A VANISHING THEOREM FOR THE MOD *p* MASSEY-PETERSON SPECTRAL SEQUENCE

MASAMITSU MORI

A vanishing theorem and periodicity theorem for the classical mod 2 Adams spectral sequence were originally proved by Adams [1]. The results were extended to the unstable range by Bousfield [2]. The purpose of this paper is to show the analogue of Bousfield's work for the mod p unstable Adams spectral sequence of Massey-Peterson type (called the mod p Massey-Peterson spectral sequence), where p is an odd prime. The results generalized those obtained by Liulevicius [5], [6] to the unstable range. As an immediate topological application we have the estimation of the upper bounds of the orders of elements in the p-primary component of the homotopy groups of, for example, an odd dimensional sphere, Stiefel manifold, or H-space.

1. The vanishing theorem. Let A denote the mod p Steenrod algebra. Let $A \mathscr{M}$ the category of unstable left A-modules and $\mathscr{M}A$ thecategory of unstable right A-modules. We may define $\operatorname{Ext}_{A\mathscr{M}}^{*}, s \geq 0$, as the sth right derived functor of $\operatorname{Hom}_{A\mathscr{M}}$, and similarly define $\operatorname{Ext}_{\mathscr{M}}^{*}$, since $A \mathscr{M}$ and $\mathscr{M}A$ are abelian categories with enough projectives. Note that, if $M \in A \mathscr{M}$ is of finite type, then

$$\operatorname{Ext}_{A,\mathscr{M}}(M, Z_p) = \operatorname{Ext}_{\mathscr{M}A}(Z_p, M^*)$$
.

Recall the mod p Massey-Peterson spectral sequence (see, for example, [4]). Let X be a simply connected space with $\pi_*(X)$ of finite type. Suppose that $H^*(X; Z_p) \cong U(M)$, $M \in A_{\mathscr{M}}$, where U(M) is the free unstable A-algebra generated by M. Then there is a spectral sequence $\{E_r(X)\}$ with

$$d_r: E_r^{s,t}(X) \longrightarrow E_r^{s+r,t+r-1}(X)$$
,

such that

$$E_2^{s,t}(X) \cong \operatorname{Ext}_{A\mathscr{M}}^{s,t}(M, Z_p)$$
 ,

and

$$E_{\infty}(X) \cong \operatorname{Gr} \pi_*(X)/(\operatorname{torsion \ prime \ to \ } p)$$
 .

Let Λ be the bigraded differential algebra over Z_p introduced by Bousfield et al [3], which has multiplicative generators λ_i of

MASAMITSU MORI

bidegree (1, 2i(p-1)-1) for i > 0 and μ_i of bidegree (1, 2i(p-1)) for $i \ge 0$.

For $N \in \mathscr{M}A$, let $V(N)^s$ be the subspace of $N \otimes A^s$ generated by all $x \otimes \nu_I$ with $\nu_I = \nu_{i_1} \cdots \nu_{i_s}$ allowable and deg $x \ge 2i$ if $\nu_{i_1} = \lambda_{i_1}$ and deg $x \ge 2i_1 + 1$ if $\nu_{i_1} = \mu_{i_1}$. Then V(N) is the cochain complex with

$$egin{aligned} \delta(x\otimes oldsymbol{
u}_I) &= (-1)^{\deg x}\sum\limits_{i>0} x
ho^i \otimes \lambda_i oldsymbol{
u}_I \ &+ \sum\limits_{i\geq 0} xeta
ho^i &\otimes \mu_i oldsymbol{
u}_I + (-1)^{\deg x} x \otimes \partial oldsymbol{
u}_I \ . \end{aligned}$$

Here $x \otimes \nu_I$ is of bidegree (s, t) with $t = s + \deg x + \deg \nu_I$. Recall that for $N \in \mathcal{M}A$

$$\operatorname{Ext}_{\mathscr{M}A}^{s,t}({Z}_p,\,N)\cong H^s(V(N))_{t-s}$$
 .

Let O(N) be the subcomplex of V(N) generated by all $x \otimes \nu_I \in V(N)^s$ with $\nu_I = \nu_{i_1} \cdots \nu_{i_s}$ allowable and $\nu_{i_s} = \lambda_{i_s}$. Let T(N) be the quotient complex of V(N) such that

$$T(N)^s = egin{cases} N \otimes \mu_0^s & ext{for} \quad s = 0, 1 \ N \otimes \mu_0^s + \sum\limits_{t>0} N_{2t}^s \otimes \lambda_t \mu_0^{s-1} & ext{for} \quad s \geqq 2 \ . \end{cases}$$

Then we have a long exact sequence

$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

which is induced from the natural isomorphism

$$H^*(O(N))\cong H^*(\operatorname{Ker} q)$$
 ,

where $j: O(N) \to V(N)$ and $q: V(N) \to T(N)$ are the natural maps. Remark that $H^*(T(N))$ consists of towers in the sense that

$$H^{s}(T(N))\cong H^{s+1}(T(N))$$
 ,

for $s \ge 2$, and thus $H^*(T(N))$ is easily determined.

DEFINITION. A function $\varphi_n(k)$, $n \ge 2$, $k \ge 0$, is defined as follows. If n = 2, 3, 4,

$$arphi_n(k) = egin{cases} [(k+2)/2(p-1)] & ext{ for } k \geq 2(p-1) - 1 \ 0 & ext{ for } k < 2(p-1) - 1 \end{cases}$$

where [x] is the integer part of x, and if $n \ge 5$,

$$\varphi(k) = \varphi_n(k) = i ,$$

where

$$egin{aligned} &2i(p-1) \leqq k < 2(i+1)(p-1){-1} & ext{if} \quad i \not\equiv -1, \ 0 \ ext{mod} \ p \ , \ &2i(p-1) \leqq k < 2(i+1)(p-1){-2} & ext{if} \quad i \equiv -1 \ ext{mod} \ p \ , \ &2i(p-1){-2} \leqq k < 2(i+1)(p-1){-1} & ext{if} \quad i \equiv 0 \ ext{mod} \ p \ . \end{aligned}$$

Now we state our main theorem.

THEOREM 1 (Vanishing). Let $N \in \mathcal{M}A$ with $N_i = 0$ for i < n, where $n \geq 2$. Then

$$\operatorname{Ext}_{\mathscr{A}_A}^{s,s+k+n}(Z_p,N)\cong H^s(V(N))_{k+n} \xrightarrow{q^*} H^s(T(N))$$
 ,

is an isomorphism for $s > \varphi_n(k)$.

This will be proved in §4.

By virtue of our vanishing theorem the calculation of $H^*(V(N))$ is reduced to that of $H^*(O(N))$ in a large extent. Note that q^* is epimorphic when U(M) is generated by a single element, where $M=N.^*$

As an immediate topological corollary we have.

COROLLARY 2. Let X be a simply connected space with $\pi_*(X)$ of finite type. Suppose that $H^*(X; Z_p) \cong U(M)$, where M is an unstable A-module. If $M^i = 0$ for i < n, then the orders of elements in the p-primary component of $\pi_{k+n}(X)$ are at most $p^{\varphi_n(k)}$.

This may be applied, for example, when X is an odd dimensional sphere, Stiefel manifold, or H-space.

REMARK. If $N_i = 0$, i > m, for some m, then $H^s(N)_t$ is zero for dimensional reason when t is large with respect to s. Hence in this case Corollary 2 is slightly improved.

2. Periodicity theorems. For a module $M \in A_{\mathscr{M}}$ we define the β -cohomology by $H_{\beta}(M) = \operatorname{Ker} \beta/\operatorname{Im} \beta$.

DEFINITION. A module $M \in A \mathscr{M}$ is called β -trivial if

$$ho^i : M^{_{2i}} \longrightarrow H^{_{2ip}}_{\scriptscriptstyleeta}(M)$$
 ,

is an isomorphism for all i and $H^k_{\mathfrak{s}}(M) = 0$ for $k \not\equiv 0 \mod 2p$.

Remark that $M \in A \mathscr{M}$ is β -trivial if and only if $N = M^* \in \mathscr{M} A$ is towerless, i.e., $H^s(T(N)) = 0$ for s > 0.

Let \mathcal{G} denote the category of graded Z_p -modules. Let L_sF denote the sth left derived functor of a functor $F: A\mathcal{M} \to \mathcal{G}$.

THEOREM 3 (Periodicity). Let $F: A \mathcal{M} \to \mathcal{G}$ be a functor such that $F(M) = M/\beta M + \rho^{1}M$. If $M \in A \mathcal{M}$ is β -trivial, then there is a natural map

$$P: L_s F(M)^t \longrightarrow L_{s+p} F(M)^{t+2p(p-1)+p},$$

such that P is an isomorphism for $s \ge 2$ and a monomorphism for s = 1.

This will be proved in §3.

Additionally, we give here such a kind of periodicity theorems.

THEOREM 4. Let $G_i(M) = M/\rho^i M$ for $M \in A$ *M*, where 0 < i < p. Then there is a natural map

$$Q: L_sG_i(M)^t \longrightarrow L_{s+2}G_i(M)^{t+2p(p-1)},$$

such that Q is an isomorphism for $s \ge 2$ and a monomorphism for s = 1.

THEOREM 5. Let $G_i(M) = M/\beta M + \rho^i M$ for $M \in A_{\mathscr{M}}$, where 0 < i < p. If $M \in A_{\mathscr{M}}$ is β -trivial, then there is a natural map

 $Q \colon L_s G_i(M)^t \longrightarrow L_{s+2} G_i(M)^{t+2p(p-1)}$,

such that Q is an isomorphism for $s \ge 2$ and a monomorphism for s = 1.

THEOREM 6. Let $G(M) = M/\rho^1 + \beta \rho^1 M$ for $M \in A \mathcal{M}$. If $M \in A \mathcal{M}$ is β -trivial, then there is a natural map

 $R \colon L_s G(M)^t \longrightarrow L_{s+2} G(M)^{t+4p-2}$,

such that R is an isomorphism for $s \ge 2$ and a monomorphism for s = 1.

3. Proofs of periodicity theorems. Suppose given a circular sequence of functors from $A \mathcal{M}$ to \mathcal{G} and natural transformations,

satisfying $R_i R_{i+1} = 0$ for $i = 0, \dots, k-1$. Define functors Ker R_i , Im R_i , Coker R_i , $H_i = \text{Ker } R_i/\text{Im } R_{i+1}$ in a usual way.

DEFINITION. A module $M \in A \mathscr{M}$ is called trivial for the diagram (\sharp) if

$$L_sA_i(M)=L_sH_i(M)=0$$
 ,

for all s > 0 and $i = 0, \dots, k - 1$.

LEMMA. If $M \in A \mathscr{M}$ is trivial for the diagram (#), then there is a natural map

$$P: L_s \operatorname{Coker} R_0(M)^t \longrightarrow L_{s+k} \operatorname{Coker} R_0(M)^{t+h}$$
,

such that P is an isomorphism for $s \ge 2$ and a monomorphism for s = 1. Here $h = \sum_{i=0}^{k-1} h_i$, $h_i = \deg R_i$.

Proof. Let $h(a) = \sum_{i=a}^{k-1} h_i$. Since M is trivial for (#), we have the following natural isomorphism

$$L_{s+k}\operatorname{Coker} R_0(M)^{t+h} \cong L_{s+k-1}\operatorname{Im} R_0(M)^{t+h}$$

$$\cong L_{s+k-2}\operatorname{Ker} R_0(M)^{t+h(1)} \cong \cdots$$

$$\cong L_s\operatorname{Ker} R_{k-2}(M)^{t+h(k-1)} \cong L_s\operatorname{Im} R_{k-1}(M)^{t+h(k-1)}$$

On the other hand the natural map

$$L_s \operatorname{Coker} R_0(M)^t \longrightarrow L_s \operatorname{Im} R_{k-1}(M)^{t+h(k-1)}$$

is an isomorphism for $s \ge 2$ and a monomorphism for s = 1.

We shall use the following circular sequence due to Toda [9] (see, also, Oka [8]) to prove the periodicity theorems.

$$(3.1) \qquad \qquad M \xrightarrow{R_{p-2}} M \xrightarrow{\dots \dots M} M \xrightarrow{R_1} M$$

where $R_i = (i+1)\beta\rho^1 - i\rho^1\beta$, $R = (\rho^1\beta, \rho^1)$ and $R' = \rho^1\beta - \beta\rho^1\beta$.

$$(3.2) M \xrightarrow{\rho^{\circ}}_{\rho^{p-i}} M for 0 < i < p ,$$

$$(3.3) \hspace{1cm} M/R_iM \mathop{\longleftarrow}\limits_{
ho^{p-i}} M/eta M \hspace{1cm} ext{for} \hspace{1cm} 0 < i < p$$
 ,

(3.4)
$$M/\rho^{1}M \xleftarrow{\rho^{1}}{\longrightarrow} M/\rho^{1}M$$
.

Here $M \in A$ and the maps are induced from the left actions.

Proof of Theorem 3. We shall use the diagram (3.1). For convenience, we put $R_0 = R_p = R$, $R_{p-1} = R'$. Let $H_i(M)$ denote the cohomology Ker $R_i/\text{Im } R_{i+1}$. If M is a free unstable A-module, then:

 $egin{array}{lll} ({\,\,\mathrm{i}}\,) &
ho^{s\!\!:}\, (M/eta M)^{2s}\cong H^{2sp}_0(M) & {\,\,\mathrm{if}} & s\equiv -1\, \mathrm{mod}\, p \;, \ &
ho^{s\!\!:}\, M\cong H^{2sp}_0(M) & {\,\,\mathrm{if}} & s\equiv -1\, \mathrm{mod}\, p \;, \ &
ho^{s\!\!:}\, (eta M)^{2s+1}\cong H^{2tp+1}_0(M) & {\,\,\mathrm{if}} & s\equiv -1\, \mathrm{mod}\, p \;, \end{array}$

(ii) for
$$i = 1, \dots, p - 2$$
,
 $\rho^{s} : (M/\beta M)^{2s} \cong H_{i}^{2sp}(M)$,
 $\rho^{s} + \beta \rho^{s} : (\beta M)^{2s+2} + (M/\beta M)^{2s+1} \cong H_{i}^{2sp+2}(M)$,
 $\rho^{s} : (M/\beta M)^{2s+2} \cong H_{i}^{2sp+3}(M)$
(iii) $\rho^{s} + 0 : (M/\beta M)^{2s} + 0 \cong H_{p-1}^{2sp+3}(M)$,
 $0 + \rho^{s} : 0 + (M/\beta M)^{2s+j} \cong H_{p-1}^{2sp+j+1}(M)$
for $j = 0, 1$ if $s \equiv 0 \mod p$,
 $\rho^{s} + \rho^{s} : (\beta M)^{2s+j+1} + (M/\beta M)^{2s+j} \cong H_{p-1}^{2sp+j+1}(M)$
for $j = 0, 1$ if $s \not\equiv 0 \mod p$,
 $0 + \rho^{s} : 0 + (M/\beta M)^{2s+2} \cong H_{p-1}^{2sp+3}(M)$.

(iv) otherwise $H_i^k(M) = 0$.

This unstable version of Toda's exactness theorem is shown by long but straightforward computations. Now Theorem 3 is proved by applying lemma.

By using the diagrams (3.2), (3.3) and (3.4), Theorems 4, 5 and 6 follow in a similar way, and thus we only state the following facts.

Let $M \in A_{\mathscr{M}}$ be a free unstable module. Fix i such that 0 < i < p. If $H(M) = \operatorname{Ker} (\rho^i: M \to M) / \operatorname{Im} (\rho^{p-i}: M \to M)$, then: (i) $\rho^s: M^{2s+j} \cong H^{2sp+j}(M)$ for i = 0.1. $eta
ho^s +
ho^s \colon M^{2s+j-1} + M^{2s+j} \cong H^{2sp+j}(M) \hspace{0.5cm} ext{for} \hspace{0.5cm} j = 2, \hspace{0.5cm} \cdots , \hspace{0.5cm} 2i-1$, $\beta \rho^s: M^{2s+j-1} \cong H^{2sp+j}(M)$ for j = 2i, 2i + 1. (ii) otherwise $H^k(M) = 0$. If $H(M) = \operatorname{Ker} (\rho^{p-i}: M/\beta M \to M/R_iM) / \operatorname{Im} (\rho^i: M/R_iM \to M/\beta M),$ then: (i) $\rho^s: (M/\beta M)^{2s+j} \cong H^{2sp+j}(M)$ for $j = 0, 1, \dots, i - 1$ and $s \equiv 0, 1, \dots, i - 1 \mod p$. (ii) otherwise $H^k(M) = 0$. Next put $H(M) = \operatorname{Ker}(\rho^i: M/R_iM \to M/\beta M)/\operatorname{Im}(\rho^{p-i}: M/\beta M \to M)$ $M/R_{i}M$), then: (i) if $s \equiv 0 \mod p$, ho^s : $(M/eta M)^{2s+j}\cong H^{2sp+j}(M)$ for j = 0, 1, $\beta \rho^s + \rho^s : (M/\beta M)^{2s+j-1} + (M/\beta M)^{2s+j} \cong H^{2sp+j}(M)$ for $j = 2, \dots, 2i - 1$,

 $eta
ho^{s}: (M/eta M)^{2s+j-1}\cong H^{2sp+j}(M) ext{ for } j=2i, 2i+1,$ (ii) if $s\equiv 1, \cdots, p-i-1 ext{ mod } p,$

478

 $egin{aligned} &
ho^{s\colon} (M/eta M)^{2s+j} \cong H^{2sp+j}(M) & ext{for} \quad j=0,1 \ , \ &eta
ho^{s} +
ho^{s\colon} M^{2s+j-1} + (M/eta M)^{2s+j} \cong H^{2p+i}(M) & ext{for} \quad j=2,\ \cdots,\ 2i-1 \ , \ &eta
ho^{s\colon} M^{2s+j-1} \cong H^{2sp+j}(M) & ext{for} \quad j=2i,\ 2i+1 \ , \end{aligned}$

(iii) if $s \equiv p - i \mod p$,

$$eta
ho^{s}:M^{2s+j-1}\cong H^{2sp+j}(M) \qquad ext{ for } j=2,\,\cdots,\,2i-1$$
 ,

(iv) otherwise $H^k(M) = 0$.

Finally, if $H(M) = \text{Ker}(\beta \rho^1: M/\rho^1 M \to M/\rho^1 M)/\text{Im}(\beta \rho^1: M/\rho^1 M \to M/\rho^1 M)$, then:

- (i) $ho^{ps}: M^{2s+j} \cong H^{2sp^2+j}(M)$ for j = 0, 1, $eta
 ho^{ps} +
 ho^{ps}: (M/eta M)^{2s+1} + M^{2s+2} \cong H^{2sp^2+2}(M)$,
- (ii) otherwise $H^k(M) = 0$.

4. Proof of the vanishing theorem. Let F(n) denote a free unstable A-module on one generator ι_n . We define an unstable Amodule N(n) to be the quotient of F(n) by the relation $\beta \iota_n = 0$. Next define M(n) to be the subcomplex of N(n) by ommitting the ι_n from N(n) if n odd and ommitting the ι_n , $(\iota_n)^p$, \cdots , $(\iota_n)^{p^t}$, \cdots from N(n) if n even. Note that M(n) is β -trivial.

First we suppose that n is odd. Then by the long exact sequence induced from a short exact sequence

$$0 \longrightarrow M(n) \longrightarrow N(n) \longrightarrow Z_p \longrightarrow 0$$
,

we have an isomorphism

$$E_2^{s,t+n}(S^n) = \operatorname{Ext}_{A^{\mathscr{M}}}^{s,t+n}(Z_p, Z_p) \cong \operatorname{Ext}_{A^{\mathscr{M}}}^{s-1,t+n}(M(n), Z_p)$$
,

for $t \neq s$. Let C(n) be a minimal resolution of M(n). By virtue of Theorem 3 we can prove the vanishing theorem for Z_p by analysing C(n). Namely, $\operatorname{Ext}_{A\mathscr{A}}^{s-1,t+n}(M(n), Z_p)(t \neq s)$ vanishes for $s > \varphi_n(t-s)$. Furthermore we can observe the periodicity phenomenon in a range near the vanishing line. In fact, by Theorems 3, 4 and 5 we have two periodicity operators P and Q of bidegree (p, 2p(p-1) + p)and (2, 2p(p-1)), respectively.

For lower dimensional sphere we shall give periodic families. Let $1 < m \leq p+1$. In $E_2^{s,t+2m-1}(S^{2m-1})$ there appear nontrivial elements when (s, t-s) is as follows:

(i)
$$(1, q - 1)$$

(1, $pq - 1$) for $m = p + 1$,

(ii)
$$(s, sq - 1), (s, (m + s - 2)q - 2)$$

for $s = 2, \dots, p - m + 1$ and $m \neq p, p + 1$,

MASAMITSU MORI

$$\begin{array}{l}(s,\,sq\,-\,1),\,(s,\,pq\,-\,2),\,(s,\,pq\,-\,1)\\ \mbox{for}\quad s=\,p\,-\,m\,+\,2 \ \ \mbox{and}\quad m\neq p\,+\,1\,\,,\\(s,\,sq\,-\,1),\,(s,\,pq\,-\,2),\,(s,\,pq\,-\,1),\,(s,\,(m\,+\,s\,-\,2)q\,-\,2)\\ \mbox{for}\quad s=\,p\,-\,m\,+\,3,\,\cdots,\,p\,-\,1 \ \ \mbox{and}\quad p\neq 3\,\,,\\(p,\,pq\,-\,2),\,(p,\,pq\,-\,1),\,(p,\,(p\,+\,m\,-\,2)q\,-\,2)\,\,,\\(p\,+\,1,\,(p\,+\,1)q\,-\,1),\,(p\,+\,1,\,(p\,+\,m\,-\,1)q\,-\,2)\,\,,\end{array}$$

where q = 2(p-1). Applying the periodicity operators P and Q repeatedly, we can determine the behavior of all $E_2(S^{2m-1})$ near the vanishing line. (Possibly other elements appear in a range apart from the vanishing line when we apply the iteration of the operator Q.)

We next suppose that *n* is even. Let $L(n; t)(0 < t \leq \infty)$ be an unstable *A*-module with elements $\sigma_n, (\sigma_n)^p, \dots, (\sigma_n)^{p^t}$ where deg $\sigma_n = n$. By the long exact sequence induced from short exact sequences

$$\begin{array}{l} 0 \longrightarrow M(n) + L(p^{t+1}; \ \infty) \longrightarrow N(n) \longrightarrow L(n; \ t) \longrightarrow 0 \ , \\ 0 \longrightarrow M(p^{t+1}n) \longrightarrow N(p^{t+1}n) \longrightarrow L(p^{t+1}n; \ \infty) \longrightarrow 0 \ , \end{array}$$

we have an isomorphism

$$\mathrm{Ext}_{A_{\mathscr{M}}}^{s,t+n}(L(n;\,t),\,Z_p) \ \cong \mathrm{Ext}_{A_{\mathscr{M}}}^{s-1,\,t+n}(M(n),\,Z_p) + \,\mathrm{Ext}_{A_{\mathscr{M}}}^{s-2,\,t+n}(M(p^{t+1}n),\,Z_p) \;,$$

for $t \neq s, s + (p^{t+1} - 1)n - 1$. Thus in a similar way we have the required results for L(n; t).

Now we have shown that

$$q^*: H^s(V(N))_{k+n} \longrightarrow H^s(T(N)_{k+n})$$

is an isomorphism for $s > \varphi_n(k)$, when $N^* = H^*(S^n; Z_p) = Z_p(n \text{ odd})$ and $N^* = L(n; t)(n \text{ even})$. The general case follows inductively using the five lemma.

References

[1] J. F. Adams, Stable homotopy theory, third edition, Lecture Notes in Math. No. 3, Springer-Verlag, 1969.

[2] A. K. Bousfield, A vanishing theorem for the unstable Adams spectral sequence, Topology, 9 (1970), 337-344.

[3] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector and J. W. Schlesinger, The mod p lower central series and the Adams spectral sequence, Topology, 5 (1966), 331-342.

[4] A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology, 11 (1972), 79-106.

[5] A. Liulevicius, Zeros of the cohomology of the Steenrod algebra, Proc. Amer. Math. Soc., 14 (1963), 972–976.

[6] _____, The cohomology of a subalgebra the Steenrod algebra, Trans. Amer. Math. Soc., 104 (1962), 443-449.

480

[7] W. S. Massey and F. P. Peterson, The mod 2 cohomology structure of certain fiber spaces, Mem. Amer. Math. Soc., 74 (1967).

[8] S. Oka, Some exact sequences of modules over the Steenrod algebra, Hiroshima Math. J., 1 (1971), 109-121.

[9] H. Toda, p-primary components of homotopy groups I, Mem. Coll. Sci. Univ. Kyoto, **31** (1958), 129-142.

Received January 30, 1977.

University of the Ryukyus Naha, Okinawa, Japan