REMARK ON A PAPER OF STUX CONCERNING SQUAREFREE NUMBERS IN NON-LINEAR SEQUENCES

G. J. Rieger

Stux studied squarefree numbers of the form [$f(n)$]; his most interesting application is $f(n)=n^{c}$ for real \boldsymbol{c} with $1<c<$ $4 / 3$. We would like to point out that a stronger result follows immediately from estimates of Deshouillers.

Let $1<c<2, x \geqq 1$; denote by $N_{c}(x ; k, l)$ the number of natural numbers $n \leqq x$ with $\left[n^{c}\right\rceil \equiv 1 \bmod k$. According to [1], we have

$$
\begin{gather*}
N_{c}(x ; k, l)=\frac{x}{k}+O_{c}\left(\left(x^{1+c} k^{-1}\right)^{1 / 3}\right) \quad \text { for } \quad x^{c-5 / 4} \leqq k<x^{c-1 / 2}, \tag{1}\\
N_{c}(x ; k, l)=\frac{x}{k}+O_{c}\left(\left(x^{4+c} k^{-1}\right)^{1 / 7}\right) \quad \text { for } \quad k<x^{c-5 / 4} .
\end{gather*}
$$

Denote by $S_{c}(x)$ the number of squarefree numbers of the form [n^{c}] with natural $n \leqq x$; the inclusion-exclusion principle in the form $|\mu(n)|=\sum_{d^{2} \mid n, d>0} \mu(d)$ gives

$$
\begin{equation*}
S_{c}(x)=\sum_{d^{2} \leq x^{c}} \mu(d) N_{c}\left(x ; d^{2}, 0\right) \quad(x \geqq 1) . \tag{3}
\end{equation*}
$$

For $d^{2} \geqq x^{c-1 / 2}$ we use the trivial estimate $N_{c}\left(x ; d^{2}, 0\right)=O\left(x^{c} d^{-2}\right)$; using

$$
\begin{equation*}
\sum_{d>t} d^{-2}=O\left(t^{-1}\right) \quad(t \geqq 1), \tag{4}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
S_{c}(x)=\sum_{d^{2}<x^{c-1 / 2}} \mu(d) N_{c}\left(x ; d^{2}, 0\right)+O\left(x^{(2 c+1) / 4}\right) . \tag{5}
\end{equation*}
$$

In case $c \leqq 5 / 4$, we use (1) and

$$
\begin{equation*}
\sum_{0<d \leqq t} d^{-2 / 3}=O\left(t^{1 / 3}\right) \quad(t \geqq 1) \tag{6}
\end{equation*}
$$

in (5); this gives

$$
\begin{equation*}
S_{c}(x)=\sum_{d^{2}<x^{c-1 / 2}} \mu(d) d^{-2} x+O_{c}\left(x^{(2 x+1) / 4}\right) . \tag{7}
\end{equation*}
$$

In case $c>5 / 4$, we split the sum in (5) according to $d^{2}<$ or $\geqq x^{c-5 / 4}$ and apply (2) and (1); using $\sum_{0<d \leq t} d^{-2 / 7}=O\left(t^{5 / 7}\right)(t \geqq 1)$ and (6), we obtain again (7). But (7), $\sum_{d>0} \mu(d) d^{-2}=6 \pi^{-2}$, and (4) give immediately

Theorem 1. For real c with $1<c<3 / 2$, we have

$$
S_{c}(x)=6 \pi^{-2} x+O_{c}\left(x^{(2 c+1 / 4}\right) \quad(x \geqq 1) .
$$

Looking at $m-\left[n^{c}\right]$ instead of $\left[n^{c}\right]$ we obtain similarly
Theorem 2. For real c with $1<c<3 / 2$, the number of representations of the natural number m as $m=q+\left[n^{c}\right]$ with squarefree q and natural n equals

$$
6 \pi^{-2} m^{1 / c}+O_{c}\left(m^{(2 c+1) / 4 c}\right)
$$

This can easily be generalized to r-free instead of squarefree. It should not be difficult to extend the method of [1] to cover the function class studied in [2].

References

1. Jean-Marc Deshouillers, Sur la répartition des nombres [$n{ }^{c}$] dans les progressions arithmétiques, C.R. Acad. Sci. Paris, 277 (1973), Ser. A., 647-650.
2. Ivan F. Stux, Distribution of squarefree integers in non-linear sequences, Pacific J. Math., 59 (1975), 577-584.

Received June 26, 1977 and in revised form December 16, 1977.
Technische Universität
D-3000 Hannover, Germany

