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MEAN VALUE THEOREMS FOR A CLASS
OF DIRICHLET SERIES

DoN REDMOND

In this paper we are concerned with mean value theorems
for the summatory functions of a class of Dirichlet series.
This class of Dirichlet series is a class of Dirichlet series
satisfying functional equations involving multiple gamma
factors. If f(s) = )] a(n)A;® is a Dirichlet series satisfying
such a functional equation and Ef(x) is the associated error
term (see (1.2) and (1.4), respectively), then. we prove O0-
estimates for

(1) S | E(y)l*dy
and
(2) ;ZSI la(n)|*,

in the latter case when 1, = n. The results we get for (1)
improve known results in some cases. Also the general
result (1) is applicable in cases where a similar result of
Chandrasekharan and Narasimhan is not.

1. Introduction and historical survey. In this paper we shall
obtain a mean square estimate for the error term of the summatory
function of a class Dirichlet series. We shall also obtain an estimate
for the sum of the squares of the coefficients of these Dirichlet series.
The class of Dirichlet series we are concerned with consists of those
satisfying a functional equation involving multiple gamma factors
such as was considered by Chandrasekharan and Narasimhan in [4].

Let {a(n)} and {b(n)}, 1 < n < + o, be two sequences of complex
numbers, not all zero, and let {\,} and {¢,.}, 1 = n < 4+, be two
sequences of positive real numbers increasing to + . Suppose that

f) = Sa(mne and g(s) = 33 bm)psse

each converge in some half plane with finite abcissas of absolute
convergence o,(f) and o,(g), respectively. Let

(L1 4(9) = 11 Mews + B,

where a, > 0 and B, is complex, 1 < k< N. Then f(s) and g(s) are
said to satisfy the functional equation

(1.2) A(8)f(s) = A(r — s)g(r — s)
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if there exists in the s plane a domain D, which is the exterior of
a compact set S, in which there exists a holomorphic function G(s)
with the properties:

(1) lim G(o + it) =0,

1t]—oc0
uniformly in every strip —« < 0, £ 0 £ 0, < + 0, and

_ [A(8)f(s) for Re(s) > a,(f)

(2) G(s) = Ar — 8)g(r — 8) for Re(s) <7 — ag,(9) .
If
(1.3) Q) = = | Loas,
27y Je s

where C is a curve enclosing all the singularities of the integrand,
let

(1.4) E(x) = Zzg;am) — Q) ,

where the dash indicates that if A, = z, then we add only a(n)/2.
E(x) is called the error term for the summatory function of the
coefficients of the Dirichlet series f(s).

With the notation as above, in this paper we will obtain estimates
for

(1.5) | 1B dy
and
(1-6) 3 la(mf,

in the latter case when », = ». Both of there estimates can be used
to obtain information on the size of the error term by use of the
Cauchy-Schwarz inequality. Estimates for (1.5) imply estimates for
the average size of the error term,

1 z
~ | IEw)ly ,
X ]
and estimates for (1.6) imply estimates for the summatory function,
2 la(m)l,
ins2

and so also on the size of the error term.
Estimates for (1.5) were first obtained in 1922 by Cramér [7]
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for the special cases E(x) = 4,(x) and P(x), the error terms of the
divisor problem and the sums of two squares problem, respectively.
In 1933 Walfisz [20] gave estimates for the integral in the case of
cusp forms. In 1964 Chandrasekharan and Narasimhan [6] gave
estimates for the integral (1.5) in the general case. All of these
methods used identities between the summatory functions being
studied and series involving Bessel functions or integrals that are
generalizations of Bessel functions. They also used the differencing
methods developed by Landau in his work on lattice point problems.

In 1938 Walfisz [21] gave estimates for (1.5) in the case E(x) =
P(x), the error term associated to the problem of counting lattice
points in four dimensional ellipsoids. In 1940 Jarnik [12] gave
estimates for general P,(x). Both of these methods used the modular
relations between theta series defined from quadratic forms.

We generalize the method of Walfisz [21] to obtain our estimates
on the mean value integral (1.5). The result we obtain improves a
result of Chandrasekharan and Narasimhan [6] in those cases where
they do not get an asymptotic estimate.

The sums (1.6) have been studied in many special cases.
Ramanujan stated in [16] and Wilson proved in [22] asymptotic
estimates for the case a(n)=d(n), the divisor function. In [9] Hardy
gave an O-estimate for the case a(n) = 7(n), Ramanujan’s function,
and later Rankin, in [15], sharpened this to an asymptotic result,
as well as giving similar estimates for the coefficients of cusp forms
in general. In [21] Walfisz gave asymptotic formulas for a(n) = r(n)
and 7,(n), which generalize immediately to the general case a(n) =
r n), k=5, where r,(n) is the number of ways of representing =
by a given positive definite quadratic form in %k variables.

Estimates for the sum (1.6) also appear in the hypotheses to
several theorems. For example, in Apostol’s work on approximate
functional equations for Hecke series [2, Corollary 2] such estimates
are used for estimating the error terms that arise (see also [5]).
Also the mean value theorem of Chandrasekharan and Narasimhan
that was mentioned above [6, Theorem 1] has as one of its main
hypotheses an estimate on the sum (1.6).

We generalize the method of Walfisz [21] to obtain an 0-estimate
in the general case when A, = n. Because we can no longer appeal
to any special properties of the coefficients a(n) our general result
does not give asymptotic results in the above mentioned cases,
though it does apply to a wide class of arithmetical functions.

In the sequel we shall use the following notation:

a+ico

(1) S )Wﬂl denote the integrals ,
(a

a—ic
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(2) S will denote the integral SGHT
(a,T) a—1iT
and
(3) S will denote the sum 3.
n=1

Also ¢;, 7 =1,, ---2, will denote positive absolute constants.

2. Statement of results. Suppose f(s) = 3 a(n)r;* and g(s) =
> b(n),*® satisfy the functional equation (1.2) with » > 0. Let

_ 1 Y[C) Nr—
(2.1) I(u)~%somu ds ,

where 4(s) is defined by (1.1) and C is a curve enclosing all the
singularities of the integrand. Let

(2.2) F(s) = 3, a(n) exp (—\,3) ,

for Re(s) > 0. Then it is known [3, Theorems 3 and 5] that

(2.3) F(s) = S: Q’(x)e‘”dx -+ Z b(’n){l:,_' S:’ I(;t,,x)e‘"da; ,

if we assume all the singularities of f(s) are in the right half plane.
Note that if f(s) is entire, then from (1.3) Q(x) = f(0), a constant.
If Q(s) denotes the Laplace transform of Q(z), then we have

(2.4) s0(s) = S” Q@)e—da .

In what follows we shall assume that f(s) has a finite number of
singularities in the right half plane and that these singularities are
poles lying in the strip 0 < Re(s) =< ». If the poles are {§, :--, &,}
and », is the order of the pole at £, then we can explicitly evaluate
Q(z), namely,

(2.5) Q) = ; Cafilog i

where {; is the residue of f(s) at the pole s = ¢;. Suppose that S
is the real part of a pole with maximal real part and p is the maximal
order of a pole with real part 8. Then, from (2.4) and (2.5), we
have

(2.6) sQ(s) = 0(s|™* log?™*|s]) ,

as |s| — oo,
Finally we assume that as |s)— + o



MEAN VALUE THEOREMS FOR A CLASS OF DIRICHLET SERIES 195

@1 Db | Kpaesdn ~ 57 5 o(m) exp (~ keals))

where m is a nonnegative real number, k¥ and @ are positive real
numbers and the e(n) are complex numbers. Also we assume that
the series on the right hand side of (2.7) converges absolutely for
Re(s) > 0. In §5 we shall prove a theorem that establishes (2.7) for
a subclass of Dirichlet series satisfying the functional equation (1.2).
We remark now that (2.7) is known as an equality for Re(s) > 0 in
the case 4(s) = I'(s), with m = r (see [3, p. 152]).
Define the real numbers 6 and 7 by

0 if 6=m and m=p

(2.8) 0 = min (m, 8) and 77:{1 if 60=8 or m=2p.

Further define the function M(x) by

M(x) = Mtz g gm/tet log(p—'l)ﬂ X + pmH log,r-lm
(2.9) A4 Bt/ Iog 20=ly 4 2ot/ Iogz<p—1)r,+1 2
4 gite/zHL log(p—n(vﬂ) x.

We shall prove the following results with the notation as above.

THEOREM 1. Assume the hypotheses as above. If f(s) is not an
entire function, then as x— oo

|| 1@y < M) .
If f(s) is an entire function, then as x — oo

S" |E(y)Pdy L ©*"*/*log x + a*™/**
0

COROLLARY 1. Suppose the hypotheses of Theorem 1 hold with
A(s) = I'(s). Then we have, if f(s) is mot entire function,

SzIE(y)Izdy < wr+l/2 Iog x + w1/2+ﬂ+1 log(p—l)v T + 562/9+1/2 logz(p—i))y+1 x,
0
as x — . If f(s) is an entire function, then as x —

Sz IE(y)Pdy € o*/*" 4 2> "2 ]ogx .
0

THEOREM 2. Suppose the hypotheses of Theorem 1 hold with
N, = M. Let h(x) be defined by
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pmTETL/2 [ogott g 4 gmet Wf m=2a—1
(2.10)  h(x) = {&" " logr & 4 2*™ of m 2 20 — 1
x ™A [oge ¢ + x™ log if m=2a.

Then as x — oo, if f(s) is not an entire function,

,; la(n)]* € x° log* " x + x* log** 7% ¢ + Rh(x)

for 0 <B <1 and

S la@))* € 2 log * 2 & + h(x)

nsx

for B> 1. If f(s) is an entire function, then as & — oo

S la(n))? € 2 log x .

n=x

COROLLARY 2. Suppose the hypotheses of Theorem 2 hold with
A(s) = I'(s). Let h(x) be defined by

a2 Joge o + P W r+12,
h(x) = {x*?logrt' x if r=1
P2 logfw + a*logx  if r=2.

Then as x — oo, if f(s) 1s not an entire function,

2 la(m)l* < @*log*e™7 & + h(2)

Jor 0 <BZL1 and
Zsl la(n)f < x* log*™* 2 + h(x)

Jor B> 1. If f(s) is an entire function, then as & — co

> la(n)} € 27 log .
nsz

We shall prove these results only in the case when f(s) is not
an entire function and indicate the changes to be made if f(s) is
entire. The proofs of these results involves a series of lemmas and
the sections devoted to their proofs will be divided into two parts:
the first part for the proofs of the lemmas and the second part for
the proofs of the theorems themselves.

The methods of proof of Theorems 1 and 2 are similar. They
both involve an identity relating the integral or sum to be estimated
to a double integral. The double integral is then rewritten as a
sum of integrals over short intervals by means of Farey fractions.
We give the definition of these intervals now.
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DEFINITION 2.1. Let (h, k) =1 and 0 <k < 2", Let 7, and 7,
be the Farey fractions of the Farey sequence of order [x“?] that
immediately proceed and succeed h/k, respectively. We denote by
B(h, k) the interval [r, 7;]. By R(h, k) we denote the right hand
endpoint of B(h, k) and by L(h, k) the left hand endpoint.

By Theorem 35 of [10], we have

@.11) B(h, k)
' ={uhfk— 0V T <u<hlk+ 0/, 12<0,06,<1)}.
3. The mean value integral.

3.1. Preliminary lemmas.

LeMMA 3.1, Ifs=1/x + 27ut and t = 1/x + 27vi, where u and
v are real and x is a fived number greater than 1, then

| 1@y

(3.1) = L0 F® — sQe)EE) — 1)
T (1/z) J(1/z)
exp (x(s + ) — 1dsdt )
st(s + 1)

Proof. On the left hand side of (3.1) we have, by (1.4),
[ 1E@rdy = | (S o) — QN S atm) — @y
= | = amalm) — 2Re (@) 3 atw)] + 1QW)F)dy

0 lgrAmSU InZ

(3.2) .
= 3 a(walmie — max (w, M)}~ 2Re {3 atn) || Qs

Aprdm =2

+ [ lewrdy .

Now, as # — o, we have

|F(s) — sQ(s)| = |F(s)] + [sQ(3)]
& 3 la(n)| exp (—\, Re (s)) + [s|7? log?™ |s]
& S la(n)| exp (— N, /x) + 2 logP™x .

This estimate gives

—sQ o exp(@(s + 1) — 1
S(l/xl S(l/a:) {F(S) SQ(s)}{F(t) tQ(t)} Sf(s + i-) detl

= | 1Fe) - sQ@IIF@) — 1) lexp (s + D) — 1]

dsdt
st(s + 1)
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< {3 la(n)] exp (—\./x) + a loge™ o) S(w S stésit t)l
=< 23 la(n)] exp (—N\,/x) + z° logr™ a}
X S+°°S+°° dudv .
o (L 4 Ju)(@ + DA + lu — v))

(1/2)

—00

Since the last double integral converges we see that the double
integral on the right hand side of (3.1) converges absolutely.

Let
1= 2201 Fe — sQ)Fe) — Qe e Ee L tg)) L dodt

= 2 amaon( )|, ex0 (s . DEREELIL= Sasan
(3.3) —2Re{S a(m>(“];)§u/z)gwexp< xs)tQ(t\eXp(‘:Esi?)) Ldsdt)

-1 exp (x(s+ %)) — 1
+ (471-2) Su/z) Su/m sQ(s)tQ(t\ st(s + ©) dsdt

= 5_;: a(m)amyJ,.. — 2Re {2 a(m)Jm} +J

say.
We have

(3.4) I = lim I, o (T)

where

I n(T) = IS S exp(—N,s — N t)i‘l'sitg exp (2(s + t))dz
4m? Jusa,m Ja/zm

1 _ ds 1 NSN3
(3.5) S dz%Su/z 7) exp (2 — Mw)s)—= s 271'@8(1/:; 7) exp ((z — M)t) i

=§”dzi.§ exp (2 — )38 (=1)
/2,7 s 2m1

| exp(z =%
o 271 /2,1 t

Now (see [14, p. 346]), as T — oo,

(3.6) H S _ 2m| < 267
(a,T) S Ta

if w> 0,

3.7

S(M) ds/s — nil < 2/T

for w = 0 and
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(3.8) l§ (e=/s)ds| < 2e™/(Tlw)
(a,T)

if w<O.

For fixed m and n let A=1{2¢[0,2):|z — \u] = T —1/2 and
|2 — N\ = T7*} and B = [0, 2] — A. Then

(=1L

Ifa=1/z, w=2 — A, Or 2 — A, and z€ A, then
(8.10) e/ Tlw| < eV'T .
Thus, by (3.6), (3.8), and (3.10), we have

1 ds (—1)
Ld 272"];S(1/x,T} exp ((z — Mn)s)— s 2r1

| exp(z —np%
(1/2,T) t

- S i'S(uap,r) exp ((z— )S)

AN(max(1y,2y),2] 21

ds( 1)

X S exp ((z— x,,)t)it-dz
e t

+ § —LS exp ((z — >»m)s)—‘gf
(1]z,T) S

AN0,2,1000,2,, 1 27T%

(3.11) X 1]18 exp ((z — xn)t)@dz
2wt Jatzm s

I

L+ O(T™) =1 + O(T7"*)dz

SAﬂ(max(i,,, ) 2]

O(TO(T™*)d=

SAm[o,L,,]U[o,lml)

dz + O(T™)

SAﬂ(max(Xn,lm),x]

= —(@ — max (\,, M))* + O(T™%)

as T— oo, gince z is fixed, where + indicates the positive part.
As T — o« we have

du

Lelog(l+ Tla) .
a + |ul

+T
S (e"/s)ds < " S
(a,T)
This gives, with w <z and ¢ = 1/z, as T — oo,

(3.12) S( (e"[s)ds < log T .

Thus, by (8.12), as T — oo,
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S dzis exp (7 — n)) =D
B ()2, T) s 2m

dt
2ri S(l/x,T) exp((z A.")t)?

(3.13) < S log® Tdz
B

L Tlog* T,

since the length of B is at most 4772,
Combining (3.5), (8.9), (8.11), and (3.13) we see that

(3.14) Jua(T) = —(x — max N,y M)t + O(T210g® T) ,
as T— . Then, by (3.4) and (3.14), we have
(8.15) I = — (@ — max (\,, M) .

Since Q(t) is the Laplace transform of Q(x) we have [8, p. 227]

(3.16) 2. et = Q@)
27 J(@
if a > 0. Thus
1 ztA . 1 atioo ztA 1 a—iT ztA
(3.17) __S e Q)dt = Qz) — —\ e Qydt — —\ e Q(t)dt .
271 Jam 271 Jatir 277 Ja—ieo

Now, as T — <, we have, by (2.6),

Si: e Qt)dt = S

7.

E ~
Q)%
T t

a
ati

L e Sw u? logrt ud—u
T uU
Le*T*log T,
since 8 > 0. This estimate, combined with (3.17), gives, for a = 1/x
and z < x,

(3.18) Qz) = _LS *Qt)dt + O(T~* loge T,
271 Ja,m
as T — oo,
Let
oo () = {O if 2=,
" i e > .
As above we have
(3.19) Y — lTim J(T) ,

where
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J.(T) =:l§s exp ((z — xm)s)@s 100 %dz
0 Jule,m s Julz,m t

47 2,
(3.20) .
= X dzi.g exp ((z — M)S)@——l.s e“@(t)i'lE .
o 211 Jalem s 2mq Jajam t

In (8.20) we estimate the innermost integral by (38.18) and the middle
integral as in (3.11) and (3.13), by the use of (8.6)-(3.10). This gives,
as T— oo,

(3.21) Ju(T) = —k,,,(w)S: Q(z)dz + o(L) .
Thus, by (3.19) and (3.21), we have
(3.22) T, = —ko () Sz Q(z)dz .
Finally,
(8.23) J=1lim JT),
where
Jn =22 | @ | e Tdsdsi
47 Jajem Jaje, 0
(3.24)

— “ __1__ 280) ""'_1 2t
- So dzZn:i S(llx,T) ¢ Q(s)dszni S(ll:v,T) eR)dt .

In (3.24) we estimate the inner two integrals by (3.18). This gives,
as T— oo,

(3.25) JT) = —§:|Q(z)12dz + o).
Thus, by (3.23) and (3.25), we have
(3.26) J= —§:|Q(z)[2dz.
The result, (3.1), follows from (3.2), (3.3), (3.15), (3.21), and (3.26),
if we note that the integral I in (3.3) in minus the integral on the

right hand side of (3.1).

LEMMA 3.2. If s=1/x+ ui and 0 S u < x7%, then as € — oo
(3.27) {F(s) — sQ(s)}fs < w™+r2

where m is given by (2.7).

Proof. We have, by (2.8), (2.4), and (2.7),
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() — sQ(a)| = | S bmpes | e Ky

(3.28) = cgls|™ 2 le(n) exp (—K(g./8)%)]
=< c,|s|™™exp (—c; Re (1/5)) ,

since the series on the right hand side of (2.7) converges absolutely
for Re(s) > 0. Since 0 < u < z7/* we have, for x sufficiently large,

Re (1/s)* = Re (x/(1 + xui))”
(3.29) = (x/(1L + 2*u*))* Re (1 — xui)”
= (/1 + 2*uh)” .

Thus, by (3.28) and (3.29), we have

[(F(s) — sQ(s))/s] < e,ls|™* exp {—er(x/(L + a*u?))}

xm+1

(1 + xZuZ)(m+1)/2
= ca™ /A (a/(L + @)™/ exp {— e (w/(1 + @u?)?)
<< x(m+1)/2 s

exp {—ec.(x/(L + 2*u*)*}

=c

as & — oo, sinece x* exp (—bx*) is a decreasing function of x for b > 0
and 2z sufficiently large. This completes the proof of the lemma.

REMARK. Here there is no change in the result in the case that
f(s) is an entire function since sQ(s) = 0, by (2.4), in that case.

LEmMMA 3.3. If s = 1/x + 2mut, then as x — oo
(3.30) S 106 du < (L/hE) log" @ -
B(h,
Proof. By (2.6) and (2.11), we have

SB(h I Qs du < SB(M‘) |s|7#7* log?™ |s| du

L U/kV o )(k/h)* logr™ x
L (1/hk)x??logrx ,

as & — oo, since k < 1z by Definition 2.1. This completes the proof
of the lemma.

REMARK. If f(s) is an entire function, then Q(s) = f(0)/s. In
this case the integral in (3.30) is «1/hk, as x — .

LEMMA 8.4. If s = 1/x + 2nui, then as £ — o



MEAN VALUE THEOREMS FOR A CLASS OF DIRICHLET SERIES 203
(3.31) S \F(s)/s|du < (L/R)a*"* loge7 g .
B(h, k)

Proof. By (2.3), (2.4), (2.6), and (2.7), we have, for Re(¢) > 0,

F(t + 2hilk) = 3 a(n) exp (— N, (¢ + 2hilk))
= (¢t + 2hi/k)Q(t + 2hi/k)

(3.32) S b S“’ oI [ iy dap
0

< et + 2hi/k|? loge™ |t2hifk| + [t + 2hi/k|™™)
< e[t + 2hifk|~ logt*~V" |t + 2hi/k| .
Now let t = 1/z + 2(u — h/k)i in (3.32). Then F(t + 2hi/k) =

FQ/x + 27ut) = F(s). By (2.11), we see that if we B(h, k), then
u = O(h/k) as ¢ — co. Then, by (3.32), we have, as & — oo,

S[i(h,k)

Efe + 2060 gy < o, ( (1o + 2ot
1/x + 2mui Bk k) U

< S (k/n){1/x* + (mu—h[k)*} /2 log'*™" xdu
Blh,k)

e
& (k/h) logte™7 ¢ Sl - (1/a* + mu?)~"2du
& (1/R)x® 2 logte ™7 g,

This completes the proof of the lemma.

REMARKS. (1) If f(s) is entire, then we take » = 0 and 6 = m.

(2) In [21] Walfisz is able to get an asymptotic result for the
integral (1.5), in his speecial case, in place of our Theorem 1. There
he considers the error term P,(x), which is associated with the
problem of lattice points in m dimentional ellipsoids. He is working
with quadratic forms, which have special properties that allow him
to get his better result. The most important of these properties is
the homogeneity property. This allows him to get a better estimate
for Lemma 3.4 by getting positive powers of % in the denominator
on the right hand side of (3.31), which, when he later sums on %,
reduces the power of x he finally obtains. We conjecture that (3.31)
can be improved to

SB(h B [F(s)/sldu < (1/h)(x/k)’ " logle™ 7 g ,

but we are not able to prove this. The previous Lemmas 3.1, 3.2,
and 3.3, are exact generalizations of his resaults are so it is Lemma
3.4 that should be improved the obtain better results.

We use the result of Lemma 3.1 to rewrite the mean square
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integral (1.5) as a sum of four ssmi-infinite double integrals. By
making a change of variables we write these latter double integrals
as double integrals over the semi-infinite segments (1/x, 1/x + to0).
This allows us to use the covering property of the intervals B(h, k)
to rewrite these integrals as sums of integrals over the integrals
B(h, k). We can then use the results of Lemma 3.2, 3.3, and 3.4 to
estimate these finite integrals and so derive Theorem 1.
By Lemma 3.1, we have

a3y [Bwrar= L0

4 Ui/z /% 1/% 1/z—io

+ S”” S”mw Sw SZ:_M}G(S, t)dsdt

1/z—ic0 J1/2 1/z—1ic

:P1+P2+P3+PA’

say, where G(s, t) is the integrand of the integral on the right hand
side of (3.1). In P, replace t by f, in P, replace s by §, and in P,
replace s and ¢t by § and . This gives

P 1 SumeSl/wim{F(s) B Sé(s)}meXp (w(s + 1)) — 1dsdt ,

T e st - 0)
1 (Mt (y/atie A e oxp (a(s + 1)) — 1
P, = @SW Sw (Fo) — sQ)(F(D) — Q@=L EE LD = Lgqr,
L (MeHeuebie A ————oxp (5(5 + £) — 1
B= 4n2§1/z |, FE) ~ s0@NFD ~ Q) e
and

(et (a5 ) — 1
P‘-WSW S (FG) ~ SQHF(E) — BDITFEZ 2 ——dsdt .

Let B(h, k) be as in Definition 2.1. In the remainder of §3 we
will denote by

>, the sum 2 ,

hyk k=1 0<k=vz

when working with sums of integrals over the intervals B(h, k).

LEMMA 3.5. For s = 1/x + 2nut and t = 1/x — 27w, where u and
v are real, we have, as x — oo,

Pl - —% SB(h k) SB(h k) {F(S) h SQ(S)}{F(t) - tQ(t)}
(3.35) ’ ' ’

exp (x(s+ 1)) —1
X ST 1 D dsdt + O(M(x))

and
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P4 - m% SB(h,k) SB(h,k) {F(§) - §Q(§)}{F(_t—) - -t-é(—t—)}

exp(x(s +1t) —1
X 516 1 O) dsdt + O(M(x)) ,

where M(x) is defined by (2.9).

(3.36)

Proof. From (3.34) we see that the difference between P, and
P, is the replacement of s and ¢ by § and . For this reason we
give the details for (3.35) only, since the estimates for P, go exactly
in the same manner.

By (3.34) and the definitions of s and ¢, we have

P, = —Sjst(s, t)dudv

where G(s, t), as above, is the integrand of the integral on the right
hand side of (3.1). Let B(h, k) and B(p, q) be Farey intervals as
defined in Definition 2.1. By Theorem 36 of [10], we have

U U _Bhk=U U_Bpo=[Vz]l+17 ).

1SksY =

IA

Let B, =[0, (V2 ]+ 1)™]. Then we have

BuU U Bk =BUU U, _Bpag=10 ).

h=1 15ksV p=1 15¢sVe

p=-{{ | +x{ ( +3{ +=={ 1
By JBy h,k JB(h, k) JBy »,9J By J B(p,q) hh,k 2,4 JB(h,k) JB(p,q)

q+pk

-+

oy SB(h k) SB(h k)}G(s’ t)dudv

sk

= {SB S S SB(h,k) + % Z SB(h,k) SB(:D,Q)

*

bk SB(h,k)SB(h,k)}G(s’ t)dudv .

+

Now if @, b= 0, then V2@ +0) =1 a +1V b. Thus
ls + t| = |1/x + 27ui + 1jxz — 27vi

= 2|1/ + w(u — V)i

= 2(1/2* + 7(u — v)*)/*

=2V 2l/r + zlu — o)) .

(3.38)

Thus, by Lemma 3.2, we have, as © — o
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A A dudv
SBOSB.,G<3' Hdudo| < c. H IF(s) — sQIF() — QT

< x"‘“g S |s + €| dudv
By JBy
1Yz

1Vz
L w”‘“g S : A/x + wlu — v]))"*dudv
0

0

1Vz u
L x’”*‘s : dus 1/x + (w — v))'dudv .
0 0

In the last integral we let w = m(w — v)x. Then, as — oo,

SBOSBO G(s, t)dudv’ < ac’”“s " S A + w)dw

1
0

(3.39)
L 2™ log x .
Next
28 S G, t);dum;:{ 5 S S
h,k JB(h,E) By R(h,k};ySkH\/x_ B(hk,k) JBg
(3.40) =

+ 5 .0 hee orauay,

Bk JB
Rk, k)>4[Vz 0

where R(h, k) is defined as in Definition 2.1.
By Lemma 3.2, we have, as  — oo,

S S IG(s, 1) dudw
Blh,k) J B,

hyk  __
R(h,k)S4/Vz
4z

vz ~ R dud
(3.41) <<SO SO |F(s) — sQ()] |F(8) — ¢Q(t)|— =

st||s + &
Yz CLVE _ l H I
< wmﬂg S s + 7~ dudv
0 0
<< xm+l/2 logw ,

where the last estimate is made as above for (3.39).
If R(h, k) > 4V %, then h/k = R(h, k) — 1)V ¢ =3V x by (2.11).
Then 2h/3k = 2/V'x and h/k — 2/V'x = h/3k. Thus, by (2.11),

(3.42) Lh, k) — 1V % = hlk — 2)V @ = h/3k,

where L(h, k) is defined in Definition 2.1. Thus, if R, k) > 4V 7z,
then, by (3.42), we have, as £ — oo,

S S IG(s, )| dudv
B(h,k) J By

@43)  =e| | (FG|+1sQ@DIF) - QL
Bk, 1) J By |st||u — v
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<\, N, (F@I+ 1sQ@DIF®) — tQOILeh, k) — L/ T st dud

B(h,k) SB

< SS (F(s)] + [sQs)NIF(E) — tQ()I(e/h)|st|™ dudw

We use Lemmas 3.2, 3.3 and 3.4, and the definition of B, to estimate
the integrand in (3.43). Thus, if R(h, k) > 4/V x, then, as & — oo,

||, 166 tldudo
B(h,k) J By
vz
& ((L/R)z*~12 log'e= & + (1/hk)a?"® logP™ 2)a‘™ 9 /2(/h) S” v
L]
& (k/R*)x™* (@’ log'e™7 & + (1/k)x?* logt™ ) .

This estimate gives

5 |, 166, Didudo
Wk _ JB(h,k) JBy
Rk, k)>4/Vz

(3.44) L2t R S, k(xt T log ™ o + (1/k)at/ logh ™t @)
h=1 ksvYz

<< xm/2(w8+1/2 log(p—l)v X + (1/k)w(ﬁ+1)/2 logp-—l x) .

as ¥ — oo,
Combining the results of (3.40), (3.41), and (3.44) we have, since

m = 0 by (2.7) and 8 > 0 by hypothesis,

S S S G(s, t)dudv € z™"/*log «
bk JB(R,E) JBy

(3.45) + wm/Z(x5+1/2 log(p—-l)n x 4+ w(ﬁ+l)/2 logp—l x)
— wm+1/2 log € _I_ x(m+1)/25 log(p—l)y x
+ x(m+ﬂ+1)/2 log.p—l. x ,

as ¥ — oo,
We have

SB(h,k) SB(p,q) G(s’ t)dudv |
<el,, | 0FG) +1sQ@IF®] + QD

(3.46) _ F(s)F(t) | dudv ‘ F(s)a dudv
cm{SB(h,k) SB(p.q) st l |s + %] +SB(h,k) SB(M) s Q(t)l |s + £]

F(t) A/ dudv AranArey] GUAY
T SB(h,k) SB(p,q) t &s) |s + £ +Sa<h,m SB(F»G) () ls + i’!} :
By (2.6), the estimate on [s + f|, (8.38), and the definitions of
B(h, k) and B(p, q), we have, as £ — oo,

dudv
stl|s + |
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Al A dUdv
by Z SB(I» 3] SB(P:(I? Q) |s + ]

S‘” S“’ w P 7P Joge (2u) log? ™! (xv)dudwv
Yz 1411 l/x + w|u — v

([Vz 1471

< S°° loge™ (zu)du S“ log* Y (xv)dv
(3.47) 12T wptt 12z YL + w(u — v)x)

*  loge™! (xu)du S“’z S”“”“ S“ log?™ (xv)dv
<o Sl/z“z— ustt { 1/2~/a:_+ ul2 + u—l/x} V(L +mw(u —v)x)

©  log*~* (xu) ghret S“‘ log®~* (xu)
< SI/Z*/G: Y axd du + 1/2va e du

& e log®™ 2

Let M(h, k, p, @) = min {ju — »|: w € B(h, k), v€ B(p, q)}. Then, by
(2.11), we have

L(p, @) — R k) if Wk < plg
3.48 Mh, k, p, .

@48 M kv )= {Lm k) — R(p,q) if hlk> plg.
Let

{x it M,k p,q)=0
M, k, p, @)~ if Mh, k p,q) #0.

Then, for s = 1/x + 27wt and ¢ = 1/x + 27vi, u € B(h, k) and v € B(p, q),
we have, by (3.38),

(3.50) s+ ¥ =271z + wlu — v} = DR, K, D, @) -

(3.49)  D(h, k, p, @) =

By Lemmas 3.3 and 3.4 and (3.50), we have, as 2 — oo,

S S F (S)F @) l dudv o Dk, Ky Py @)gas-1 1o gaio-im 4 |
B(h,k) JB(p.)

|s + hp
S S F(S)Q( )\ dudv & D(h, k, p, 9) GBI/ [ggleh ) g
Bt k) JB(p.q) hpq

and

S S Q(s)
B(h,k) JB(p,q)

Combining these estimates with (8.46) and (3.47) gives, as & — oo,

F(t)|dudv , D(h, k, p Q) s+(8—1)/2 D+
) ) (B=1)/2 |ggle— DA+ g |
t s+ ¢ < hkp g v

sl 66 oldue < 5 5 2B Dgunoge,
Wk g Jati Jat.0 hp
hqﬂtk

(l/q + l/k)x5+(ﬂ—l)/2 log(p—l)(l+r]) w}
(3.51) + @f/2 Joge Ty
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— {Z + 3+ Z}D(hlklplq) {a?~t log 201y
T ) 3 hp

+ (1/q + L/k)x?*Et/2 Jogle— Dty
+ xf /% logt Tt g
=8, +8,+ 8, + aft?log¥* g ,
say, where in (3.51)

(3.52) > is the sum over h, k, p, ¢ such that M(h, k, », ¢) <
lhq — pkl/2kq,

(3.53) >, is the sum over &, k&, p, ¢ such that hq — pk > 0 and
M(h, k, p, ) > (hq — pk)/2kq

and

(3.54) > is the sum over h, k, p, ¢ such that hg — pk < 0 and

Suppose (h, k, p, ¢) is a quadruple being summed over in (3.52).
Then, by (2.11), (3.48), and (3.49), we have D(h, k, », q¢) < ¢, x. Thus

Sl é me Z (1/hp)(x25—1 1Og2(p_1))7 x
+ (L/g + 1/k)xte—b/2 Jogle=htn g) |

(3.55)

If M(h, k, », ¢) = |u, — v,], then, by (2.11) and (3.52),
\lhq — pkl/kq = |h/k — p/q| < |h/k — ui| + |D/a — vl + |ue — v,
S 1kV'e + 1/qv % + |hq — pk|/kq .
Thus
lhq — pkl/2kq = (1/k + 1/)/V % .
Since h, k, p and ¢, are integers hq # pk, k < q by (8.51) and ¢ £ V'
by Definition 2.1, this gives
1= |hg — phl < 20k + V'@ = 4gV'w < 4.
Thus
(3.56) lhg —pk| <4 and ¢g=V x/4.
If h and k are given, then ¢ belongs to at most 8 residue classes
modulo %, since hg=a (mod k) and |a| <4 by (8.56). Thus, by (2.11),
there are at most ¢,V ¢ /k values of ¢ being summed over in (3.52).

If h, k, and q are given, then by (3.56) there are at most ¢,; values
of p. Finally, for x sufficiently large, we have, by (3.56),

(3.57) p = (hg — Ak = (V2 — 16)/4k = bV x [5k .
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By (3.55)-(3.57), we have, as x — oo,

NN xZ(l/h) Z S S (k/hV m )2 logre T g

k=vVz gsei1Vz /k pseyg

+ (1/1/00 + 1/k)a?HE—1/2 [ogle~u+n )
(3.58) LV Zh, 2 S k(V x [k) (2 log®e 7 g

EsvVz

+ (1/-[/ + l/k)xs-}-(ﬂ 1)/2 log(p—l)u-h;) CE)
<< x26+l/2 logtz(p—lm T + x5+(ﬁ+1)/2 log(p—1)(1+77) w{l + Z (l/k)}
ksvVa

& BT IogZ(p—lm x 4 gty Iog(p—l)(1+7;)+1 x.

Suppose (&, k, p, q) is a quadruple being summed over in (3.53).
Then, by (3.49) and (3.53), we have

(3.59) D(h, k, p, q) < 2kq/(hq — pk) .
Define integers m = m(h, k, p, ¢) and n = n(h, k, p, ¢) by
(3.60) hq — vk =m + nk , n=0 and 0<m=<Zk.

If h, k, and m are given, then ¢ belongs to a definite residue class
modulo g, since hg=m (mod k). If h,k, m,and q are given then n must
satisfy n = 0 and hqg — m — nk = k, since » = (hq — m — nk)/k = 1.
Finally, if h, k, m, q, and n are given, then there is exactly one
value for p.

By (3.51), (3.59), and (3.60), we have

AT E_kzzk. S ¢3S (@ tlogtea

h=1 k<v®  m=1 hsq<Vz =0
hq=m(k) hgq—m—nk k

+ (1/q + L/k)x’*#-12 Jogle 004D g) hg — m — nk) ™ (m + nk)™ .

We then proceed as in [21, pp. 26-27] to estimate the inner sums on
q and n. This gives, as  — oo,

(3.61) S2 L pRotL/2 log2(p—l)q+1 x + o+Bn/2 log(p-—u(1+y;)+zm .

We estimate S, in a way similar to S, and get, as & — oo,
y

(3.62) S3 << x26+1/2 log2(p—1)77+1 X + x6+(ﬁ+1)/2 log(p—l)(1+7i)+2 T .

Thus, by (3.51), (3.58), (3.61), and (3.62), we have, as x — oo,

S S |G(s, t)| dudv

hyk p,q¢ JB(h,k) JB(p,q)
hq#pk

(3.63) K8, +8,+ S, + a2 log¥
<L xza-l-llz logz(p—l)r}ﬂ x + xa+(ﬁ+1)/2 log(p-l)(1+7)+2 z + xﬁ+1/2 logzﬁ"l x
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Finally, by (8.37), (3.39), (3.45), and (3.63), we have, as x — oo,

P, = -3, S S G(s, t)dudv + O(x™* log x) + O(x™*V/2+2 J[ogle=17 x)
hyke JB(h,k) JB(h:E)

+ O(w(m+ﬂ+1)/2 log*™ x) + 0(x25+1/? log2e~bt g)
4 0(x6+(,8+1)/2 logte—hutnie ) 4 O(x,e+1/2 log®™ x)

_— S S G(s, ydudv + O(M(@)) ,
h,k JB(h.k) JB(h,k)
by (2.9). This completes the proof.

REMARK. If f(s) is an entire function, then the error term is
0(x2m+1/2 log x + xam/2+1)'

LEMMA 3.6. If s = 1l/x + 27ut and t = 1/x + 2wvi, where u and
v are real, then, as & — oo,

(3.64) P, < M(x)
and
(3.65) P, < M(x) ,

where P, and P, are defined by (3.34) and M(x) by (2.9).

Proof. Asin the proof of Lemma 3.5 we prove only (3.64) since
the only difference between P, and P, is the replacement of s and ¢
by § and %.

By (3.34) and the definition of s and ¢, we have

P, = —S“’ S‘” G(s, Ddudv ,
0 0
where G(s, t) is the integrand of the integral on the right hand side

of (3.1). Let B, B(h, k) and B(p, q) be as in the proof of Lemma 3.5.
Then

h,k p,q

(3.66) P, = _iSBoSBo * 2h,§;‘c SB(h,k)Lo + 2 SB(h,k)SB(p,q)}G(S’ bdudv .

By Lemma 3.2 and the arithmetic-geometric mean inequality, we
have, as x — oo,

SBOSBO GGs, T )dudvl

<eu| | 1FG) - sQ)IIFE) - Q)2

Ist||s + t|
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m-+1 -1
(3.67) < SB(,SBO Is + ¢ dudv
1Yz 1Yz
< x"‘“S S (u + o) *dudv
0 0

1vVz 1Yz

L gmit S S (uwv) V2 dudw
0 0

<< xm+1/2 .

Again, by the arithmetic-geometric mean inequality, we have

SB(h,k)SBO Gs, f)dudv‘

~ = TATy  dudw
@68  sef | (IF(s)l+]8Q(8)!)IF(t)—tQ(t)lm

|F(E) — 2Q(F)|

< C”Sm, (|F(s)| + lsQ(S)l)I “/—S 5 |t|1/— ’

We estimate the integral in (3.68) over B, by Lemma 3.2 and the
integral in (3.68) over B(h, k) by Lemmas 3.3 and 3.4. Thus, by
(2.11), we have

SB(h,k) SBO G(S’ f)dudv

<ammamye | (FE)] + sQ@Dls " du | oedo

1Vz »12dy
< wmOR(Tfh) (L h)e 2 log ™ & + (1/hk)xt’? loge™ @) S
0
& @R (g0 Jog e 1 4 (LK) log? ™t )t
as ¢ — co. Thus, as ¢ — oo,

Y S S G(s, t)dudv
h,k JB(h,k) JBg

(3.69) L gimtn/ar/ i R 2 logle ™ > BVE A b loge Tt e D) ETVE)

h=1 k<Vz k<vVz
& x(m+1)/2+1/4(xs+1/4 log(p—l)y x -+ pB/et1/e logp—l x) .

By (2.11), the arithmetic-geometric mean inequality and Lemmas
3.2 and 3.4, we have, as £ — oo,

S S G(s, T)dudv
B(k,k) JB(p,9)
<ea| | (F@]+ sQDsu | (@] [FQEDI 0 do

< calbafhp)® | PG+ 1sQEDTE, (@ + 1O
& (kq/hp)*(1/h)a?~/* log'*™7 & + (1/hk)x?’? log”" x)
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X (A/p)x’*log'* "7 & + (1/pq)x?* logr™ x)
= (kq/hp)""*((1/hp)x* " log* 7 g

+ (1/hpg + 1/hlep)x’* =172 Joglent+n g

+ (1/hpkq)xf log®*~b ) .

Thus, as € — oo,

3.70) 2 SMML(?’“ G(s, T)dudv

L mzaﬂ/z logz(p—lm x + x6+(ﬂ+1)/2 log(p—l)(1+>7> x + xﬁ+1/2 10g2p—z x,
by the definition of
and Y.

h, k D, q
Thus, by (3.66), (3.67), (3.69), and (3.70), we have, as & — oo,
_P2 << xm—l—l/z + xm/2+1+6 log(p—l)v x + x(m+ﬁ)/2+1 Iogp—l x
_|_ x26+1/2 logZ(p—l)ﬂ X + x6+(ﬁ+1)/2 log(p—l)(l"l’v) T
+ xft/2 logie ™
< M(zy,

by (2.9). This completes the proof.

REMARK. If f(s) is an entire function, then the error term is
0(x2m+1/2 log x + x3m/2+1).

LemMA 38.7. Ifs = 1l/x + 2zui and ¢t = 1/x + 2wvi, where u and
v are real, then, as x — oo,

. S - exp (s(s + 7)) — 1
|, Ewray = -5\, 1, (FOFOSRELL

~Texp(aE +1) —1
+ FOFGZE 8 }dudv

+ O(M(x)) ,
where M(x) ts defined by (2.9).

Proof. By (3.35), we have

Pl - {~lec SB(h,k)SB(h,k) F(S)-mexp (x(s = —t—)) — 1 dudv} !

T 8?(3 + Z)
A dudv
@) = On % SB(h,k)SB(h,k) Fs)l IQ(t)I[s[ |s +
’ A dudv
+ s SE(h,k) SB(h,k) !F(t)HQ(S)HtHs + t|
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Ar Ay AUAY
+ % SB(h,k)SB(h,k) !Q(S)Q(t)]is_'__{l} + O(M(x)) -

By (2.6), (2.11), and Lemma 3.3, we have, as & — oo,

dudv

!F(S)Q(t)]m

h, ke SB(h,k) SB(h,k)
dv

<\ F@sian|  oeloge @
bk JBh,E) Blh, k) 1/x

3.712) <Kw i (h™'2?~% log ™7 )(1/kV @ )(k/h)*+ loge™ (ha/k)

=1 k=Yz
L x'loglr ™V g i h=%%log’ ™ (ha) >, (L/k)k** loge 'k
h=1 kv

<< x5+(ﬁ+1)/2 log(p—l)(2+7) X ,

since 8 > 0.
Similarly, as ¢ — <o,
(3.73) > S S [F(t)@(t)]_@d_”_- & PHED |gglemhetn g
ik JBte JBOL® itlls + t|

Finally, by (2.6), we have, as x — oo,

1Q(s)Q(t)-S4dY

h, k SB(h,k) SB(h,k)

ls + ]
e * log®™ (xu) log*™* (xv) dud
8.74) < S<1+M‘]>~1Su+[~/£“])—1(uv)ﬁ+1(1/x + Tlu — v|) uav

L w2 log*

where the last estimate is obtained in the same way as was the

estimate (3.47).
Thus, by (3.71)-(3.74), we have, as & — o,

e ——exp (x(s + t)) — 1
P, { % SB(h,k) SB(h,k) F)F@) st(s + t) dudv}

(8.75) L gPTEEN/2 JogleT BN o BT loge T g + M(x)
< M=) ,

by (2.9).
A similar argument, using the estimate (3.36), gives, as  — oo,

(3.76) P, — {_% SB(h,k) SB(h,k) F(§)—F_'(_t:5 =P ('sfct((i'i tt))) = dudv} < M(z) .-

By (3.33), (3.75), (3.76), and Lemma 3.6, we have, as x — oo,
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[ Bwray— -5 | (FeFoeessto-1

Ik 3{(3 + f)
e exp (x(@E + 1) —1
OO =g )audo}
o ——exp (s + 1)) — 1
- Pl { }g;‘c SB(h,k) SB(h,k) F(S)F(t) SE(S + f) dudv}
(L _=exp (x( +t)) — 1
+ P, { % SB(h.k)SB(h,k)F(S)F(t) 5t + t) dudv}
+ P, + P,
< M=) .

This completes the proof of the lemma.

REMARK. If f(s) is an entire function, then the error term is
O(IL‘ZMH/Z + xam/2+1).

3.2. Proof of Theorem 1 and Corollary 1. We give the details
only for the case when f(s) is not entire. The proof when f(s) is
entire is similar and is obtained by using the estimates given in
the remarks to the lemmas.

Proof of Theorem 1. For s = 1/x + 27ui and ¢ = 1/x + 27vi let

@.77) Ih, k) = SB(h,k) SB(h’k)F(s)_‘_F'theXp (:Z(-?si?)) — 1dudv )

By (2.3), (2.4), and (2.7), we have, as & — oo,

() — sQs)| = | S v | Hnaredo

(3.78) = culs| ™™ 3 le(n)| exp (—k(¢, Re (1/s))%)
= ¢y || exp (—c5; Re (1/5)%)
L 2™,

where the last estimate is obtained in the same way as the estimate
in Lemma 3.2. Similarly, as ¢ — o,

(3.79) [F(t) — Q)] < & .
Let
(3.80)  Fl(u, v) = sQ(s)tQ(t) exp (2 + 2wx(u — v)i) — 1

Az + 2rur)L/x — 27vi)(2/x + 2m(u — w)7)

and
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(3.81) 'k, k) —_—S S Flu, v)dudv .
B(h,k) JB(h, k)

If u, ve B(h, k), then, by (3.80) and (2.11), we have

' zj’(u, 1)) ‘ _ ‘ exp (2 + 2xx(w — v)i) — 1
sQ(s)tQ(t) 1/x + 2rui)A/x — 27v1)(2/x + 27(w — v)3)
(3.82) =< cy(uvz™)™

= cy((h/kYa™)7 .

By (3.77)-(3.80), we have

Ih, k) =§ § (sQ(s) + 0@ M) E0(t) + O™ )L _qudy .
Blh,k) JB(h,k) SQ(S)tQ(t)

Thus, by (3.81), (3.82), and (2.11), we have, as x — oo,
(3.83) [ I(h, k) — I'(h, k)| € 2™07%(k/h?) Sm . [sQ(s)ldu + a2™/h* .
By (2.6), we have, as in the proof of Lemma 3.4,

S [s@(s)]du < S |s|~# log*™* |s| du
B(h,k) B(h,k)

(3.84) < (V@ )(k/h) log ™
<L (1/k)x# 1/ log™ &

Thus, by (3.83) and (3.84), we have, as x —
(8.85) Ih, k) — I'(h, k) € o™tA72p 72 loge™ + x™h ™2 .

In a similar way we let

3.86)  Jih, k) = Sm ,,)Sm FOFHZ2 (_xt((s J_; %> L dudv

and

J'(h, k)
. A NTA T exp (2 + 2x(v — w)xi) — 1
B SB(h,k)SB(h,k) SREIR) (1/x—2mut)(1/x+2nvi)(2/x+ 2m(v—u)i) dudv ,

in analogy to (3.77) and (8.81), and obtain in a similar way
(3.87) Jh, k) — J'(h, k) L x™TP2p "2 log? ™ ¢ 4+ x™h 72 .

By Lemma 3.7, (3.77) and (3.86), have, as x — oo,
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[ 1B@rdy = =3, I ) = 5, Jh, 1) + O(M(@)
(3.88) = =% Uk ) = I, ) — S I8, B
— 5, ) = T (B, 1) — 5T (h, F) + OQM(w)) -

As in the estimate (3.47), we have, as & — oo,

(3.89) % I'(h, k) € 2™/ log* ' ¢
and
(3.90) % J(h, k) € ¥ log* ' .

By (3.85), we have, as & — oo,

Gon DUk B = I ) < @™  log ™ a + 2 A~ 3 1
. h,k h=1

ksvVz
<< x(M+ﬁ+1)/2 logp—l x + xm+1/2 .

In a similar way, by (3.87), we have, as ¢ — oo,

(3.92) th(J(h, k) — J'(h, k)) € xmHEr0zogeTt g 4 g2,
Thus, by (3.88)-(3.92), we have

Sx IE(y)lzd,y & xfT ogteTl g + gimTETI2 ogeTl g o gt M(z)
0
£ M(x) ,

as © — oo, by (2.9). This completes the proof of the theorem.

Proof of Corollary 1. By [3, p. 152], we can take m = r. If
f(s) is entire, then the result follows immediately from Theorem 1.
If f(s) is not entire, then we have, by the hypotheses on the poles
of f(s), that 0 < 8= r. Thus, by (2.8), 6 = 8 < r = m. The result
then follows from Theorem 1 and (2.9). This completes the proof
of the corollary.

4. The sums of the squares of the coeflicients.

4.1. Preliminary lemmas. In this section we assume that
N, = n for all nm.

By [14, p. 121] we have |a(n)| < cun®, for all n. Thus, the sum
defined in (2.2) converges absolutely for Re(s) > 0.

LEMMA 4.1. If s = 1/x + 2rui and t = 1/x + 27vi, where u and
v are real, then for each positive integer x, we have
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(4.1) Silamr = | F ng: :tt)»__ lldudv .

Proof. We have, for n = 0,
S’ F(s)e™du = S‘ S a(m)e~" ' du
0 0

= >, a(m) Sl e ™ gy
0

= a(n) .
Thus

la(n)* = S:F(s)e“du 8 F@)edv
= S So F(s)F@ye  dudv .
If we sum on 7, we have
S lal = 5 la()r
= | FoF® X v+ dudo

exp (x(s + t)) —
§ S F(s)FD) R L udv .

This completes the proof of the lemma.

The integrand of the double integral on the right hand side of
(4.1) is periodic in u and v of period 1. Thus we may integrate
over any interval E of length 1. Thus, by Lemma 3.1,

(4.2) g la(m)t = SES F(s)F2E (ﬁis:ftt)))_ 11dudv .

Let E=[1/[Vz],1+1/[Vx]]l. Let B(h k) be as defined in
Definition 2.1. If we note that B1,1) =[1 — 1/[Vz], 1+ 1/[Vz]],
then we see that

E = B, k) .

1Sk=vx 1Shsk

In the remainder of §4 we will denote by

>, the sum 3

by k 1sk=vYz 15h=k

Then, from (4.2), we have

(43) :Z;: la(n)l2 Z pz:‘z SB(h k) SB(? q) F(S)F(t\e};pl()azis:- tt)))— 1 dud'v ’
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LEMMA 4.2. For s = 1/ + 2zut and t = 1/x + 27xvi, where u and
v are real, we have, as x — oo,

. —=exp (x(s + ) — 1
n§zz~—l la(r)[* = hz;: SB(h,k)SB(h,k) F&F® exp(s+1)—1 audv

-+ O(wza logZ(p—l)qH x) .

Proof. If |z| < 3rm/2, then |e* — 1| = ¢xl2|. Thus, for 0 < |z| <
37/2, we have

(4.4) le* — 17 = ewl2]™ .

Suppose u € B(h, k) and v € B(p, q) with hq # pk. Then, with s
and t as defined above, we have s + ¢ = 2/x + 27(u — v)i7, Where
—1=Zu — v <£1, since the integration in (4.2) is over and interval
of length 1.

In(44)wetakez=s+t+2mif —1u—v< —1/2,2=8+1
if —12<u—v<1l2andz=s+1—2riif1l/2=<u — v <1. Then
we have, by (3.8) and (3.50),

e — 1|7 < culls + B + s + € + 21 + |s + T — 2mi| ™)

(4.5) L@/ + wu — V) + Qje + T — v + LD
+ Q) + wlu — v — 1))
(4.6) =< co(D(h, k, D, @) + D(h + k, k, p, @) + D(h, k, p + q, @) .

By Lemma 3.3 and (2.11), we have, as x — oo,

S th k>s (p,) [F(&)F @) dudv = e SB(h k)u‘F(S)/Sldu SB( 0 |[F'(t)/t|vdv

L (1/h) (7 log =7 x)(h/K)(1/p)(x*~V/* log'* ™" x)(p/q)
4.7) = (2*tlog®* V7 x)/kq .

Thus, by (4.3) and (4.7), we have, as x — oo,

gt} . —~exp (x(s + 1)) — 1d d
nz:::{ jam)] % SB(h,k)SB(h,k) FloF@) exp(s+1t)—1 uae
sawr S| | IF@FOle - 17 dudv

h,k p,q JB(h,Ek) JB(D,q)

hq#pk

L ¥ log*e T g th >, (1/kq)(D(h, k, , q)

B D,
hg#pk
+ D(h + k, k, p,q) + Db, k, p + q, Q)
(4.8) < e log*eT T th’ >\ D(h, k, p, @)/kq
bz
(4.9) = e log? ™V (3] + ZZ + Za.)D(h, k, p, )/kq ,

where in (4.8) the dash indicates that the sums are over h, k, p, ¢
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such that ks <V'w,h <2k, (h, k) =1landg=1V'z, » < 2q, (p, 9) = 1,
respectively, and in (4.9) the sums are over the regions (8.52), (8.53),
and (3.54), respectively

We estimate the sums

as in [21, pp. 43-47] and obtain
(4.10) 2,+§2]+Z<<xlogx.

Thus, by (4.9) and (4.10), we have, as x — oo,

Sl - 5| | FEFHEREE L) 14,4,
a1 Bk B JBOR, B exp(s+1t)—1
<< xza logZ(p—1)77+1 T .

This completes the proof of the lemma.

REMARK. If f(s) is entire, then the error term is O(x*™log x).

4.2. Proof of Theorem 2 and Corollary 2.

Proof of Theorem 2. We give the details only for the case that
f(s) is not entire. The details when f(s) is entire are similar except

that we use the estimate given in the remark to Lemma 4.2.
Let s = 1/x + 27ui. Then we have, by (2.3), (2.4), and (2.7),

[Fs) = 5Q(s)] = | 3 bl || Ko de

= cg |87 2 le(m)| exp (— k(¢ Re (1/8)%))
(4.11) = Cgl8| 7™ exp {—cy(w/(L + 4m’au’)*)}
= cor® s ™ (L)% |s]*) exp (—cqi/x* |s]*)
& walslza_m ,
as ¥ — oo,

Let s be as above and t = 1/x + 27vi, where u and v are real,
and

_ ——~exp (x(s + 1)) — 1
4.12) I k) = SBM’HSBM FFG) SR 7ot = dudo .

Then, by (4.11) and (4.12), we have, as & — oo,
I(h, k)

= | (500G st )R + 0t E L dudy .
B(h,k) JB(h,k) e’ _1
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Let
(4.13)  Flu, v) = sQ(s)tQ(t)(exp (x(s + F)) — L)f(exp (s + £) — 1)

and

I'(h &) = S S Flu, v)dudv .
B(h, k)

B(h, k)

Then, by (4.5), we have

I(h, k) — I'(h, k) < amkm* Sm mS 1sQ(s)| min (x, | — v|")dudv

Bk, k)
_'_ xmkzm-—!a—z y

as £ — o, by (2.11). We estimate the double integral as in the
estimate (3.84). This gives

4.19)  Ih k) — I'(h, k) € kn2tgtm o072 log? @ + amfn—e?

as x — co,
By Lemma 4.2, (4.12), and (4.14), we have

S, la() = 3 Ih, k) + O log"e =7+ )
nse—1 N3
= ;% I'(h, k) + hz;: (I(h, k) — I'(h, k)) + O(x* log*e°—17* )
(4.15) = %I'(k, k) + O(x* log*e—vrtt o + h(x)) ,
as « — oo, where h(x) is defined by (2.10).
Suppose B8 > 1. Let C(h, k) be the union of those intervals whose

points are either all = R(h, k) or < L(h, k), so that B(h, k) U C(h, k) =
(—o0, + ). Let

I"(h ) = S+°°

—oo

S+°° Flu, v)dud

which converges for 8> 1, by (2.6) and (4.13). Then, as & — oo,

we have, by (4.4) and (4.13),

vk - <{] | | L@ vdude
B(h,k) C(h,k) JB(h, k)

(4.16) < Sj:|s(§(s)ldu S min (x, fu — o[ Q)| dv .

C(h,

C(h,k)

By (2.6) and (2.11), we have, as & — oo,
|, . min @, u = o) Q)| dv
Clhsk)

< xs £0|()| dv + S 60| [u — | dw
C(h.E) C(h,k)
Ju—v|<z—1 g1l |u—v| <1
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4.17) + Sm Q@ — ol dv

lu—v[z1
1

& 2V 7Y logr z(1/z) + (e T ) log™ © S v ido

1/z
+ SW _(logr'v)v~*dv
1/2kvVE
L kEPxf?log ™ x .
Thus, by (4.16), (4.17), and (3.84), we have, as © — oo,
I'(h, k) — I"(h, k) € (U/k)x* 72 loge™ x)(kPxf? loge ™ x)
(4.18) L kit 2 Joge ) g,
By (4.15) and (4.18), we have, as x — o,
>, la@) = >, I"(h, k)
(4.19) n<z—1 N
_|_ 0(x3ﬁ/2 log2p—2 x + x26 log2(p—l)7)+1 2 _'_ h(x)) .
By (4.13) and the definition of s and ¢,
I"(h, k) = S+°° S+°° s0()0@) S exp (n(2/z + 2a(u — v)i)dudv
—o00 J—o0 7=0

z—1

Sf” sO(s) exp (n(L/z + 2wui)du I

=0

§ @

1 2

(@mi)" S wQ(w)erdw

(1/z

’
n=0

where we have made the change of variables w = l/xA+ 2nui to
obtain the last integral on the right hand side. Since wQ(w) is the
Laplace transform of Q'(x) we have [8, p. 227]

z—1

"y ) = 3 1@ -
By (2.5), we see that Q'(x) ~ cx’'logr"°'x, as & — oo, Where ¢ is
some complex constant. Thus, as £ — oo,
(4.20) I'"(h, , k) ~ xf, le]*n**log* 2 n ~ Ax*'log*?x ,
n=0
where A is some positive constant.
Thus, by (4.19) and (4.20), we have, as © — oo,
S la(n)? € x* log**x + h(x) .
n<z—1

Replacing # by « + 1 and letting it be an arbitrary real number

gives the second part of Theorem 2.
If 0 < B £ 1, then the integral defining I"(h, k) does not converge
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and we must estimate I'(h, k) in another manner. By (3.84), we
have

I,(h’ k) é G SB(h.k S

) JB(h,k

)|s@(s)t@(t)[ min (x, |[u — v|")dudv

<cwr| 1sQolau| Qi
Bk, k) Blh,k)
&L (1/k¥x? log** 2,
as ¥ — o. Then, as & — oo,

S I'(h, k) € 3 3 (af log™ ™ x)/K?

ksVx hsk

(4.21) L xflog™ ' x .
Thus, by (4.15) and (4.21) we have, as & — oo,

by la('n)|2 & xflog*™t ¢ + 22 log2e~1 g hz) .

n=z—1

Replacing © by z + 1 and letting « be an arbitrary real number
gives the first part of Theorem 2.
This completes the proof of Theorem 2.

Proof of Corollary 2. Corollary 2 follows from Theorem 2 exactly
as Corollary 1 follows from Theorem 1 and so the details will be
omitted.

5. Application of a theorem of E. M. Wright. In this sec-
tion we will prove a theorem that will ensure the validity of (2.7)
for a class of Dirichlet series that satisfy the functional equation

(1.2).
Let 4(s) be as defined in (1.1).
Let
N N N
Azgl,ak, Bskgl,ﬁk, logD———-’g;aklogak,
(5.1) r=@1—-N)2+ B, 0 =2(log D — Alog A) and
h = 2exp (—6/24) .

As in [4, pp. 100-102], we can show that, as |u| — o,
(5-2) I(u) J— Alur/Z-H/ZA—*le]‘2#+AT~1(hul/2A) + 0(ur/2+1/8.~1—-1) ,

where I(u) is defined by (2.1), A, = D¥4 and J,(x) is the ordinary
Bessel function of order v. Then, as |s| — =,
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Fo(s) = S“ I(0)e " dx

~ A1 S: (xﬂ”)r/ZH/M—IJZHAr—l(h@‘nx)l/u)e_”dx

oo

(5.3) = (Al/#ﬂ)g oA s g (R €XD (— s/ pta)da

since /2 + 1/8A > 0.
We state as a lemma the special case that we will need of a
more general thearem of E. M. Wright [23, Theorem 1].

LemMMA 5.1. Suppose b and d are complexr numbers, a and c
are positive real numbers and I'(b + at) has mo poles if t 18 a non-
negative integer. Let, for Re(z) > 0,

_ &b+ ak) (=2
Ho) = 2 Faven T

Let p=b—d, A, = (1 + ¢ — a)/* 7 /27 9qb /2 qnud
W =1+ ¢ — a)ac =)/t |
Then, as |z| — oo,

(5.4) H(z) = AOW“f"e‘W{l i ”:g BW- + O(W"")} ,

where M 1is a positive integer and the B, 11 M—1, are
certain constants independent of z.

LEMMA 5.2. Suppose Re (w) >0, h, v >0 and Re(vv 4+ ) > 0.
Then, as |@| — oo,

(5.5) Sm a1, (ha)e~ *da ~ Ay(h/2)’ @141 exp (— k@ /4N |
0
where A, = 2V(L — 7 (om)0-0n=r and k= (1 — (7o,

Proof. We have, since Re(v + \) > 0,

| o gane=rede = @y $ WY grersanogeregy
0 = NI+ 1+1) Jo

s IO+ 70 + 27D 227 A\
5.6 = st (— 2w /4) .
(5.6) (h/2) ga TOENESR /4)

We apply Lemma 5.1 with a =27, b=A+ ", ¢=1 and d =
v+1. Thus p=xN—1+v(r —1), A = 2FA — y)rrnenylteme
and W =21 — "}(2Y)hw'/2)* 7,  Thus, by (5.4), we have, as

le > 99,
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(5.7) g‘s I;(')}('Z ’—7:) l++2’2’)l)(_hzwzr/4)l ~ A3V exp (— k@4 |

Combining (5.6) and (5.7) we get (5.5). This completes the proof
of the lemma.

THEOREM 3. If A > 1/2 and Re (¢t + Ar) > 0, then in (2.7) we
may take m = Ar/(2A — 1) and o = (24 — 1)™.

Proof. By (5.3) and (2.3), we have, as |s| — o,

s | Keajerds
= >, () "F,(s)
6.8  ~ASbmpe |

arF AT,y aroi(REH?4) exp (—sa/pe,)da

In Lemma 5.2 we take v = 1/24, w = pt./s, » = 7r/2 + 1/2A and
v=2¢+ Ar — 1. The condition Re(vv + ) >0, of Lemma 5.2,
translates into Re (r + p¢/4) > 0 or, since A > 1/2, Re (¢ + Ar) > 0.
Thus, as n — o, we have

(5.9) Fﬂ(s) ~ Aas—Ar/ﬂA—l)#ﬁr/(2A—1)—1 exp (___k(#"/s)l/(ZA—l)) ,

where 4, = A, A,(h/2)* 4t and k = (24 — 1)(h/2A)*4/*4~Y, Since h > 0
and A >1/2 we see k> 0. Thus, by (5.8) and (5.9), we have, as

[3!—> oo,

(5.10) S b(m)p S Ipt,z)eda
)
~ s—Ar/(2A—1) Z A3b(n)#.§,,1_A)r/(2A—l) exp (_k<#”/s)l/(2A_l)) .

Comparing (5.10) and (2.7) gives the result and completes the
proof of the theorem.

As an application of Theorem 3 we give the following theorem
which is an application of Theorem 1 to Dirichlet series with posi-
tive coefficients.

THEOREM 4. Suppose that f(s) = >, a(n)h,* satisfies the function-
al equation (1.2) with A > 1/2 and Re (¢ + Ar) > 0, where A and ¢
are defined by (5.1). Suppose that for all n we have a(n) = 0.
Then we may take m = Ar/(2A — 1) in Theorem 1. Also, as x — oo,

(1) of A>1, then we have

S“’ |B(y)Pdy € &*™°* + a* 2 log @ + a™/2 logt™ o + a7t/ log® i v ;
0

(2) if A=1, then we have



226 DON REDMOND

Sz |[E(y)Pdy < a*r/*+log~* 1 + a¥ /2 log ' g ;
0
(3) #f1/2< A <1, then we have
S“ |E(y)Pdy € x™2log & + a™**+ log?™ & + 2> +/2log* ' 1 .
[

Proof. By Theorem 3 we have m = Ar/(24 — 1). By a theorem
of Landau (see [14, p. 874]), if a(n) = 0, then f(s) has a pole at
s=7. Thus B=7. If A>1, then m<». Thus d=m<r=2
and =0, by (2.8). If 1/12<A=<1, then m=7. Thus 6 =08 =
r<m and 9 =1, by (2.8). The results then follow by comparing
the exponents of the terms in M(x), in (2.9), in each of the three
cases. This completes the proof of the theorem.

6. Comparison of Theorem 1 to the theorem of Chandra-
sekharan and Narasimhan. In this section we make a comparison
of our Theorem 1 to Chandrasekharan and Narasimhan’s Theorem 1
of [6]. For reference we state their theorem in our notation.

THEOREM A. Suppose the functional equation (1.2) is satisfied
with >0, A=1 and p, = cuh, N, = CgN, Where cy and c; are
positive constants. Suppose the only singularities of f(s) are poles
and that for some real numbers a and b

> b(n)} € 2™ tlog’
EpST
as £ — . If 204 —7r—1/A=Z0, then, as x— oo,
S’” |E(y)IPdy = cur®®™ + O(2**/*4 log"™ ) ,
0

where ¢ 1S a certaim positive comstant and d = r/2 — 1/4A. If
20 — r — 1/A > 0, then on the basis of the further assumptions that

225‘ la(n)]® € ' log®
and b = 2(p — 1) we have, as x — oo,

S” |E(y)|Pdy € a4+ + gt/ oghtt
1

From the estimates (4.19) and (4.20) and Remark 2 after the
proof of Lemma 3.4 it seems likely that the estimate

“Z(L la(n)]* € 2*7*logbx ,
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as ¢ — oo, hold for some nonnegative integer b in the case when f(s)
is not entire. In many of the special cases that estimates for the
sum (1.6) are known an estimate of this type is obtained. For ex-
ample, for the coefficients of zeta functions of algebraic number
fields [5, Theorem 3] and for the case a(n) = d,(n) [19, p. 199] such
estimates are obtained. Thus in Theorem A we could take a = 8.

Since our Theorem 1 gives only an 0-estimate for the integral
of the square of the error term, Theorem A is better when 28 —
r—1/A<0. In a sense this says that the parameters for the
estimate are relatively small.

Suppose 28 — r — 1/A > 0. Then both Theorem 1 and Theorem
A give only O-estimates. The estimate from Theorem A is

(6.1) | 1B@)rdy < o7t logi s,
0

as x — oo. If we take each possible term in (2.9) in both cases (6 =
m and § = B) and suppose it to be maximal, we see that the result
of Theorem 1 is no worse than the estimate (6.1) if either A =1 or
B =1/A. The first condition, A =1, is part of the hypotheses of
Theorem A and the second, B8 = 1/A, is again a statement that the
parameters are not too small, since 8 <1/4 and 28 —r —1/A > 0
imply » < 1/A. If we were given 8 =1, then the second condition
would also be fulfilled. An example of the latter would be a
Dirichlet series with nonnegative coefficients satisfying the functional
equation (1.2) with » = 1.

We can then say that Theorem A gives better results if the
parameters are small, while Theorem 1 gives better results if the
parameters are large, as is the case in Examples 2 and 5 of §7 below.
Moreover, Theorem 1 is applicable in those cases where one does not
have estimates on

3l

nS%

whereas Theorem A is not.
7. Examples.

ExampLE 1. For k> 0, let o,(n) be the sum of kth powers of
the divisors of » and let S,(x) be the associated error term. Then,
for Re(s) >k + 1,

Sion)n™ = {(s)(s — k) .

Here we have r =8=k+ 1, A=1and p=1. By (2) of Theorem
4, we have, as & — oo,
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[ 18y < o+ log 2,
0

which is the same result obtainable from the theorem of Chandra-
sekharan and Narasimhan, but here we did not need to refer to the
size of the sum

>, oi(n) ,

nsT

as is required by their theorem.

ExampLE 2. Let d,(n) be the number of ways of writing » as
a product of k = 2 factors. Then, for Re(s) > 1,

Sl d(m)n™ = {Xs) .

Here we have r=08=1, A=Fk/2 and p=k. Thus, by (1) of
Theorem 4, we have, for k = 3, as & — o,

S: Mk(y)IZdy & k922 [o okl g0

where 4,(x) is the error term associated with the coefficients d,(n).
For k& = 2 Chandrasekharan and Narasimhan get an asymptotic result.
For k¥ = 38 this improves the result obtainable from their theorem.
For k = 5 our result improves the result in Titchmarsh [19, Theorem
12.3 and §12.5, p. 270].

ExAMPLE 3. Let K be an algebraic number field of degree n»
over the rationals, with n = 3. Let ax(m) be the number of integral
ideals with norm exactly equal to m. For Re(s) > 1. Let

CK(S) = Z az{(m)m—s .

Then, from [13, p. 27], we know that (x(s) has a simple pole at
s =1 and is regular elsewhere. Also (x(s) satisfies the functional
equation

I(s/2)(s)C™C(s) = I"™((L — 8)/2)"*(1 — )C* k(1 — 3) ,

where 7, is the number of real conjugates, 27, the number of
imaginary conjugates of K, so that » = 7, + 27,, and C is a positive
constant depending only on the field K. Here we have r =£8=1,
A=n/2 and o =1. Thus, in Theorem 4, we take m = n/(2n — 2).
If E(x) is the error term associated with (x(s), then by (1) of
Theorem 4, we have, as & — oo,

Sz 1E("l/)|2dy &L purd/ea=n
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This result improves the result of Chandrasekharan and Narasimhan
[6, Theorem 2] for » = 3. For n = 2 they get an asymptotic result.

ExAmMPLE 4. Let K, 7, 7, and C be as in Example 3. Let 4
be a nonprincipal Grossencharakter on the ideals of K. Let

o — 1 l1=sqg=m
T2 7’1+1_£_Q—§7'1+7"2.
For Re(s) > 1, let

@a(8) = C¢(s, A) = C* > AQONER)*,

where the sum is over all nonzero integral ideals % and N(%) is the
norm of A. If we let

c(m)=c(m)= 3, AQ),
N(a)=m
then we have, for Re(s) > 1,

Pa8) = C° X e(m)ym™ .

Then, from [11], we know that ¢,(s) can be continued to an
entire function and that there exist real numbers ¢, ---, ¢,,, and
nonnegtive integers d,, d;,, 1 < q < r, + 7, such that ¢,(s) satisfies
the funectional equation

@A(8)((8) = LI (1 — 8)pa(l — ),

where L is a constant depending on 4 and
rit+r

Iie) = 11 Tley(s + (@, + /2 + is,}/2)

Here we have A = n/2 and » = 1. Thus in Theorem 1 we may take
m = n/@2n — 2), by Theorem 3. This gives

Sx |E(Z/)]2dy <K x7/4+3/(4n_4) ,
0

as ¢ — oo, where E(x) is the error term associated with the coefficients
c(m).

By Theorem 3, we have @ = 1/(n — 1). Thus, by Theorem 2,
we have, as x — oo,

mﬁslx le(m)]? € "V ]logx .

ExAMPLE 5. Siegel’s zeta function. Let @ be an indefinite
quadratic form in % =4 variables with rational coefficients. Let
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#(Q, t) be the measure of representation of ¢ by @ and let, for
Re (s8) > Kk/2,

@, s) = »20 maQ, e .

This zeta function was first introduced by C. L. Siegel in [17].
From [17, p. 688] we know that {(Q, s) satisfies the functional
equation

= l(8)X(Q, 8) = (—1)* ™2 |QI*a~ " I'(kf2 — $){(Q", k/2 — 5) ,

where |Q| is the determinant of @, @ is its inverse form and
(n, k — n) is its signature. From [17, p. 688] we know that {(Q, s)
has a simple pole at s = k/2 and is a regular function elsewhere.
Thus we have » = k/2= 8, p =1, and 7 = 1. Let E(x) be the error
term associated with (@, s). Then, by Corollary 1, we have, as

&Xr — oo,
Y |[E(y)*dy < «*"*log x .

Now assume that the coefficients of @ are integers. By Theorem
3 (or [3, p. 152]) we may take @« = 1. Thus, by Corollary 2, we
have, as x — o,

x* 1 if rh=4
2u<Qt>2<<{ ogz 1

if £=5.
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