFINITION 4.3. A Cartan connexion on M is a real linear map

D: E(M) > E{M) (x) E{M)

for which D(fθ) = df (x) θ + fDΘ for / e A(M) and θ e E(M).
As in the smooth case, a Cartan connexion D on M uniquely

determines a Cartan connexion

Dσ:E(U) >E(U)®E(U)

for every small open subset U Q M.
Henceforth "<ĝ " denotes "set complement", and St ut again denotes

the support of the coordinate function ut.

THEOREM 4.4. Let U £ M be a small open subset, and let u be
a coordinate system on U. Then

D: E(U) > E{U) (g) E{U)

is a Cartan connexion on U iff there are piecewise smooth functions
Tjk in A(St Uj Π Si uk), for each i, j , and k, for which

and for which Tjk = 0 on ^ ( S t u%) Π St uά Π St uk.

Proof. Given D, the existence of the 7^ is obvious. The fact
that 7*fc = 0 on ^ ( S t ut) Π St uά Π St uk follows since D is an A(U)-
derivation.

Conversely, given Tjk in A(St Uj Π St uk) for which y*jk = 0 on
Π St uj n St %, define D by

= Σ {df, (8) d ^ +
i

= Σ

where /4 = ft if St «4 = U, and /«e A( U) is an extension of ft 6 A(St w4)
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otherwise. To show that this makes sense, first observe that if θ e E( U)
and θ = 0 on St ut9 then θ(g)dute E{ U) ® E{ U) is 0. (If θ = Σu'QidUj,
then θ — Q on St Ui implies that either ujlStUif]stuj ^ 0> in which case
^ = 0 on St Mt Π St Uj, or %, st1t< -,gt1(i = 0. In the first case

QjistUinstujdUj (X) dw< = 0 ,

and in the latter c£u, 0 du% — 0.) Thus given extensions f\ and /•'
of /„ d/ί - d/ί' = 0 on St ut so that

dfi (g) dw, - d/Γ (8) dw4 = (d/ί - df'l) 0dui== 0 .

Second observe that since ft is well defined on ut and 7% — 0 on
^ ( S t Ui) Π St uά U St uk, clearly (ft, StttinstWjfc)

7ifc is well defined on
St Uj Π St wfc. Since this is the support of duk (x) dujf JiD^dUi) is
independent of the extension /* of fim

COROLLARY 4.5. Cartan connexions exist on M.

Proof. Let {<£>*}* ez be a piece wise smooth partition of unity sub-
ordinate to a locally finite cover {Z7Jίe/ of M by small open subsets.
For each ie I, define the Cartan connexion

>E(Ui)(g)E(Ui)

on Ui by letting Di(dus) = 0 for each j . It is easy to verify that
the map

D: E{M) > E(M) <g> E(M)

given by Dθ — Σ« ψiDlβ\LT.) is a Cartan connexion on M.

We now describe connexions on M by continuous vector fields.

DEFINITION 4.6. A Koszul connexion on M is a real-bilinear map

F: <gf(Λf) x JT(ikf)

(X,Y)\ >FXY

such that VfxY - /ΓXΓ and F x/Γ - X(f)Y + /FXΓ for / 6 A(M) and
X, YeJ?f(M).

Again, as in the smooth case, a Koszul connexion V on M deter-
mines a Koszul connexion

vlΊ\ gr(U) x

for every small open subset U Q M.

THEOREM 4.7. Let U Q M be small open neighborhood of x0, let
u = {uu , uN) be a coordinate system on U with origin xQ for which
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{uιt , Up} coordinatizes Ua = σa Γϊ U where xQ is contained in the
interior of the p-simplex σa £ M, and let

__ (dβUi for i = 1, , p

\ut(d/dUi) for i = p + 1, , N .

Then

V{U) x

is a Koszul connexion on U iff there are piecewise smooth functions
8% in A(St Ui), for each i, j , and k, for which

and for which δ)k = 0 on St ut Π ̂ ( S t % Π St uk).

Proof. Given F, the existence of the δ)k is obvious. The fact
that δ}k = 0 on St ut Γi &(St us Γ\ St uk) follows since VXΎ is A(U)-
linear in X and an A{ C7)-derivation in Y.

Conversely, given δ% in A(Stut) for which 5 ^ = 0 on
^ ( S t ud n St uk), we first let

F/x^* - V7XjXk = fVXiXk =

where / = / if St uά = U, and feA(U) is an extension of / e A(St u/)
otherwise. This makes sense since / is well defined on S t % and
δ% = 0 on St ut Π ̂ ( S t uj Π St uk) so that fδ)k e A(St ut) is well defined.

Next define

- X5{f)Xk + fVXiXk

fc +

where f = f if St wfe = ί7, and / e A(U) is an extension of / 6 A(St wA)
otherwise. To see that this makes sense, first notice that since Xd

is a derivation, / = 0 on St ̂  implies that X//) = 0 on St uif so
that Xd(f)Xi = 0 on ί/; thus given extensions /ί and /' ' of / o

xx/ox - w ox* = xχ/ί - /-ox, = o
since /J — fϊ = 0 on St w*. Second observe that /(Σt *̂-3L<) is well
defined; this is precisely the same argument as above for fδ)k.

Finally define V on all of gffJJ) x £?{JT) by extending by real-
linearity.
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THEOREM 4.8. There is a bίjection between the set of Cartan
connexions on M and the set of Koszul connexions on M.

Proof. It is not difficult to show that for every X e ^f(M) there
is a real-linear map

evalx: E(M) (g) E(M) > E{M)

which is given locally, on a small open subset U £ M, by

= Σ

where "< —, — >" denotes "evaluation" (see Theorem 3.5). One now
defines the bijection between Cartan connexions D on M and Koszul
connexions V on M by imposing the contraction formula

(FxYy θ) = X(Y, θ) + <Γ, evalxi9#>

where X, F € ^ ( i l ί ) and θeE(M).

To describe the correspondence of Theorem 4.8 locally, let U be
a small open neighborhood of x0 e M, let u — {ulf , uN) be a coord-
inate system on U with origin x0 such that {ult •••, wp} coordinatizes
Ua = σaf]U where x0 is contained in the interior of the ^-simplex
σa Q M, and let

d/dUi for i = 1, , p

Ui(d/dUi) f o r i = p + 1, ••*, N.

If the Cartan connexion D on U given by D(dut) = ^j,ky%duk(S) dUj
and the Koszul connexion F on U given by /^.X* = Σ t 5̂ *-Σt corre-
spond to each other via Theorem 4.8, then the relations between 7%
and 8)k are given by:

if i = if i = if k = relation

1,

1, •

1,

r-Γ

P 4

P 4

ί> 4

• ,
" y

* >

* >

- i ,

- 1 ,

- 1 ,

P

P

P

P

. . .

,N

,N

,N

1,

1,

1,

1,

P

• •>

+ 1,
+ 1,

" y

' y

+ 1,

P

P

P

P

,N

,N

,N

i-Γ

P

1,

z>
1,

3>

1,

P

1,

• ,p

1, ••

N δ% =

N 8% -

N

p + 1, , N p + 1, •• , N p + 1, , N

te = i
o r % Φ fc

•ii)k i f i = j = k.
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The following result is an immediate consequence of Theorem 4.8
and Corollary 4.5.

COROLLARY 4.9. Koszul connexions exist on M.

It is easy to show that if V is a Koszul connexion on M then
for every xoeM and X, Y e <g?(M), the value of ψxY at x0 depends
only on XXQ and the values of Y on some curve that fits XXQ.

THEOREM 4.10. A Koszul connexion V on M is equivalent to a
collection

of Koszul connexions Va defined on the simplices σa Q M which are
compatible in the following sense: If σa, σβ £ M are simplices for
which σa Q σβ, x0 is in the interior of σa, X e TXQσa, and Y is a smooth
vector field on some smooth curve in σa which fits X, then

(Da)xY = (Dβ\iβa).x(iβ«)*Y,

(ίβa)* denoting the Jacobian of the inclusion iβa: σa—>σβ.

Proof. Given a Koszul connexion V on M, let U be a small open
neighborhood of xQeM and let u = {wj be a coordinate system on U
with origin x0. For each wedge Ua £ U, let ua = {<} denote the
coordinate system on Ua induced by u. If

D: E{M) > E(M) (x) E(M)

is the Cartan connexion on M associated to V and

D: E{U) > E(U) (g) E(U)

is the induced Cartan connexion on U, given in coordinate form by

D(du.) = Σ Ί%duk (g) dud ,
3,k

then for every wedge UaQU there is a unique Koszul connexion

Fα: J?f(Ua) x

given by

This construction is natural, and hence a Koszul connexion

x
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is defined on each simplex σa £ M. The compatibility of these con-
nexions is immediate.

Conversely, given a compatible collection of connexions as described
in the hypothesis, let X, Ye<g?(M). To define ΌXY at xoeM, let
σa £ M be the simplex in whose interior x0 is contained. By Corollary
2.5 there are smooth vector fields Xa, Ya e <g?(σa) for which (ΐα)*X« =
X and (ΐβ)* Ya =Y on σa. There is clearly a smooth curve in σα which
fits XXQ, and since Ya is defined along this curve we may let

(FXY)XQ = {iaUDa\Xu)χYa .

This clearly defines a Koszul connexion on M and the proof is complete.

We will next use Theorem 4.10 to interpret connexions geome-
trically. First, however, recall (see [7]) that a piecewise smooth
curve / : [α, 6] —> M in M is a map for which there is a finite sub-
division

( * ) a = c0 < ct < < cN = b

of [a, b] such that for each i — 0, , iV — 1 there is a simplex σa £ M
for which / : [cif ci+1] —• σα is a smooth curve in σα.

DEFINITION 4.11. A continuous vector field along a piecewise
smooth curve f: [α, b]—>Mis a map Y: [α, 6] —> ΓM which is smooth
on each subinterval of the subdivision (*) of [α, 6] and for which

Now let V be a Koszul connexion on M. Let σa, σβ £ M be w-

simplices whose intersection #> is a ^-simplex of Λf, and let Va and

F̂  be the (compatible) connexions on σa and σβ induced by V. Finally

let / : [α, 6] —> M be a piecewise smooth curve for which there is a

c 6 (α, 6) such that

α — J \ [a,e1 \PΊ ^J ^ ^ α >
/» /• I Γ 7 "I

are smooth curves in σa and σβ, respectively.

THEOREM 4.12. For each t e [a, b] there is a p-dimensional subspace
Vt £ T/(t)M such that for every Yo e Va there is a continuous vector
field Y = Yt on f for which Yt e Vt for each t e [a, b], Ya = YOf Ya =
Y\ia,d is parallel along fa with respect to ψa, and Yβ=Y\ίethl is
parallel along fβ with respect to pβ.

Proof. With respect to Pa, for every Yo e Tf{a)σa there is a unique
smooth vector field Ya = (Ya)t on σa such that (Ya)0 —Yo and Ya is
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parallel along fa, and a linear isomorphism

Pa,t'" Tf(a) > Tftt)

called parallel translation along fa from f(a) to /(ί); similarly for
σβ. With the notation of Corollary 2.5, for t e [α, c] we let

Vt = (iβ)*(Pίe)-1(v)*Γ/(β)σr C TfU)M

and for £ e [c, b] we let

observe that Vt is well defined for t = c. For Fo e Vβ, we define
Γ - Γ, on / by

((ia)*(P:Λia)lΎo for te[α,c]
1 \{iβUPίt){iβ)ΛiaUPaΛia)lι Yo for ί 6 [c, 6] .

Observe that Pα,t is independent of c since Fα and Fβ are compatible.

Thus there is a map Pβ f ί:yβ-->F ί defined by Paιt(Y0) =Yt which
is a linear isomorphism and which can reasonably be called parallel
translation along / from /(α) to /(t).

Theorem 4.12 is still valid under the hypothesis that σa1 σβ Q M
are simplices of arbitrary dimension whose intersection is a p-simplex
σr of M.

REFERENCES

1. S. Cairns, Triangulated manifolds which are not Brouiυer manifolds, Annals of
Math., 4 1 (1940), 792-795.
2. N. Hicks, Notes on Differential Geometry, Van Nostrand Reinhold Co., New York,
1965.
3. C D . Marshal, Calculus on subcartesian spaces, J. Differential Geometry, 10 (1975),
551-574.
4. H. Osborn, Differential Geometry in PL, (mimeographed notes), University of Illinois,
Urbana-Champaign, 1971.
5. 1 Function algebras and the de Rham theorem in PL, Bull. Amer. Math.
Soc, 77 (1971), 386-391.
6. M. Penna, Differential Geometry on Simplicial Spaces, Trans. Amer. Math. Soc, 214
(1975), 303-323.
7. f Vector Fields on Polyhedra, to appear in Trans. Amer. Math. Soc.
8. M. Spivak, A Comprehensive Introduction to Differential Geometry, Publish or
Perish, Boston, 1970.
9. E. C. Zeeman, Polyhedral N-Manifolds: I. Foundations, pp. 57-64 of Topology of
S-Manifolds, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.

Received May 12, 1977.

INDIANA UNIVERSITY-PURDUE UNIVERSITY AT INDIANAPOLIS

INDIANAPOLIS, IN 46205




