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SYMMETRIC SUBLATTICES OF A NOETHER LATTICE

MICHAEL E. DETLEFSEN

In this note we investigate questions about partitions
of positive integers arising from multiplicative lattice theory
and prove that the sublattice of RL{At) (Alr -",Ak is a
prime sequence in a local Noether lattice) generated by the
elementary symmetric elements in the A/s is a π-lattice

0* Introduction* If Aίf A2, -'-,Ak is a prime sequence in L,
a local Noether lattice, then the multiplicative sublattice it generates
is isomorphic to RLkf the distributive local Noether lattice with
altitude k. We denote this sublattice of L by RL(Ai). In RL(Ai),
every element is a finite join of products A[ιAl2 Ar

k

k for (rlf ,rk) —
(Ti) a &-tuple of nonnegative integers. Minimal bases for an element,
T, in RL(Ai) are unique and determined by the exponent fe-tuples
of the elements in the minimal base for T. We examine the sub-
lattice of L generated by the elementary symmetric elements in
the prime sequence Aίf •••, Ak. This multiplicative sublattice is a
7Γ-domain (Theorem 7.1).

Unless otherwise stated, all /b-tuples will be nonnegative integers.
A Λ-tuple fa) is monotone if and only if rt i> rt+1 for 1 ^ i > k.
(Ti) = (s^ and (r<) + (s<) refer to componentwise equality and addi-
tion respectively. (77) ^ P ( A ) means r€ ^ Si for i — 1, ••• , Λ. We
write (r, ) ^ z (βj to mean the first nonzero entry in (r, — 8,) is strictly
positive (lexicographic order). If (et) is a Λ-tuple we write e* for
Σ?=t β i a n d e** for Σ i=ϊ β ? Throughout this note Au •••, Afc is a
prime sequence in L and RL(Ai) is the multiplicative sublattice it
generates.

1* The symmetric sublattice* If T is a principal element in
RL(Ai) and g is in Sk9 the permutation group on 1, •••,&, we define
Tg(Tg) to be the principal element in RL{At) obtained by replacing
A\{i) by the factor A%(A?βW)) in T for each i from 1 to k. If
d V V Cp is a minimal base for C in i ? ! / ^ ) , then C^ =
(fii)g V V (CP)Λ. C5' is defined similarly. Note that for each g in
Sfc and for C in JBLίΛ), (Cg)

9 = (C9)g = C. Hence C, - C " 1. An
element C in RL(AX) is a symmetric element if and only iί Cg — C
for each ^ in SA.

THEOREM 1.1. I%e set of all symmetric elements in RL(Ai)
forms a multiplicative sublattice of RL(A%) which is closed under
residuation.

365
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Proof. We show that Fg, the set of elements fixed by the map
Φφ from RL(Ai) to RL{At) defined Cv->C9 for g in Sk is a residuated

multiplicative lattice. For then the set of symmetric elements which
is the intersection of all of the Fg's for g in Sk is also a multiplica-
tive sublattice.

Let g be any permutation in Sk and φ be defined as above, φ
is well defined and preserves join by definition. Since (Cg)

9 = (C9)g = C
for each C in RL{A%)f φ is a bijection.

Let B = 77-4.** and C = /Li-* be principal elements in RL(Ai).
Then (BCY = 77A*^ = ΠAh

gU(i) /7it?-i(<) - £ ' Cg and (B Λ C)' =
(ΠAΓx{bi'Ci))g = ZTil^ix

(<

(,6<'ei> - ΠAb

gUa) A ΠAc

gU{i) = B9 A C9. Since ele-

ments in RL(Ai) are joins of principal elements and multiplication
and meet distribute over join, φ preserves products and meet.

Finally, the fact that φ preserves residuals and that Fg is a
multiplicative sublattice of RL(At) readily follows from the fact that
φ is a multiplicative lattice isomorphism.

REMARK. If B is a principal element in RL{At) such that Bg == B,
then B is a principal element in Fg. However, Fg contains enough
principal elements to make it a Noether lattice only if g is the
identity in Sk (cf § 7) for k > 1.

2* Elementary symmetric elements* For t — 1, , k, at, the
tth elementary symmetric element in A19 , Ak is the join of all
products of Alf •••, Ak with t distinct factors. In this section we
investigate the chain 0 < ak < < αx < I of elementary symmetric
elements in RL(Ai).

We say the weight of a principal element in RL{At) is the maxi-
mum of its exponents. If J is a ί-tuple (iw •• ,ί ί) with is < i i + ι

and ί <; A; then we denote by (J) the set of all (k — ί)-tuples
(ii, , j\-t) such that {j\, , ifc_ί} Π {ilf , ΐ j is empty.

THEOREM 2.1. ΓΛβ elementary symmetric elements together with
0 αwd 7 form a sublattice closed under residuation. In particular

λ (I if t^p

(at %f t > p .

Proof. From [8, p. 84] we have for t > p

(αt: α,) - V (Jt) V (J2) V V (Jq)(Ah A,2. . Aίs A Λ AH . A,s)

where there are C(fc, p) (the binomial coefficient) join symbols each
having indices in (Ji), , (Jff) for J{ one of the C(A;, p) ordered p-
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tuples which can be chosen from {1, •••,&}. Each intersection has
weight one and by symmetry, (at: ap) = ar for some r. Since at ^
(at: ap) we only need show that at-γ ^ (at: ap).

Let Ah Ah_ι be any element in the minimal base for at^ and
Ah Aip be the product of the first p of these (p ^ t — 1). Then
their product A^ A\p Ait^ is an element which is not less
than or equal to any element in the minimal base for at. Hence
α,_! S iβt' a>P)

REMARK. From the Reciprocity Theorem [9, Theorem 5.1] we
can define a multiplication on the chain of elementary symmetric
elements by (at: ap) ^ as if and only if at ^ ap asf i.e., apa8 = am^{P}S}.
This new multiplication makes every element in the chain idempotent
and the order becomes a ^ b if and only if a b = a for nonzero
elements different from /.

3* The minimal base for πa\ι\ majorizatioru In this section we
determine the minimal base for a product of the elementary sym-
metric elements in RL(AX). We first dispense with the powers of
the ax.

LEMMA 3.1. For t < k, at is the join of all powers of the A/s
τvhose exponents are bounded above by e and whose exponent sum
is te. al = A{ Al.

Proof. For k > 1, let (kt) be any ά-tuple of nonnegative integers
summing to te and bounded above by β. By symmetry we assume
(kt) is monotone. There are at least t nonzero fc/s no more than t
of which are equal to e. Let

[kt - 1 1 ^ i ^ t (1 1 ^ i ^ t
V; = \ and wt — \

[ki t <i^k (0 t < i £ k .

Then (vt) + (w^ = (kτ) and by induction ΠA\ι and ΠA"* are elements
in the minimal base for αp 1 and at respectively. Hence their pro-
duct which has (kt) as its exponent &-tuple is in the minimal base
for at. The converse follows by writing down a product in a\ and
observing the conditions hold.

LEMMA 3.2. ΠA^ is in the minimal base for Πal* if and only
if there is a nonnegative k x k matrix whose ith row sum is ieif

whose ith row is bounded above by ei9 and whose jth column sum
is r3:
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Proof. If ΠAy = Ci Ck where Ct is in the minimal base for
αj', then Ct = i7A;^ where r<y <; e* and Σy r<y = ie,. Then /7,C, =
ΠsA

rj> where rό = Σt r*; f° r i = 1> •••,&. foy) is the desired matrix.
The converse follows easily.

The existence of the matrix described in Lemma 3.2 is determined
by the following generalization of the Gale-Ryser theorem on (0, 1)-
matrices [7, p. 63].

DEFINITION 3.3. If 2)1 = (e19 e2, , ek) is a A -tuple of nonnegative
integers, an Wl-matrix is a matrix of nonnegative integers with k
rows whose ΐth row entries are bounded above by e, A k x t 2M-
matrix is maximal with row sums (/*) if each row is maximal in
the lexicographic order of ί-tuples.

In Lemma 3.4 (rj) is the monotone permutation of (rs). If the
condition of the lemma holds we say (rs) is majorized by (βy) and
write (r/) <

LEMMA 3.4. // (ί^ ) is ίfee maximal k x t Έl-matrix with row
sums (fi) and column sums (sy), then there exists an Έl-matrix (r i3 )
with column sums (ry) i/ α^d onî / ί/ Σϊ r ί ^ Σ ϊ s i /° r ^ — 1> , ί — 1
with equality when v = t.

Proof. The proof follows mutatis mutandus from [5, p. 1030].

Lemmas 3.2 and 3.4 allow us to characterize the elements in the
minimal base for 77α?.

THEOREM 3.5. The minimal base for Πal* in RL(At) is the join of
all products of the A/s whose exponent k-tuples are majorized by {fit).

Proof. The maximal k x k (e^-matrix with row sums (iet) has
column sums e*. Hence (r<) -< (e*) if and only if there exists an
(βj-matrix with row sums (iet) and column sums (r<). But this holds
if and only if ΠA? is an element in the minimal base for Πal*.

REMARK. For k ^ 3 we have determined that the product Πai*
has as a minimal base the join of all products of the A/s whose
exponent fc-tuples are bounded above by βf, bounded below by ek,
sum to Σiβi and whose breadth is less that or equal to Σ* (<& ~ £2K
The breadth of ΠAp is Σi</|f*<-" ri\ However this characteriza-
tion does not hold for k > 3.

4* P(alf a2,
 # ,αfc), A multiplicative sublattice* Let P(alf •••,

ak) = P(at) be the set of all finite joins of products of the elementary
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symmetric elements in Al9 , Ak. We will show that this set is
the multiplicative sublattice generated by aί9 *',ak.

If (Ui) and (vt) are ^-tuples we define the distance between them
as d((u{)9 (vt)) == Σί \ui — vi\* The lemma which follows will aid us
in identifying the minimal base for the meet of two products to the
α/s.

LEMMA 4.1. Let (ut) and (vt) be k-tuples majorized by monotone
k-tuples (rt) and (β,), respectively. Then if wt = max (ui9 vt) for
i = 1, , fc

(1) d{{Ui), (vt)) — I rt — 8* I if and only if w* = max (r*, sf).
(2) d(0O,(v«))^l*ΐ-8f | .
( 3 ) d((Ui), (Vf)) > I r? — sf I implies there exist k-tuples (i£€

^i) ^ p (max (iZ£, ^)) α?ιc? d((ΰi)9 (^)) = ]r* — s*[.

(1) 2.w1* = Σ i ( ^ + ̂  + |w<-v< |) = r1*-81* + |r1*-β1*| =
2(max(r*, s*)) if and only if Σ l^i — ̂ 1 = \r? ~ s?l since for any
two integers α, & 2(max(α, δ)) = α + 6 + |α — 6|.

( 2) I r? - 8f| = K - t f I = |Σ« (^ - ^)l ̂  Σ* 1^ - ^1 = d((ut), (v<)).
(3) d((Ui), (Vi))\> \u* — v*| implies there exist indices it and i2

such that w<x < vtl and ̂ ί2 > v<2. Let (%ί), (t Γ) be the monotone rep-
resentatives of (^), (vt) respectively. If i[ < i\ then vj[ > w^ ί> wja > ^
so that ^ ' ^ ^ + 2. Let (£") be the fc-tuple equal to (ι J')f or ΐ ^ iΓ,
ίί', ίίί = vϊ[ - 1 and t'ζ = vϊ2 + 1. Then (t'S) is majorized by (r<). If
(i<) is obtained by reversing the permutation (^) —> (v") and applying
it to (t'i) then (ί€) is also majorized by (r<). So

(max O*, ̂ ) , i Φ ixmax (^, tt) j

and d((^), (*<)) < ώ((^), (^)). By induction on d9 there exist (%<), (vj
such that d((Ui), (vt)) = | r* — 8* | and max (^, IΓJ ̂  max (%,, ^) ^
max (^i, ^) for i — 1, •••,&• The proof is complete if iί < ij.

Otherwise ij > ij which implies that i[' < i". The proof is similar
if the latter holds-

Now suppose that (et) and (/4) are fc-tuples, then ZΓαJ* and Πaζ1

are elements of P{a^ The next theorem characterizes the elements
in the base for their meet in terms of the exponents of the AJs.

THEOREM 4.2. // Πa? and Πa{* are elements of P{at) with
fϊ*^eϊ* then Πa** A Πaί* = {ΠAl^v,) < (/•) and {v%)^p{ut) for
some (u^ < (β*)}.

Proof. Since RL(At) is distributive, the meet described in the
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theorem is the join of all products of the At whose exponent λ -tuples
are (max (ui9 vt)) for (ut) < (ef) and (vt) < (ft). If d((ut), (v,)) is
greater than ff* — e**9 then (max (^, vt)) ̂ p ( m a x f t , vj) for some
(Hi) and (vt) majorized by (e?) and (/?) respectively. Hence the
product of the A/s with exponent ά-tuple (max (uif vt)) can be left
out of the minimal base for the meet. But d((Ui), (yt)) > /** — e**
if and only if 0><) §έ*0O. Hence the elements left in the minimal
base for the meet have the form desired.

To show that the meet of two products of the α/s is again such
a product, we need

LEMMA 4.3. Let (e?) and (ft) be monotone k-tuples and t* =
max (e?*, /,**) — max (β*+ί, /*+*) for i = 1, , k where we agree that
e*+1 = f%+1 = 0. Then (t*) is also monotone.

Proof.

max (e**, /,**) + max (e*+*2, /,**)

^ max (eϊ* + eΐ+% /** + / « )

^ max (2etfu 2/^*0

= 2 max (ef+1, / « ) .

So that tf ^ ίt*+1 for i = 1, , A - 1.

THEOREM 4.4. Lei (e<) αtid (/<) be k-tuples, then the meet of
Πal* and Πa{* is the product Πal* where t* is given in Lemma 4.3.

Proof. We may assume that β** ̂  /**. From above it suffices
to show that the set 35 = {(Wi)|(w<) < (β*) and ( w j ^ , ^ ) for some
0 0 < (/*)} is equal to the set IE = {0OI0O < (i*)}.

33 g E . If (%<) is in 35 then ( O -< (e?) and 0 0 ^ * 0 0 for
(̂ i) < (/*)• Then d((^), (^)) = βf* - /?* so that wf = e?* where
w< = max (uif vt) for i = 1, •••,&. Moreover, for j = 2, , k, u* >
vf ^ / Γ since if vy < /•*, then Σ Γ 1 ^̂  ̂  Σ Γ 1 vt > Σί" 1 /? where
(y'i) is the monotone representative of (vt) which contradicts (vt) <
(ft). Therefore Σ Γ 1 nt = ef* - uf ^ ef* - /f*. But

Σ*i* = Σ[max(eΓ*, /?*) - m a x ( C / Λ Ϊ ) ]
1 = 1 Z = l

= max (eΓ, Λ**) - max (β;*f /;*)

ί° i f ^/Γ
ef*ff* - e;* if /;* > e
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Hence Σ i " 1 ^ ^ Σ Γ 1 * * and (ut) < (ί,*), i.e., (ut) is in (£.
& Q S3. Let (^) be a fc-tuple majorized by (ί,*) By symmetry,

we may assume that (wt) is monotone. Since, (if) •< (ef), we have
(ut) < (ef). For ΐ = 1, , k let v, - min (uif / ? + • • • + / ? - Σί" 1 *>;)
setting Ϊ;0 = 0. We claim
(#) Σ ί ^ ™ mΐnί> (Σo /* + ΣP+I Ui) where the minimum is taken for
p ranging from 0 to q and f0 = 0 = Σs ^ whenever r < s.

(#) is clear if q = 1. For g > 1,

Σ v, = Σ v, + min
1 1

Uq + Σ Vf> Σ /* )

- min (^ + min JΣ fΐ + Σ ^ l Σ /?)
( p q

= min | Σ ft + Σ

where the third equality follows by induction. Therefore (#) holds.
Moreover, (vt) is monotone: If q is any integer, 1 <Ξ! q < k — 1,

then

(2) 2(Σf/? - Γ Σ +IW,) i 2(Σf /** + Σ ί ϊ i ^ ) + ^ + ̂ +i
(3) 2(Σ? /**) ̂  2ΪΣΓ1 Λ*) + /? + Λ\i

since (^) and (/*) are monotone. Hence each integer on the left of
the inequalities of (1), (2), or (3) is greater than or equal to

min 2ΓΣ uή + uq + uq+19 2(/1* + u2 + + uq^)

+ uq + uq+ι, , 2(/* + + /*_2)

+ ft + t w

So from (#), Σ? ^ ^ 1/2[Σ?+1 vt + Σ Γ 1 vj and vq = Σ ί ^ - Σ Γ 1 ^ ^
Σ?+ 1 Vi ~~ Σ? <̂ ~ v<m f° r ? — 1> •••,& — !• Hence (^) is monotone.

Finally, again from (#) vf = minissl,...,Jk{Σί"1/* + uf} and since
uf ^ ί;* = max (ef*, ff*) ^ /?* for j = 1, . , fc, we have /?+••• +
/;_! + ^ ^ f** for each i . Hence v* = /?*. Therefore (^) -< (/f)
since by definition of the v/s, ^ + + vs £ f* + + /* for
each j . Since (v<)p^ (w<) and (ut) < (ef), we have (u{) is in S3.

It follows from the property in RL(At) that multiplication in
P(at) distributes over joins. Consequently
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THEOREM 4.5. The set of all finite joins of products of the
elementary symmetric elements in A19 , Ak is a (distributive)
multiplicative sublattice of RL(Ai) and is the sublattice generated
b y a l f ••-., a k .

In the next two sections we investigate the structure of the
lattice P{at). In § 5 we show that the factorization of products of
the α, is unique and in § 6 we investigate the principal elements
and the residual division in P(ai).

5* Unique factorization of products of elementary symmetric
elements* If Πa^ and Ua{1 are products in P(at) and Πal1 ^ Πa{ι

9

then every element in the minimal base for ZΓα * must be less than
or equal to one of the elements in the minimal base for Πa{\ That
is, whenever (r,) -< (β*) then (r<) ^p(8<) for some {st) •< (/*). When
this occurs we say that (ef) is dominated by (ft) and write (ef)
dom (ff). Hence, Πal* ̂  i7α{* if and only if (ef) dom {ft). Hence,

LEMMA 5.1. Dom is a partial order on the set of monotone
k-tuples.

Lemma 5.1 and the definition of dom establish the next theorem.

THEOREM 5.2. The set of products of the a/s is order isomor-
phic to the poset of monotone k-tuples ordered by dom via the map
Πa? H* (ef). In particular, since this mapping is well defined, fac-
torization of a product of elementary symmetric elements is unique.

Using the order dom, we show that in P(at) any product of the
elementary symmetric elements is join irreducible.

THEOREM 5.3. Products of the elementary symmetric elements
in P{di) are join irreducible.

Proof. Suppose that Πa^ = ΠaV V V Πa{\ Since minimal
bases in RL(Ai) are unique, the element ΠAl1* which is in the mini-
mal base for Πa^ must appear in the minimal base for one of the
products of the α/s on the right, say Πap. Then (gf) < (ef). But
since Πa? <* Πap, (ef) dom (gf). So (ef)^p(Vi) where (O < (gf).
Therefore (ef) = {vt) and (ef) < (gf). Consequently (ef) = (gf); and

is join irreducible.

COROLLARY 5.4. Elements in P(at) have unique minimal bases
as joins of products of the a/s.
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Proof. [2, p. 183].

6* Residuation and join principal elements in Piβj). In
Lemma 4.1 we used the technique of subtracting one from a posi-
tion in a &-tuple and adding one further to the right in such a way
that monotonicity of the A-tuple was maintained. We call this
process a monotone ( —1, l)-change and remark that these changes
characterize majorization [cf. 4]

PROPOSITION 6.1. Let (rt) and (s^ be manotone k-tuples such
that (rt) < (s^ and (r<) be obtained from (r,) by a monotone ( —1, 1)-
change. Then (r<) < (β,).

PROPOSITION 6.2. Every mototone k-tuple majorized by a mono-
tone k-tuple (s^ can be obtained from (s€) by a sequence of monotone
( — 1, l)-changes.

Proof. Let (r<) be a monotone &-tuple such that (r<) -< (st). We
show that (r<) can be obtained by a sequence of ( —1, l)-changes by
induction on d((r,), (*<)) = Σ * k< ~ «<l = *• If * = 0, (r«) = (s,). For
t > 0, let © = {i: β< > r j . If © is empty, then (st) p^ (r,) and (r,) =
(s<) since rf — s?. Hence © is nonempty. Set i0 = max©. More-
over, i0 < k since i0 = k implies Σ ί " 1 rt > Σf"x s i contradicting (r<) -<
(s€). Now let i0 = max (g(i0)) where g(ΐ0) = {i: i > i0 and s, < ry}
If g(i0) is empty and i0 = 1, then i > 1 implies sj ^ r^ so that
Sj = r, for j > 1. But then sx = rx, a contradiction. If g(i0) is
empty and i0 > 1, then

Σ *i + ̂ ?o+1 ̂  Σ ry + r?0+1 = βl* ̂  Σ «i + n*0+i

and sζ+ί = rf0+1. But then sg = r g for i0 + 1 ̂  g ^ ifc. Therefore
Σί° ^i = Σί° βi with si0 > r<0. This implies Σί 0 " 1 ̂ i > Σί 0 " 1 βi Again
this is a contradiction. Hence g(i0) is nonempty.

Let (δi) be obtained from (s,) by a monotone ( — 1, l)-change at
the i0, j 0 places. Then (st) is monotone and we claim that (r<) -< (s j .
Since (r<) -< (e<) and s io = s<0 — 1 ̂  r i o the desired inequality holds
for l^qS v If % < Q < Jo and Σ ϊ ri > Σ ? si9 then Σ ί n = Σ ί st.
There is some p > q such that Σ ? ri < Σ ? s i Let p0 be the least
such p. Then (rg + 1, , rPo^) = (sff+1, , s^-J and r p < sp. This
contradicts the choice of % if p0 > q + 1. If p 0 — ̂  + 1, then
rq+1 < sq+1 again gives a contradiction to the choice of i0. Hence
for 1 ̂  q < j Q , the sum of the first qrt

fs is less than or equal to
the sum of the first s/s. The inequalities are clear if jQ^q ^k so
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that (r<) •< (βi). Since d((rt), (s<)) < d((rt), (sj), the theorem follows
by induction.

Note that if (r{) can be obtained from (s*) by a sequence of
monotone ( — 1, l)-changes, then we can obtain (s*) from (rt) by a
sequence of (1, — l)-changes.

PROPOSITION 6.4. If (r*) is a monotone k-tuple, then each mono-
tone k-tuple which majorizes (r j can be obtained from (rt) by a
finite sequence of monotone (1, — l)-changes.

Our next objective is to show that P(at) is closed under residua-
tion. Since P{ai) is distributive and a product of the α/s is join
irreducible, the following lemma tells us that to check closure of
residuation in P{βi) we only need check the residuation of a product
of the α/s by another such product.

LEMMA 6.5. If every element in a distributive multiplicative
lattice L is a join of join irreducibles and join irreducibles are
closed under multiplication, then for Z join irreducible and X, Y
in L,

(XV Y:Z) = (X:Z)V (Y: Z) .

Proof. If W is join irreducible such that WZ ̂ I V Γ , then
WZ = (WZ A X) V (WZ A Y). Hence WZ ̂  X or WZ ̂  Y and
W^ (X: Z)V(Y: Z). Therefore (XV Y: Z) ̂  (X: Z)V(Y: Z). Since
the opposite inequality holds, the lemma is proved.

COROLLARY 6.6. P(ai) is closed under residuation if and only
if (X: Y) is in P(at) for any join irreducibles X, Y in P(at).

Proof. If Xlf -—,Xm, Y,, •••, Yn are products of the α/s in

P(ai), then

(X, V ••• V Xm: Yx V ••• V Yn) - A (V (-Σ,: Γ

by Lemma 6.5.
Technical Lemmas 6.7 and 6.8 allow us to prove P(ai) is closed

under residuation.

LEMMA 6.7. If (?<) < (flr<) and (gi)^p(bt) for some (bi)<(ef)J

then fa) ^ p(α<) for some (α<) -< (ef).

Proof. First we assume (qt) is monotone and we may assume



SYMMETRIC SUBLATTICES OF A NOETHER LATTICE 375

t h a t (bi) is monotone. Let (qt) be obtained from (g4) by a monotone

(—1, l)-change a t the I, m places where l<m. If {qi)^p{bi), let

(α,) = (bi). If not, t h e n qt ^ bt for i Φ I implies t h a t qt < δ,. Since

gz ^ bu we have gz = bt and δ z + 1 < 6Z (If bι+1 = δz then bt = δ ί + 1 ^

9i+ι < Qι — bu a contradict ion.)^ Let δi = 6Z — 1 and 6* = 6* for iΦl.

If δm_y < 6 m . ( i + l ) and qm-3- > bm-3 for some 0^j<^m — l + l then

( α j defined by

i for i Φ m — j
—
< + 1 for i + m — i

satisfies the conclusion of the lemma. Otherwise 6m_! = bm so that
ff»-i ^ Qm > bm = bm^. Then we can construct (at) as desired unless
bm-ί = δw-2 in which case #TO_2 ^ gm_t > bm^ = bm_2. Again we can
construct the desired (α<) unless 6m_2 = &TO_3. Continuing, we conclude
all of the 6/s for i from i to m are equal if (a€) cannot be con-
structed. But we know that bm < qm = gTO + 1 <£ ̂  — g, — 1 = bi — 1 = bt]
that is, bm < 6Z, a contradiction. Hence (α<) exists such that (α<) •<
(β*) and (ί<)^p(α<). Since any monotone Λ -tuple majorized by (gt)
can be obtained by a finite sequence of monotone ( —1, l)-changes,
the lemma is proved for (qt) monotone.

If (qt) is not monotone, let (#') be its monotone representative.
Then for some (a't)<(eT), (<rί)^p(αί) B ^ t then (q^M and (at)<(eT).

LEMMA 6.8. Let (Ui), (/*), (δ<), α^ώ (β*) 6β monotone k-tuples
with (ut) + (ff) ^p(bt) for some (δt) •< (ef) α^d suppose (qt) < (f*)f

then (u^ + (q{) ^ p (c<) / o r some (c<) •< (β<*).

Proof. Since (<&) -< (/f), (^ + qt) < {nt + / * ) . Moreover, since
+ (/i*) = (tt< + /?)^1,(6<) for some (6,) -< (βf), by Lemma 6.7

+ ?i) = (Wi) + (Qt) ̂ P (Ci) for some (et) < (ef).

COROLLARY 6.9. // (ut) is a monotone k-tuple then ΠA"* 5*
i7α?: Uai1 if and only if (u% + ff) ^p (bt) for some (bt) < (ef).

Proof. If (qt) is the monotone representative for (qt) and
(Ui+qt) is the monotone representative for (ut + qi) for some (qt) -<(/*),
then

Σ ut + qt £ Σ ut + Σ Qi S Σ Ui + Σifϊ = Σ (Ui + /,*)

where the indices run from 1 to j for 1 <; i ^ & — 1 and (ut + gj* =
w* + q? = %i* + /** = ( î + / * ) * . Hence the condition is sufficient.

Necessity is clear.
Note that a symmetric element E in RL(Ai) is the join of pro-
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ducts of the α/s if and only if whenever ΠA^ ̂  E with (r j mono-
tone and (β<) is obtained from (r<) by a sequence monotone ( — 1, 1)-
changes, then ΠA\ι <: E; for then E = V {/7α,*-"'i+1: (*<) is monotome
and /ZA^ is in the minimal base for E}. As before we set tk+1 — 0.

THEOREM 6.10. P(at) is closed under residuation.

Proof. Suppose that (%) is monotone and that ΠAp^iΠa?: Πaζ1).
Let (Vi) be obtained from (ut) by a monotone ( —1, l)-change. Then
Πaϊ* 77A{< ̂  Πa? so that (%<) + (/,*) ̂ p (δ,) for some (δ,) -< (e*). So
by Lemma 6.8 (vt) + (ft) ^ p (c<) for some (c<) •< (ef) since (vt) + (ft)
is obtained from (wt) + (/*) by a monotone ( — 1, l)-change. Hence
ΠAp^iΠa?: Πa{*) by Corollary 6.9. Therefore Πap-^ύiΠap: Πa{')
so the residual is the join of all such products 77α^~Mί+1 where (ut)
is monotone and ΠA"' Πa{* ̂  α<*. (We set ^fc+1 = 0.) Since this is
an element in P(αt) our proof is complete.

PROPOSITION 6.11. Each product of the elementary symmetric
elements is a weak join principal element in P(a^).

Proof. Let k>l. It suffices to show that (Πal*: at) = ΠiΦtali'att~1

whenever et ^ 1. And since the product on the right is clearly less
than or equal to the residual, we only need demonstrate the opposite
inequality. So suppose that ΠAίf 5£ (α?: at) where et ^ 1. By sym-
metry we assume (tt) is monotone. Let {ft) — (1, 1, , 1, 0, , 0)
with Γs in the first t positions. Then

(?) (ί<) + {ft) ^P (bt) for some (6,) < (et) .

Let (Ui) be the lexicographic maximum of the ̂ -minimal jfc-tuples
which are p ^ (ί<) and satisfy (V) with (ut) in place of (tt). Note
that (u^ is monotone since if (ΰt) is the monotone representative
of (ut) then (#,)„<;(£,) and by symmetry ΠAψ ̂  (Πa\*: at). But
(βi)^ι(ut) and since (ΰt) is p-minimal (ut) = (^). Moreover, (w4) +
(/*) = (^ + /*) is monotone so we can choose (6,) monotone and
Z-maximum satisfying (V) with (tt) replaced by (%,)•

Claim. (ut) < ((β< — /<)*). For then , __ . _ __w_. _. .
First suppose that XI bt — Σ ϊ β* for some r < &. Set (#„ , gr) =

(/i, , /r-i, /*) and (K , λ r) = (βx, , βr_!, e*). Then (ft,) ^p (gt).
Also gt = /* and ft* = βf for i = 1, , r . So (ux + gt, •• ,ur + gt) ^P

(δi, , δr) with (δi, , br) < (ft?). By induction on k (u19 •• ,y,r)^9

(clf , cr) for some (c19 cr) •< (ft? — flr*, , ft* — g?). Also by in-
duction on ft, since (u r + 1, , uk) + (/*+i, , ft) ^P (δ r + ι, , δfc) for
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(δ r + 1, "'tbk)< (e*+1, , et) there is a k - r-tuple (c r+1, , cfc) such
that (cr+1, , ck)< ((e,+1 - / r + 1 ) * , •••,(«*- Λ)*) and (%r+1, , wfc) ^ p

(c r+1, , cfe). But then (ut) ^v (ct) with (c<) •< ((β, — /,)*). Hence we
may assume that Σ ί δ* < Σ ί β* for any r < k.

If (δf) = (tι< + / ? ) , then (^) = ( 6 , - / f ) and ( ^ ) < ((β« - / , ) * ) .
So suppose there exists some i such that &<<%< + / ? . Let i0 be
the first such i. Then for any i , 1 <; i ^ i0 — 1, δ̂  = us + /* and
by the Z-maximality of (6,), either biQ^ = δ ίo, i0 = 1, or if δ< 0 - 1 > bio,
then for all q > i0, bq = 0 since otherwise we could perform a moto-
tone (1, — l)-ehange on (δj. Moreover, by the p-minimality of (ut)f uiQ

cannot be reduced in any coordinate so that uiQ + fζ > bίQ implies
that uiQ — 0. Since ff is either 0 or 1 for each i, we conclude that
1 = fio > &.o = 0 Hence % O Φ 1 (for if i0 = 1 then (&,) = (0, , 0))
and δ<0 ̂ = 6<oβl (for if δ , ^ - 6<0, then δίo_1 = 0 < 1 + ^ 0_1 = /fo-i + ̂ 0 - i
contradicting the choice of i0). So 6io«t > δ, 0 and q > i0 implies that
δ, = 0. Since eζ > fζ, efQ > 0. Therefore β? + + βf0-.! < βx** =
6* = &x + . . . + &.Q_1 ̂  ef + + β<*-i> a contradiction. Therefore
the i0 does not exist and the theorem is proved.

COROLLARY 6.12. Each product of the elementary symmetric
elements is join principal in P(at).

Proof. If A, B, and C are in P ^ ) with A a product of the
α/s, then (AB V C: A) = (AJB: A) V(C:4) = δ V (C: A) since 5 and
C are joins of join irreducibles in P(a^).

REMARK. In general if A and B are join irreducible in P(ai)f

A: B is not join irreducible; for example, a\\ ax — a\\/α3 in P(aίf a2, α3).
Of course the residual A: B is join irreducible if A — CB for some
C in P{ai).

7. Principal elements in P(a%). In general a product of ele-
mentary symmetric elements in P(oO is not a principal element in
P(ai). In particular aλ is not weak meet principal if k > 1 since
from § 2 (ak: at) — ak so (ak: aλ)aλ — atak while ak A ax = ak Φ aγak.

However, there is a nontrivial principal element, ak, in Pia^ since
αfe is a principal element in RL(Ai). We show that αfe and its powers
are the only nontrivial principal elements in P ^ ) .

A Π-domain is a multiplicative lattice, I/, which contains a
subset, S, of elements of U which generates U under joins such
that every element of S is a product of prime elements and in which
0 is a prime element [1, § 4].

THEOREM 7.1. P{at) is a Π-domain in which the only principal
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elements are 0, at for t ^ 1, and I.

Proof. 0 is a prime element in P(at) since 0 is a prime element
in RL(Ai). Moreover, P(at) is a multiplicative lattice which is gen-
erated under joins by products of the elementary symmetric elements.

If A and B are joins of products of the α/s such that A ^ a3-
and B ^ a5 for a fixed j , 1 ^ j ^ k, then there are products Πa?
and Πaf

i

i in the minimal bases in P{at) respectively such that
Πa? ^ a,j and i7α{* ^ ay. Then there exist (r<) -< (β?) and (s<) •< (/?)
such that both (r,) and (s*) have fewer than i nonzero integers.
By symmetry (r ) and («J)» the monotone representatives of (r*) and
(β,) are in the minimal bases for 77α? and /7α{* respectively and
(r't) + (8i) has fewer than j nonzero entries. Therefore ΠAlί-ΠAliS^j
and hence AB ^ a3-. Hence a3- is a prime element in P^).

0 and I are principal elements in P{at). The fact that any
weak meet principal element in P{at) is join irreducible follows from
[1, Theorem 1.2]. So in P(at) the only nontrivial candidates for
principal elements are products of the α/s. Moreover, since AB
principal implies that A is principal and aι , ak^ are not principal
elements in P ^ ) , the only principal elements in P^) are powers
of ak, 0, and I.

8. Remarks (multiplicative lattices)* Elements in RL(Ai) and
P{at) are joins of unique products of their generators. Moreover,
both of these multiplicative lattices have a partial order which
naturally induces an order on Λ -tuples associated with their exponent
fo-tuples. If we define φ: RL{At) —> P{at) by sending At to α* for
each i and extending φ via products and joins, we see that φ is a
join-morphism which preserves products, primes, and join princi-
palness. However RL(At) is the lattice of ideals of a semigroup
while P(a,i) is not [1]. The problem in P{aι) is the absence of weak
meet principal generators.

In P{at) (k > 1) every prime contains the only principal prime
element, ak.

9. Remarks (partitions of integers)* Brylawski [4] has studied
certain sublattices of P(ai). He defined Lk to be the lattice of
monotone partitions of k of length k. Extending Brylawski's nota-
tion, we write L* for the lattice of monotone partitions of n with
the understanding that the last n — k entries are zero if n ^ k and
the last k — n entries are zero if n < k.

For 35, (£ £ PiaJ, we write 33•(£ for {AB\AeS8 and J3e(£}.

PROPOSITION 9.1. P{at) is the disjoint union of isomorphic
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images of Lk, \Jn^0rn=ooψ{Lk

n) where we set Lk — {(0, , 0)} and
Li = {(oo, . . . , oo)} with ψ(slf , sk) = Πasj~H+ι and sk+ι == 0. More-
over f(Ll) ψ(Lt2) = f(Lk

ni+n2) if n19 n2 ^ fc.

Proof. That 14 and ψ{LJ) are isomorphic as lattices follows
from Theorem 5.2 and the fact that dom restricted to LI is simply
majorization. Clearly ψiL^) ΓΊ Ψ(Lk

2) = φ for nx Φ n2 and \Jn ψ(Lt) =
P(α,) if we agree ψ(Lk) = I and ψ<L*) = 0. That ψ(Lk

nι) ψ(Lk

2) =
ψ{Ll1+%2) if ^i, n2^ k follows from the addition of exponents of the
α/s in P(ai) under multiplication.

10* Remarks (symmetric elements). We asked whether the
multiplicative sublattice of symmetric elements, 9̂  (§ 1) can be
generated naturally by a proper subset of generators. We note here
that a large subset of 5ft does not generate 9ΐ under products and
joins.

If (s^ is a fc-tuple of nonzero integers then in RL(Ai), A\\
A|2, * 9Aίk is a prime sequence [6]. So P{a[*ι\ •• , α ^ ) ) is a 77-
domain isomorphic with P{at) where aίH) is the ith elementary sym-
metric element in A{\ -- ,As

k

k. Moreover, in terms of the A/s,
Πk

i==1(ai8i))H = {/Ziiί*|t< = 8tri for some (rt) < (β?)}. Elements in P(aίSi))
Sire all symmetric. However, U(8i) P(αίβi)) generates a proper subset
of 9ΐ. For example, if C = A\A\AZ in i2L(Λ, A2, A,), then \/ges3C

g

is a symmetric element which is not the join of products of any of
the α|Sί)'s.
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