A VANISHING THEOREM FOR THE MOD p MASSEY-PETERSON SPECTRAL SEQUENCE

Masamitsu Mori

Abstract

A vanishing theorem and periodicity theorem for the classical mod 2 Adams spectral sequence were originally proved by Adams [1]. The results were extended to the unstable range by Bousfield [2]. The purpose of this paper is to show the analogue of Bousfield's work for the $\bmod p$ unstable Adams spectral sequence of Massey-Peterson type (called the $\bmod p$ Massey-Peterson spectral sequence), where p is an odd prime. The results generalized those obtained by Liulevicius [5], [6] to the unstable range. As an immediate topological application we have the estimation of the upper bounds of the orders of elements in the p-primary component of the homotopy groups of, for example, an odd dimensional sphere, Stiefel manifold, or H-space.

1. The vanishing theorem. Let A denote the $\bmod p$ Steenrod algebra. Let $A \mathscr{M}$ the category of unstable left A-modules and $\mathscr{M} A$ thecategory of unstable right A-modules. We may define Ext ${ }_{A \mathscr{H}}^{8}, s \geqq 0$, as the s th right derived functor of $\mathrm{Hom}_{\mathcal{M}}$, and similarly define Ext ${ }_{\mathcal{K} \mathcal{A}}$, since $A \mathscr{M}$ and $\mathscr{M} A$ are abelian categoriesw ith enough projectives. Note that, if $M \in A \mathscr{M}$ is of finite type, then

$$
\operatorname{Ext}_{A \mathscr{M}}\left(M, Z_{p}\right)=\operatorname{Ext}_{\mathscr{M} A}\left(Z_{p}, M^{*}\right) .
$$

Recall the $\bmod p$ Massey-Peterson spectral sequence (see, for example, [4]). Let X be a simply connected space with $\pi_{*}(X)$ of finite type. Suppose that $H^{*}\left(X ; Z_{p}\right) \cong U(M), M \in A \mathscr{M}$, where $U(M)$ is the free unstable A-algebra generated by M. Then there is a spectral sequence $\left\{E_{r}(X)\right\}$ with

$$
d_{r}: E_{r}^{s, t}(X) \longrightarrow E_{r}^{s+r, t+r-1}(X),
$$

such that

$$
E_{2}^{s, t}(X) \cong \operatorname{Ext}_{A \cdot \mathscr{k}}^{s, t}\left(M, Z_{p}\right),
$$

and

$$
E_{\infty}(X) \cong \operatorname{Gr} \pi_{*}(X) /(\text { torsion prime to } p)
$$

Let Λ be the bigraded differential algebra over Z_{p} introduced by Bousfield et al [3], which has multiplicative generators λ_{i} of
bidegree ($1,2 i(p-1)-1)$ for $i>0$ and μ_{i} of bidegree ($1,2 i(p-1)$) for $i \geqq 0$.

For $N \in \mathscr{M} A$, let $V(N)^{s}$ be the subspace of $N \otimes \Lambda^{s}$ generated by all $x \otimes \nu_{I}$ with $\nu_{I}=\nu_{i_{1}} \cdots \nu_{i_{s}}$ allowable and $\operatorname{deg} x \geqq 2 i$ if $\nu_{i_{1}}=\lambda_{i_{1}}$ and $\operatorname{deg} x \geqq 2 i_{1}+1$ if $\nu_{i_{1}}=\mu_{i_{1}}$. Then $V(N)$ is the cochain complex with

$$
\begin{aligned}
\delta\left(x \otimes \nu_{I}\right)= & (-1)^{\operatorname{deg} x} \sum_{i>0} x \rho^{i} \otimes \lambda_{i} \nu_{I} \\
& +\sum_{i \geq 0} x \beta \rho^{i} \otimes \mu_{i} \nu_{I}+(-1)^{\operatorname{deg} x} x \otimes \partial \nu_{I}
\end{aligned}
$$

Here $x \otimes \nu_{I}$ is of bidegree (s, t) with $t=s+\operatorname{deg} x+\operatorname{deg} \nu_{I}$. Recall that for $N \in \mathscr{M} A$

$$
\operatorname{Ext}_{\mathscr{A} A}^{s, t}\left(Z_{p}, N\right) \cong H^{s}(V(N))_{t-s}
$$

Let $O(N)$ be the subcomplex of $V(N)$ generated by all $x \otimes \nu_{I} \in$ $V(N)^{s}$ with $\nu_{I}=\nu_{i_{1}} \cdots \nu_{i_{s}}$ allowable and $\nu_{i_{s}}=\lambda_{i_{s}}$. Let $T(N)$ be the quotient complex of $V(N)$ such that

$$
T(N)^{s}= \begin{cases}N \otimes \mu_{0}^{s} & \text { for } \quad s=0,1, \\ N \otimes \mu_{0}^{s}+\sum_{t>0} N_{2 t}^{s} \otimes \lambda_{t} \mu_{0}^{s-1} & \text { for } \quad s \geqq 2\end{cases}
$$

Then we have a long exact sequence

$$
\begin{aligned}
\cdots \longrightarrow H^{s-1}(T(N)) & \xrightarrow{\delta} H^{s}(O(N)) \xrightarrow{j^{*}} H^{s}(V(N)) \\
& \xrightarrow{q^{*}} H^{s}(T(N)) \longrightarrow \cdots,
\end{aligned}
$$

which is induced from the natural isomorphism

$$
H^{*}(O(N)) \cong H^{*}(\operatorname{Ker} q)
$$

where $j: O(N) \rightarrow V(N)$ and $q: V(N) \rightarrow T(N)$ are the natural maps. Remark that $H^{*}(T(N))$ consists of towers in the sense that

$$
H^{s}(T(N)) \cong H^{s+1}(T(N))
$$

for $s \geqq 2$, and thus $H^{*}(T(N))$ is easily determined.
Definition. A function $\varphi_{n}(k), n \geqq 2, k \geqq 0$, is defined as follows. If $n=2,3,4$,

$$
\varphi_{n}(k)= \begin{cases}{[(k+2) / 2(p-1)]} & \text { for } \quad k \geqq 2(p-1)-1 \\ 0 & \text { for } k<2(p-1)-1\end{cases}
$$

where $[x]$ is the integer part of x, and if $n \geqq 5$,

$$
\varphi(k)=\varphi_{n}(k)=i
$$

where

$$
\begin{aligned}
& 2 i(p-1) \leqq k<2(i+1)(p-1)-1 \text { if } \\
& i \not \equiv-1,0 \bmod p \\
& 2 i(p-1) \leqq k<2(i+1)(p-1)-2 \text { if } i \equiv-1 \bmod p \\
& 2 i(p-1)-2 \leqq k<2(i+1)(p-1)-1 \text { if } \quad i \equiv 0 \bmod p
\end{aligned}
$$

Now we state our main theorem.
Theorem 1 (Vanishing). Let $N \in \mathscr{A} A$ with $N_{i}=0$ for $i<n$, where $n \geqq 2$. Then

$$
\operatorname{Ext}_{\mathscr{M} A}^{s, s+k+n}\left(Z_{p}, N\right) \cong H^{s}(V(N))_{k+n} \xrightarrow{q^{*}} H^{s}(T(N)),
$$

is an isomorphism for $s>\varphi_{n}(k)$.
This will be proved in $\S 4$.
By virtue of our vanishing theorem the calculation of $H^{*}(V(N))$ is reduced to that of $H^{*}(O(N))$ in a large extent. Note that q^{*} is epimorphic when $U(M)$ is generated by a single element, where $M=N$.*

As an immediate topological corollary we have.
Corollary 2. Let X be a simply connected space with $\pi_{*}(X)$ of finite type. Suppose that $H^{*}\left(X ; Z_{p}\right) \cong U(M)$, where M is an unstable A-module. If $M^{i}=0$ for $i<n$, then the orders of elements in the p-primary component of $\pi_{k+n}(X)$ are at most $p^{\varphi_{n}(k)}$.

This may be applied, for example, when X is an odd dimensional sphere, Stiefel manifold, or H-space.

Remark. If $N_{i}=0, i>m$, for some m, then $H^{s}(N)_{t}$ is zero for dimensional reason when t is large with respect to s. Hence in this case Corollary 2 is slightly improved.
2. Periodicity theorems. For a module $M \in A \mathscr{M}$ we define the β-cohomology by $H_{\beta}(M)=\operatorname{Ker} \beta / \operatorname{Im} \beta$.

Definition. A module $M \in A \mathscr{M}$ is called β-trivial if

$$
\rho^{i}: M^{2 i} \longrightarrow H_{\beta}^{2 i p}(M),
$$

is an isomorphism for all i and $H_{\beta}^{k}(M)=0$ for $k \not \equiv 0 \bmod 2 p$.
Remark that $M \in A \mathscr{M}$ is β-trivial if and only if $N=M^{*} \in \mathscr{M} A$ is towerless, i.e., $H^{s}(T(N))=0$ for $s>0$.

Let \mathscr{G} denote the category of graded Z_{p}-modules. Let $L_{s} F$ denote the s th left derived functor of a functor $F: A \mathscr{M} \rightarrow \mathscr{G}$.

Theorem 3 (Periodicity). Let $F: A \mathscr{M} \rightarrow \mathscr{G}$ be a functor such that $F(M)=M / \beta M+\rho^{1} M$. If $M \in A \mathscr{M}$ is β-trivial, then there is a natural map

$$
P: L_{s} F(M)^{t} \longrightarrow L_{s+p} F(M)^{t+2 p(p-1)+p},
$$

such that P is an isomorphism for $s \geqq 2$ and a monomorphism for $s=1$.

This will be proved in §3.
Additionally, we give here such a kind of periodicity theorems.
Theorem 4. Let $G_{i}(M)=M / \rho^{i} M$ for $M \in A \mathscr{L}$, where $0<i<p$. Then there is a natural map

$$
Q: L_{s} G_{i}(M)^{t} \longrightarrow L_{s+2} G_{i}(M)^{t+2 p(p-1)},
$$

such that Q is an isomorphism for $s \geqq 2$ and a monomorphism for $s=1$.

Theorem 5. Let $G_{i}(M)=M / \beta M+\rho^{i} M$ for $M \in A \mathscr{M}$, where $0<$ $i<p$. If $M \in A \mathscr{A}$ is β-trivial, then there is a natural map

$$
Q: L_{s} G_{i}(M)^{t} \longrightarrow L_{s+2} G_{i}(M)^{t+2 p(p-1)},
$$

such that Q is an isomorphism for $s \geqq 2$ and a monomorphism for $s=1$.

Theorem 6. Let $G(M)=M / \rho^{1}+\beta \rho^{1} M$ for $M \in A \mathscr{M}$. If $M \in A, \mathscr{M}^{\prime}$ is β-trivial, then there is a natural map

$$
R: L_{s} G(M)^{t} \longrightarrow L_{s+2} G(M)^{t+4 p-2}
$$

such that R is an isomorphism for $s \geqq 2$ and a monomorphism for $s=1$.
3. Proofs of periodicity theorems. Suppose given a circular sequence of functors from $A \mathscr{L}$ to \mathscr{G} and natural transformations,

satisfying $R_{i} R_{i+1}=0$ for $i=0, \cdots, k-1$. Define functors $\operatorname{Ker} R_{i}$, $\operatorname{Im} R_{i}$, Coker $R_{i}, H_{i}=\operatorname{Ker} R_{i} / \operatorname{Im} R_{i+1}$ in a usual way.

Definition. A module $M \in A \mathscr{M}$ is called trivial for the diagram (\#) if

$$
L_{s} A_{i}(M)=L_{s} H_{i}(M)=0,
$$

for all $s>0$ and $i=0, \cdots, k-1$.
Lemma. If $M \in A \mathscr{M}$ is trivial for the diagram (\#), then there is a natural map
$P: L_{s}$ Coker $R_{0}(M)^{t} \longrightarrow L_{s+k}$ Coker $R_{0}(M)^{t+h}$,
such that P is an isomorphism for $s \geqq 2$ and a monomorphism for $s=1$. Here $h=\sum_{i=0}^{k-1} h_{i}, h_{i}=\operatorname{deg} R_{i}$.

Proof. Let $h(a)=\sum_{i=a}^{k-1} h_{i}$. Since M is trivial for (\#), we have the following natural isomorphism

$$
\begin{aligned}
& L_{s+k} \operatorname{Coker} R_{0}(M)^{t+h} \cong L_{s+k-1} \operatorname{Im} R_{0}(M)^{t+h} \\
& \quad \cong L_{s+k-2} \operatorname{Ker} R_{0}(M)^{t+h(1)} \cong \cdots \\
& \quad \cong L_{s} \operatorname{Ker} R_{k-2}(M)^{t+h(k-1)} \cong L_{s} \operatorname{Im} R_{k-1}(M)^{t+h(k-1)}
\end{aligned}
$$

On the other hand the natural map

$$
L_{s} \operatorname{Coker} R_{0}(M)^{t} \longrightarrow L_{s} \operatorname{Im} R_{k-1}(M)^{t+k(k-1)},
$$

is an isomorphism for $s \geqq 2$ and a monomorphism for $s=1$.
We shall use the following circular sequence due to Toda [9] (see, also, Oka [8]) to prove the periodicity theorems.

where $R_{i}=(i+1) \beta \rho^{1}-i \rho^{1} \beta, R=\left(\rho^{1} \beta, \rho^{1}\right)$ and $R^{\prime}=\rho^{1} \beta-\beta \rho^{1} \beta$.

$$
\begin{equation*}
M \underset{\rho^{p-i}}{\stackrel{\rho^{i}}{\leftrightarrows}} M \quad \text { for } \quad 0<i<p \tag{3.2}
\end{equation*}
$$

$$
\begin{align*}
& M / R_{i} M \underset{\rho^{p-i}}{\stackrel{\rho^{i}}{\rightleftarrows}} M / \beta M \quad \text { for } \quad 0<i<p, \tag{3.3}\\
& M / \rho^{1} M \underset{\rho^{1}}{\stackrel{\rho^{1}}{\rightleftarrows}} M / \rho^{1} M . \tag{3.4}
\end{align*}
$$

Here $M \in A \mathscr{M}$ and the maps are induced from the left actions.
Proof of Theorem 3. We shall use the diagram (3.1). For convenience, we put $R_{0}=R_{p}=R, R_{p-1}=R^{\prime}$. Let $H_{i}(M)$ denote the cohomology $\operatorname{Ker} R_{i} / \operatorname{Im} R_{i+1}$. If M is a free unstable A-module, then:

$$
\begin{array}{ll}
\rho^{s}:(M / \beta M)^{2 s} \cong H_{0}^{2 s p}(M) & \text { if } s \equiv-1 \bmod p \tag{i}\\
\rho^{s}: M \cong H_{0}^{2 s p}(M) & \text { if } s \not \equiv-1 \bmod p, \\
\rho^{s}:(\beta M)^{2 s+1} \cong H_{0}^{2 t p+1}(M) & \text { if } s \not \equiv-1 \bmod p,
\end{array}
$$

(ii) for $i=1, \cdots, p-2$,

$$
\rho^{s}:(M / \beta M)^{2 s} \cong H_{i}^{2 s p}(M),
$$

$$
\rho^{s}+\beta \rho^{s}:(\beta M)^{2 s+2}+(M / \beta M)^{2 s+1} \cong H_{i}^{2 s p+2}(M),
$$

$$
\rho^{s}:(M / \beta M)^{2 s+2} \cong H_{i}^{2 s p+3}(M)
$$

(iii) $\rho^{s}+0:(M / \beta M)^{2 s}+0 \cong H_{p-1}^{2 s p}(M)$,

$$
\begin{gathered}
0+\rho^{s}: 0+(M / \beta M)^{2 s+j} \cong H_{p-1}^{2 s p+j+1}(M) \\
\text { for } j=0,1 \text { if } s \equiv 0 \bmod p, \\
\rho^{s}+\rho^{s}:(\beta M)^{2 s+j+1}+(M / \beta M)^{2 s+j} \cong H_{p-1}^{2 s p+j+1}(M) \\
\\
\text { for } j=0,1 \text { if } s \not \equiv 0 \bmod p, \\
0+\rho^{s}: 0+(M / \beta M)^{2 s+2} \cong H_{p-1}^{2 s+3}(M) .
\end{gathered}
$$

(iv) otherwise $H_{i}^{k}(M)=0$.

This unstable version of Toda's exactness theorem is shown by long but straightforward computations. Now Theorem 3 is proved by applying lemma.

By using the diagrams (3.2), (3.3) and (3.4), Theorems 4, 5 and 6 follow in a similar way, and thus we only state the following facts.

Let $M \in A \mathscr{M}$ be a free unstable module. Fix i such that $0<i<p$.

If $H(M)=\operatorname{Ker}\left(\rho^{i}: M \rightarrow M\right) / \operatorname{Im}\left(\rho^{p-i}: M \rightarrow M\right)$, then:
$\begin{array}{rll}\text { (i) } \quad \rho^{s}: M^{2 s+j} \cong H^{2 s p+j}(M) & \text { for } \quad j=0,1, \\ \beta \rho^{s}+\rho^{s}: M^{2 s+j-1}+M^{2 s+j} \cong H^{2 s p+j}(M) & \text { for } j=2, \cdots, 2 i-1, \\ \beta \rho^{s}: M^{2 s+j-1} \cong H^{2 s p+j}(M) & \text { for } \quad j=2 i, 2 i+1 .\end{array}$
(ii) otherwise $H^{k}(M)=0$.

If $H(M)=\operatorname{Ker}\left(\rho^{p-i}: M / \beta M \rightarrow M / R_{i} M\right) / \operatorname{Im}\left(\rho^{i}: M / R_{i} M \rightarrow M / \beta M\right)$, then:
(i) $\rho^{s}:(M / \beta M)^{2 s+j} \cong H^{2 s p+j}(M)$
for $j=0,1, \cdots, i-1$ and $s \equiv 0,1, \cdots, i-1 \bmod p$,
(ii) otherwise $H^{k}(M)=0$.

Next put $H(M)=\operatorname{Ker}\left(\rho^{i}: M / R_{i} M \rightarrow M / \beta M\right) / \operatorname{Im}\left(\rho^{p-i}: M / \beta M \rightarrow\right.$ $\left.M / R_{i} M\right)$, then:
(i) if $s \equiv 0 \bmod p$,

$$
\rho^{s}:(M / \beta M)^{2 s+j} \cong H^{2 s p+j}(M) \quad \text { for } \quad j=0,1
$$

$\beta \rho^{s}+\rho^{s}:(M / \beta M)^{2 s+j-1}+(M / \beta M)^{2 s+j} \cong H^{2 s p+j}(M)$ for $j=2, \cdots, 2 i-1$,

$$
\beta \rho^{s}:(M / \beta M)^{2 s+j-1} \cong H^{2 s p+j}(M) \quad \text { for } \quad j=2 i, 2 i+1
$$

(ii) if $s \equiv 1, \cdots, p-i-1 \bmod p$,

$$
\begin{aligned}
\rho^{s}:(M / \beta M)^{2 s+j} \cong H^{2 s p+j}(M) & \text { for } j=0,1, \\
\beta \rho^{s}+\rho^{s}: M^{2 s+j-1}+(M / \beta M)^{2 s+j} \cong H^{2 p+i}(M) & \text { for } j=2, \cdots, 2 i-1, \\
\beta \rho^{s}: M^{2 s+j-1} \cong H^{2 s p+j}(M) & \text { for } \quad j=2 i, 2 i+1,
\end{aligned}
$$

(iii) if $s \equiv p-i \bmod p$,

$$
\beta \rho^{s}: M^{2 s+j-1} \cong H^{2 s p+j}(M) \quad \text { for } \quad j=2, \cdots, 2 i-1
$$

(iv) otherwise $H^{k}(M)=0$.

Finally, if $H(M)=\operatorname{Ker}\left(\beta \rho^{1}: M / \rho^{1} M \rightarrow M / \rho^{1} M\right) / \operatorname{Im}\left(\beta \rho^{1}: M / \rho^{1} M \rightarrow\right.$ $\left.M / \rho^{1} M\right)$, then:

$$
\begin{gather*}
\rho^{p s}: M^{2 s+j} \cong H^{2 s p^{2+j}}(M) \quad \text { for } \quad j=0,1, \tag{i}\\
\beta \rho^{p s}+\rho^{p s}:(M / \beta M)^{2 s+1}+M^{2 s+2} \cong H^{2 s p^{2}+2}(M),
\end{gather*}
$$

(ii) otherwise $H^{k}(M)=0$.
4. Proof of the vanishing theorem. Let $F(n)$ denote a free unstable A-module on one generator c_{n}. We define an unstable A module $N(n)$ to be the quotient of $F(n)$ by the relation $\beta \iota_{n}=0$. Next define $M(n)$ to be the subcomplex of $N(n)$ by ommitting the ι_{n} from $N(n)$ if n odd and ommitting the $\iota_{n},\left(\iota_{n}\right)^{p}, \cdots,\left(\iota_{n}\right)^{p^{t}}, \cdots$ from $N(n)$ if n even. Note that $M(n)$ is β-trivial.

First we suppose that n is odd. Then by the long exact sequence induced from a short exact sequence

$$
0 \longrightarrow M(n) \longrightarrow N(n) \longrightarrow Z_{p} \longrightarrow 0,
$$

we have an isomorphism

$$
E_{2}^{s, t+n}\left(S^{n}\right)=\operatorname{Ext}_{A \mathscr{M}}^{s, t+n}\left(Z_{p}, Z_{p}\right) \cong \operatorname{Ext}_{A \mathscr{A}}^{s-1, t+n}\left(M(n), Z_{p}\right),
$$

for $t \neq s$. Let $C(n)$ be a minimal resolution of $M(n)$. By virtue of Theorem 3 we can prove the vanishing theorem for Z_{p} by analysing $C(n)$. Namely, $\operatorname{Ext}_{A, k}^{s-1, t+n}\left(M(n), Z_{p}\right)(t \neq s)$ vanishes for $s>\varphi_{n}(t-s)$. Furthermore we can observe the periodicity phenomenon in a range near the vanishing line. In fact, by Theorems 3,4 and 5 we have two periodicity operators P and Q of bidegree ($p, 2 p(p-1)+p$) and $(2,2 p(p-1)$), respectively.

For lower dimensional sphere we shall give periodic families. Let $1<m \leqq p+1$. In $E_{2}^{s, t+2 m-1}\left(S^{2 m-1}\right)$ there appear nontrivial elements when ($s, t-s$) is as follows:
(i) $(1, q-1)$

$$
(1, p q-1) \quad \text { for } \quad m=p+1
$$

$$
\begin{align*}
& (s, s q-1),(s,(m+s-2) q-2) \tag{ii}\\
& \text { for } s=2, \cdots, p-m+1 \quad \text { and } \quad m \neq p, p+1
\end{align*}
$$

$$
\begin{aligned}
& (s, s q-1),(s, p q-2),(s, p q-1) \\
& \quad \text { for } s=p-m+2 \text { and } m \neq p+1, \\
& (s, s q-1),(s, p q-2),(s, p q-1),(s,(m+s-2) q-2) \\
& \quad \text { for } s=p-m+3, \cdots, p-1 \text { and } p \neq 3, \\
& (p, p q-2),(p, p q-1),(p,(p+m-2) q-2), \\
& (p+1,(p+1) q-1),(p+1,(p+m-1) q-2)
\end{aligned}
$$

where $q=2(p-1)$. Applying the periodicity operators P and Q repeatedly, we can determine the behavior of all $E_{2}\left(S^{2 m-1}\right)$ near the vanishing line. (Possibly other elements appear in a range apart from the vanishing line when we apply the iteration of the operator Q.)

We next suppose that n is even. Let $L(n ; t)(0<t \leqq \infty)$ be an unstable A-module with elements $\sigma_{n},\left(\sigma_{n}\right)^{p}, \cdots,\left(\sigma_{n}\right)^{p^{t}}$ where $\operatorname{deg} \sigma_{n}=$ n. By the long exact sequence induced from short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow M(n)+L\left(p^{t+1} ; \infty\right) \longrightarrow N(n) \longrightarrow L(n ; t) \longrightarrow 0, \\
& 0 \longrightarrow M\left(p^{t+1} n\right) \longrightarrow N\left(p^{t+1} n\right) \longrightarrow L\left(p^{t+1} n ; \infty\right) \longrightarrow 0,
\end{aligned}
$$

we have an isomorphism

$$
\begin{aligned}
& \operatorname{Ext}_{A \neq M}^{s, t+n}\left(L(n ; t), Z_{p}\right) \\
& \quad \cong \operatorname{Ext}_{A \neq A}^{s-1, t+n}\left(M(n), Z_{p}\right)+\operatorname{Ext}_{A \mathscr{R}}^{s-2, t+n}\left(M\left(p^{t+1} n\right), Z_{p}\right),
\end{aligned}
$$

for $t \neq s, s+\left(p^{t+1}-1\right) n-1$. Thus in a similar way we have the required results for $L(n ; t)$.

Now we have shown that

$$
q^{*}: H^{s}(V(N))_{k+n} \longrightarrow H^{s}\left(T(N)_{k+n}\right.
$$

is an isomorphism for $s>\varphi_{n}(k)$, when $N^{*}=H^{*}\left(S^{n} ; Z_{p}\right)=Z_{p}(n$ odd $)$ and $N^{*}=L(n ; t)(n$ even $)$. The general case follows inductively using the five lemma.

References

[1] J. F. Adams, Stable homotopy theory, third edition, Lecture Notes in Math. No. 3, Springer-Verlag, 1969.
[2] A. K. Bousfield, A vanishing theorem for the unstable Adams spectral sequence, Topology, 9 (1970), 337-344.
[3] A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector and J. W. Schlesinger, The mod p lower central series ard the Adams spectral sequence, Topology, 5 (1966), 331-342.
[4] A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology, 11 (1972), 79-106.
[5] A. Liulevicius, Zeros of the cohomology of the Steenrod algebra, Proc. Amer. Math. Soc., 14 (1963), 972-976.
[6] -, The cohomology of a subalgebra the Steenrod algebra, Trans. Amer. Math. Soc., 104 (1962), 443-449.
[7] W. S. Massey and F. P. Peterson, The mod 2 cohomology structure of certain fiber spaces, Mem. Amer. Math. Soc., 74 (1967).
[8] S. Oka, Some exact sequences of modules over the Steenrod algebra, Hiroshima Math. J., 1 (1971), 109-121.
[9] H. Toda, p-primary components of homotopy groups I, Mem. Coll. Sci. Univ. Kyoto, 31 (1958), 129-142.

Received January 30, 1977.
University of the Ryukyus
Naha, Okinawa, Japan

