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MEAN VALUE THEOREMS FOR A CLASS
OF DIRICHLET SERIES

DON REDMOND

In this paper we are concerned with mean value theorems
for the summatory functions of a class of Dirichlet series.
This class of Dirichlet series is a class of Dirichlet series
satisfying functional equations involving multiple gamma
factors. If f(s) — Σ a(n)λ~s is a Dirichlet series satisfying
such a functional equation and E{x) is the associated error
term (see (1.2) and (1.4), respectively), then, we prove 0-
estimates for

(1) V \E{y)\2dyΓ \E{y)V
Jo

and
(2) λΣJa(n)\* ,

in the latter case when λn ~ n. The results we get for (1)
improve known results in some cases. Also the general
result (1) is applicable in cases where a similar result of
Chandrasekharan and Narasimhan is not.

1* Introduction and historical survey* In this paper we shall
obtain a mean square estimate for the error term of the summatory
function of a class Dirichlet series. We shall also obtain an estimate
for the sum of the squares of the coefficients of these Dirichlet series.
The class of Dirichlet series we are concerned with consists of those
satisfying a functional equation involving multiple gamma factors
such as was considered by Chandrasekharan and Narasimhan in [4].

Let {a(n)} and {b(n)}f 1 rg n < +°°, be two sequences of complex
numbers, not all zero, and let {λj and {μn}, 1 ^ n < +co, be two
sequences of positive real numbers increasing to + °°. Suppose that

/(*) = Σ α(w)λίβ and g(s) = Σ b{n)μ~s

each converge in some half plane with finite abcissas of absolute
convergence σa(f) and σa(g), respectively. Let

(1.1) As) - Π Γ(aks + βk) ,

where ak > 0 and βk is complex, 1 ^ k ^ N. Then f(s) and g(s) are
said to satisfy the functional equation

(1.2) As)f(s) = Δ{r - s)g(r - s)

191
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if there exists in the s plane a domain D, which is the exterior of
a compact set S, in which there exists a holomorphic function G(s)
with the properties:

(1) lim G(σ + it) = 0 ,

| t | — o o

uniformly in every strip — oo < σ̂  5S cr <: <r2 < + « , and

for Re (s) > σ.(J)( 2) G(s) „ _ ^ _ g ) f Q r R e ( g ) < r _ σ a

If

(1.3) Q(x) = - L ί M ^ g ,

where C is a curve enclosing all the singularities of the integrand,
let

(1.4) E(x) = Σ ' a>(n) - Q(x) ,

where the dash indicates that if Xn — x, then we add only a(n)/2.
E(x) is called the error term for the summatory function of the
coefficients of the Dirichlet series f(s).

With the notation as above, in this paper we will obtain estimates
for

(1.5) [\E(y)\2dy
Jo

and

(1.6) Σ Mn)\% ,

in the latter case when λΛ = n. Both of there estimates can be used
to obtain information on the size of the error term by use of the
Cauchy-Schwarz inequality. Estimates for (1.5) imply estimates for
the average size of the error term,

x

and estimates for (1.6) imply estimates for the summatory function,

Σχ Hn)\ ,

and so also on the size of the error term.
Estimates for (1.5) were first obtained in 1922 by Cramer [7]
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for the special cases E(x) = Δ%(x) and P(x), the error terms of the
divisor problem and the sums of two squares problem, respectively.
In 1933 Walfisz [20] gave estimates for the integral in the case of
cusp forms. In 1964 Chandrasekharan and Narasimhan [6] gave
estimates for the integral (1.5) in the general case. All of these
methods used identities between the summatory functions being
studied and series involving Bessel functions or integrals that are
generalizations of Bessel functions. They also used the differencing
methods developed by Landau in his work on lattice point problems.

In 1938 Walfisz [21] gave estimates for (1.5) in the case E(x) =
PJjx), the error term associated to the problem of counting lattice
points in four dimensional ellipsoids. In 1940 Jarnik [12] gave
estimates for general Pk(x). Both of these methods used the modular
relations between theta series defined from quadratic forms.

We generalize the method of Walfisz [21] to obtain our estimates
on the mean value integral (1.5). The result we obtain improves a
result of Chandrasekharan and Narasimhan [6] in those cases where
they do not get an asymptotic estimate.

The sums (1.6) have been studied in many special cases.
Ramanujan stated in [16] and Wilson proved in [22] asymptotic
estimates for the case a(n) = d(n), the divisor function. In [9] Hardy
gave an O-estimate for the case a(n) — τ(n), Ramanujan's function,
and later Rankin, in [15], sharpened this to an asymptotic result,
as well as giving similar estimates for the coefficients of cusp forms
in general. In [21] Walfisz gave asymptotic formulas for a{n) = rz(n)
and r4(n), which generalize immediately to the general case a(n) =
rk(ri), k ^ 5, where rk(n) is the number of ways of representing n
by a given positive definite quadratic form in k variables.

Estimates for the sum (1.6) also appear in the hypotheses to
several theorems. For example, in Apostol's work on approximate
functional equations for Hecke series [2, Corollary 2] such estimates
are used for estimating the error terms that arise (see also [5]).
Also the mean value theorem of Chandrasekharan and Narasimhan
that was mentioned above [6, Theorem 1] has as one of its main
hypotheses an estimate on the sum (1.6).

We generalize the method of Walfisz [21] to obtain an O-estimate
in the general case when Xn = n. Because we can no longer appeal
to any special properties of the coefficients a(n) our general result
does not give asymptotic results in the above mentioned cases,
though it does apply to a wide class of arithmetical functions.

In the sequel we shall use the following notation:

(1) \ will denote the integral I
J(β) J

a+i<χ

Ja-icc
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S Ca+i
will denote the integral \

(α,5Γ) Jα-i

a+iT

-iT

and

(3 ) Σ will denote the sum Σ

Also cj9 j — 1,, « 2, will denote positive absolute constants.

2* Statement of results* Suppose f(s) = Σ α(w)λ^ and #(
Σ &(w)̂ »β satisfy the functional equation (1.2) with r > 0. Let

(2.1) = -L ί
Δ\τ —

where J(s) is defined by (1.1) and C is a curve enclosing all the
singularities of the integrand. Let

(2.2) F(s) = Σ a(n) exp ( - Xns) ,

for Re(s) > 0. Then it is known [3, Theorems 3 and 5] that

(2.3) F(s) = [° Q'(x)e-°*dx

if we assume all the singularities of f(s) are in the right half plane.
Note that if f(s) is entire, then from (1.3) Q(x) = /(0), a constant.

If Q(s) denotes the Laplace transform of Q{x), then we have

(2.4) sQ(s)= [~ Q'(x)e-S*dx .
J

In what follows we shall assume that f(s) has a finite number of
singularities in the right half plane and that these singularities are
poles lying in the strip 0 < Re (s) ^ r. If the poles are {ξlt , ξn}
and rξ is the order of the pole at ζ, then we can explicitly evaluate
Q(x), namely,

(2.5) Q(x) = Σ Ci&e' log r ζ ^ x ,
i=i

where ζ3- is the residue of f(s) at the pole s = ξjm Suppose that β
is the real part of a pole with maximal real part and p is the maximal
order of a pole with real part β. Then, from (2.4) and (2.5), we
have

(2.6) «Q(β) = 0(|8|-Mog^-1W),

a s | s | —> oo.

Finally we assume that as |s| —» + <*>
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(2.7) Σ b(.n)μlrr \~ I(μnx)e~"dx ~ β~- Σ e(n) exp {-
Jo

where m is a nonnegative real number, k and a are positive real
numbers and the e{n) are complex numbers. Also we assume that
the series on the right hand side of (2.7) converges absolutely for
Re (s) > 0. In § 5 we shall prove a theorem that establishes (2.7) for
a subclass of Dirichlet series satisfying the functional equation (1.2).
We remark now that (2.7) is known as an equality for Re (s) > 0 in
the case Δ(s) = Γ(s), with m = r (see [3, p. 152]).

Define the real numbers d and η by

/ Λχ o . , i (0 if ί = m and m Φ β
(2.8) δ = mm(m,β) and ? =

(1 if δ = β or m = β .

Further define the function M{x) by

M(x) - xm+1/2 +

(2.9) + xβ+i/2 log ^ - ^ + x2δ+ι/2

We shall prove the following results with the notation as above.

THEOREM 1. Assume the hypotheses as above. If f(s) is not an
entire function, then as x —> 00

Γ \E(y)\2dy < M(x) .
Jo

If f(s) is an entire function, then as x —> °°

\E(y)\2dy < x2m+1

COROLLARY 1. Suppose the hypotheses of Theorem 1 hold with
A(s) = Γ(s). 27ιew we have, if f(s) is not entire function,

\X\E(y)\2dy < # r + 1 / 2 l o g £ + xr/2+?+ι\og{p-1)rix
Jo

as x—> oo. If f(s) is an entire function, then as x-> 00

Γ \E{y)\2dy < ^ / 2 + 1 + x2ί + 1

Jo

THEOREM 2. Suppose the hypotheses of Theorem 1 hold with
Xn — ?ι. Let h(x) be defined by
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(2.10) h(x) = • x™-«+f"*log» x + x2lm~a) if mΦ 2a, 2cc - 1

/yt{
/m+β)/2 Ίf\rγP /y* _±_ /γ»m lπθ* Ύ ΐ f Ύϊl 9/V

T/iβ^ as x —> oo, if f(s) is not an entire function,

Σ |a(w)|2 < ̂  log^"1 x + x2δ log2^-1^1 x + h(x)

for 0 < β ^ 1 awcί

Σ |a(^)Γ < &* log 2p~2 a? + h(x)

for β > 1. // /(s) is an entire function, then as x —> oo

Σ

COROLLARY 2. Suppose the hypotheses of Theorem 2 hold with
j(s) = Γ(s). Lei A(a?) 6β defined by

r-l+β/2 logP x _|_ χ2(r-l) i/ r ^ l , 2,

Λ(a ) = • xβ/2 logp+1 x if r = 1

^ 1 + ^ / 2 i O g / > ^ _ μ g . 2 j O g χ i f r = 2 .

as x —> co, i/ /(s) is not an entire function,

V \n(v)\\2 ^ w2β'\f\cr2{-P~~iy>7}+1 Ύ» _L h(Ύ*\

for 0 < /3 ̂  1 anc?

Σ |a(n)|2 < x2β log2^2 x + λ(a?)

for β > 1. J/ /(s) is an entire function, then as x —

Σ

We shall prove these results only in the case when f(s) is not
an entire function and indicate the changes to be made if f(s) is
entire. The proofs of these results involves a series of lemmas and
the sections devoted to their proofs will be divided into two parts:
the first part for the proofs of the lemmas and the second part for
the proofs of the theorems themselves.

The methods of proof of Theorems 1 and 2 are similar. They
both involve an identity relating the integral or sum to be estimated
to a double integral. The double integral is then rewritten as a
sum of integrals over short intervals by means of Farey fractions.
We give the definition of these intervals now.



MEAN VALUE THEOREMS FOR A CLASS OF DIRICHLET SERIES 197

DEFINITION 2.1. Let (h, k) = 1 and 0 < k <; xm. Let rt and r2

be the Farey fractions of the Farey sequence of order [x1/2] that
immediately proceed and succeed h/k, respectively. We denote by
B(h, k) the interval [r19 r2]. By R(h, k) we denote the right hand
endpoint of B(h, k) and by L(h, k) the left hand endpoint.

By Theorem 35 of [10], we have

(2.11)

= {u: h/k - ΘJkV x ^ u ^ h/k + ΘJkV x, 1/2 ^ 0lf #2 ̂  1} .

3* The mean value integral*

3.1. Preliminary lemmas.

LEMMA 3.1. If s = 1/x + 2πui and t = 1/x + 2πvi, where u and
v are real and x is a fixed number greater than 1, then

\E(y)\*dy

(3.1) = - M t {F(β) - sQ(s)}{F(t) - tQ(t)}
A.7Z Jli/χ) Jd/*)

x e χ P ( χ j 8 + * ) ) " 1 dsdt .
st(s + ί)

Proof. On the left hand side of (3.1) we have, by (1.4),

[\E(y)\*dy = \'{ Σ'α(») - Q(y)}{ Σ ' o(m) - Q(y)}dy
JO J o ^^^2/ Zm^y

\ j - 2Re[Q(y) Σ ' «(»)]
(3.2) J θ ' !»"1mS i ' ^nS»

= Σ a(n)φn){x - max (λ,, λm)} - 2 Re j Σ «(») Γ

Now, as κ-+co ( we have

\F(s) - sQ(s)\ ̂  \F(s)\ + |βQ(β)|

< Σ |α(n)| exp (-λ. Re (β)) + |«|-' log""1 |s|

< Σ |α(w)| exp (-λjx) + x> log""1 x .

This estimate gives

\ {F(s) - sQ(s)}{F(t) - f
/χ) J(i/*)

(l/«) Jd/as)
\F(s) - sQ(s)| |F(ί) - tQ(t)\ |exp (»(β

t)
dsdt

st(s + t)
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exp (- xβ log""1 xf \ \
J(l/s) J(l/ίc)

dsdt
st(s + t)

X π:
-Xjx) + &' log'"1 a;}2

dudv

Since the last double integral converges we see that the double
integral on the right hand side of (3.1) converges absolutely.

Let

= =± \ \ {F{s) - sQ{s)}{F{t)
47Γ2 J(i/») J(i/*>

= Σ Φ M « ) K ) ( ( exp(-λM8 - λ m t ) e x p ( χ ( 8 + F>} ~ 1dβdt
l \4TΓ / J ( / ) J ( / ) S ί ( S + ί )

(3.3) -2ReJΣ α(m)(^l)( ( exp (-λ.
U = i V 47Γ2/ J (i/*> J ci/«) st(s+t)

= Σ a(m)a(n)Jm,n - 2 Re
m = l

say.

.. = HmJ.,.(Γ),

We have

(3.4)

where

I f f — dsdt fx

J»,«(T) = —-\ \ exp(—Xms — Xnt)—— I exp(z(ί

Jo 2TΓΪ J(ι/χ,τ) s 2τii J(i/aj»D z

= \ dz—:\ exp ((z — λjs)— ^ / \ exp ((̂  — λ j ί )—.
Jo 27Γ^J(l/*^) s 2m JH/X,T) %

Now (see [14, p. 346]), as Γ-> oo,

(3.6) |( β ^-ar<
IJ(α,Γ) S

if w > 0,

2ewa

Ta

(3.7)

for w = 0 and

S cίs/s — πi
(o,Γ)
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I J(α,Γ>

if w < 0.

For fixed m and w let A = {ze [0, a?]: |z — λ j ^ Γ — 1/2 and
|s - λ j ^ T~1/2} and J5 = [0, x] - A. Then

(3.9) Γ - ( + \ .
JO JA JB

If a = I/a?, t^ = 3 — λΛ or ^ — λ m and 2 e A, then

(3.10) ewa/T\w\ ^ elΛ/^W .

Thus, by (3.6), (3.8), and (3.10), we have

ί d z l f exp ((* - λ w )s)^ i z ^ I ί exp ((z -
Ĵ 4 2ττtJ(i/*,7') s 27Γ^ J(i/*,r)

llx.T)

x ( exp((z-λjί)—d2
J ( / ) ^

- M e x p ( ( ^ - λ m » ^

(3.11) x ^-± \ exp ((« - Xjt)—dz

'*))(-! + O{T~m))dz

JAMm&xan,)n),*]

= -(a? - max (λΛ, λ j ) + + O(T"-1/2) ,

as T—• 00, since a? is fixed, where + indicates the positive part.
As T—» 00 we have

log (1 + T/a) .
J<α,r> J-Γ α + 1̂ 1

This g ives, w i t h ^ ^ x a n d α = I/a?, a s T —> 00 f

(3.12) t (ews/s)ds < log Γ .
J(o,Γ)

Thus, by (3.12), as Γ-> 00,
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\ dz±λ exp((*-λjβ)^

( 3 ' 1 3 ) < ί log2 Tdz
JB

< T~ι/2 log2 T ,

since the length of B is at most 4T~1/2.

Combining (3.5), (3.9), (3.11), and (3.13) we see that

(3.14) Jm>n(T) = -(a? - max (λ., λ j ) + + O(T~1/2 log2 Γ) ,

as Γ-> co. Then, by (3.4) and (3.14), we have

(3.15) / . , . = -(x- max (λ,, λ j ) + .

Since Q(t) is the Laplace transform of Q(x) we have [8, p. 227]

(3.16) J L ί e«G(jb)dt = Q(«)

if α > 0. Thus

(3.17) - L S eztQ(t)dt - Q(«) - - L [a+w

 e

ztQ(t)dt - - 1 ; (β~*Γ eztQ(t)dt.
2π() 2τt 2π )

Now, as T —> co, we have, by (2.6),

eztQ(t)dt = \ βzttQ(t)—

a±iT Ja±iT t

" 1 Γ,

since /9 > 0. This estimate, combined with (3.17), gives, for a — 1/x
and z ^ x,

(3.18) Q(z) = i ί β^Q(ί)cίί + O(Γ-^ log^"1 Γ) ,
2 π ^ J ( r )

as T-^ co.
Let

JO if ^ ^ λm

(1 if x > λm .

As above we have

(3.19) Jn = lim J.(Γ) ,

where
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Jm(T) = ~ \ ' \ exp((« - λ j s )— ( (
4TΓ Jθ J(llx,T) S J(llx>T)

(3.20)
= ί" d«-L ( exp ((2 - λ J s ) ^ _pl ί e Q(ί)^ .

Jo 2ττ& J(i/as,D s 2 7 ^ J ( I / * , D t

In (3.20) we estimate the innermost integral by (3.18) and the middle
integral as in (3.11) and (3.13), by the use of (3.6)-(3.10). This gives,
as T-> oo,

(3.21) Jm{T) = -

Thus, by (3.19) and (3.21), we have

(3.22) Jm = -fcm(ίc) Γ Q(2;)^ .

Finally,

(3.23) J = l i m J(Γ) ,

where

T(T\ — •*- I \ Q(<i\Q(f\ i pz{s+t)dzd<sdf
4jZ2 J(llxtT) J(llx,T) Jo

(3.24)

\ ezsQ(s)ds-± [ eztQ(t)dt .
J(i/*,r) 27Γ^ J(i/*,r)

In (3.24) we estimate the inner two integrals by (3.18). This gives,
as T—>oof

(3.25) J{T) - -\'\Q(z)\ιdz + o(l) .
Jo

Thus, by (3.23) and (3.25), we have

(3.26) J= -\X\Q(z)\2dz.
Jo

The result, (3.1), follows from (3.2), (3.3), (3.15), (3.21), and (3.26),
if we note that the integral I in (3.3) in minus the integral on the
right hand side of (3.1).

LEMMA 3.2. If s — 1/x + ui and 0 ^ u ^ x~1/2, then as x —» oo

(3.27) {F(s) - sQ(s)}/s < x{m+l)n ,

where m is given by (2.7).

Proof. We have, by (2.3), (2.4), and (2.7),
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f+oo

\F(s) — sQ(s)\ = Σ &(w)μiΓr \ e~*xI(μnx)dx
J-oo

(3.28) ^ φ\~m Σ |β(n) exp (-&(μjs)α)i
^cJs | -exp(~c 5 Re(l/s) α ) ,

since the series on the right hand side of (2.7) converges absolutely
for Re (s) > 0. Since 0 ^ u ^ x~1/2 we have, for x sufficiently large,

Re (l/s)α = Re (x/(l + xuϊ))a

(3.29) = (a?/(l + <cV))" Re (1 - m ) β

^ cβ(a?/(l + a;V))α .

Thus, by (3.28) and (3.29), we have

\{F(s) - sQ(s))/s\ ̂  cjsl-^expί-c^/α +

exp{ —

xV))("+1)/2exp{-c7(a;/(l

as x^> oo, since a;'"exp( —6xα) is a decreasing function of x for 6 > 0
and a; sufficiently large. This completes the proof of the lemma.

REMARK. Here there is no change in the result in the case that
f(s) is an entire function since sQ(s) = 0, by (2.4), in that case.

LEMMA 3.3. If s = 1/x + 2πui, then as x-* °°

(3.30) ( |Q(β)| du < (l/hk)xβ/2 log"-1 x .
JBOlyk)

Proof. By (2.6) and (2.11), we have

( |Q(β)| du < S Isi"^"1 log^1 \s\ du
JB(h,k) JB(h,k)

as x—> oo, since fc ̂  τ/» by Definition 2.1. This completes the proof
of the lemma.

REMARK. If f(s) is an entire function, then Q(s) = /(0)/β. In
this case the integral in (3.30) is <l/hk, as x—> oo.

LEMMA 3.4. Ifs = 1/x + 2πui, then as x-> oo
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(3.31) ( \F(s)ls\ du < (l/h)xs~m log1"-1" x .
jB(h,k)

Proof. By (2.3), (2.4), (2.6), and (2.7), we have, for Re (ί) > 0,

F(t + 2hi/k) = Σ α(w) exp (-λn(

= (ί + 2hi/k)Q(t

(3.32) +

g cβ(|ί + 2Λί/&ΓMog'-1 |ί2λi/jfc| + \t + 2hί/k\~m)

^ c9|ί

Now let ί = I/a? + 2ττ(w - fe/λ;)i in (3.32). Then F(t + 2hi/k) =
F(l/x + 2πui) = F(s). By (2.11), we see that if ueB(h, fc), then
^ == O(h/k) as x—> cχ3. Then, by (3.32), we have, as x—>cof

f F(l/x + 2ττû ) d u £ C ω f

u

-lilcv'x

1>1? a ; .

This completes the proof of the lemma.

REMARKS. (1) If f(s) is entire, then we take η = 0 and δ = m.
(2) In [21] Walfisz is able to get an asymptotic result for the

integral (1.5), in his special case, in place of our Theorem 1. There
he considers the error term Pm(x), which is associated with the
problem of lattice points in m dimentional ellipsoids. He is working
with quadratic forms, which have special properties that allow him
to get his better result. The most important of these properties is
the homogeneity property. This allows him to get a better estimate
for Lemma 3.4 by getting positive powers of k in the denominator
on the right hand side of (3.31), which, when he later sums on k,
reduces the power of x he finally obtains. We conjecture that (3.31)
can be improved to

\ \F(s)/s\ du « (l/hXx/k)'-1 log1'-"* x ,
jBih,k)

but we are not able to prove this. The previous Lemmas 3.1, 3.2,
and 3.3, are exact generalizations of his resaults are so it is Lemma
3.4 that should be improved the obtain better results.

We use the result of Lemma 3.1 to rewrite the mean square
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integral (1.5) as a sum of four semi-infinite double integrals. By
making a change of variables we write these latter double integrals
as double integrals over the semi-infinite segments (I/a?, I/a? + ioo).
This allows us to use the covering property of the intervals B(h, k)
to rewrite these integrals as sums of integrals over the integrals
B(h, k). We can then use the results of Lemma 3.2, 3.3, and 3.4 to
estimate these finite integrals and so derive Theorem 1.

By Lemma 3.1, we have

S x 1 (Cl/x + ioo Cl/x + ioo Cl/x + ioo Cl/x

\E(y)\*dy = - U \ +
0 4TΓ Ul/s Jl/« Jl/aj Jl/x-<oo

S i/x fi/»+»oo fi/cc ri/x \

\ ί I G(s,
l/x-ioo Jl/X Jl/x-ioo Jl/ίC-iooj

say, where G(s, t) is the integrand of the integral on the right hand
side of (3.1). In P2 replace t by tf in P3 replace s by s, and in P4

replace s and ί by s and t. This gives

1 fl/a -Hooί l/a +ΐoo Λ —x AYΠ Γ^^Q -1- F̂ î l 1

p - τ ? L L {m"5<}(<>)l|il(i)"m)] viZVi) dtdt-
4π2Juχ h/χ st(s + t)

^ I 1
l ^ ί ^ ) ( ) } { ( ) ( ) } L y _ ^ I dadt

and

Let B(hf k) be as in Definition 2.1. In the remainder of §3 we
will denote by

Σ the sum Σ Σ _ >

when working with sums of integrals over the intervals B(hf k).

LEMMA 3.5. For s = I/a? + 2πui and t = I/a? — 2τm, where u and
v are real, we have, as a?-> °o,

Σ ( ( {F(8) - sQ(s)}{F(t) - tQ(t)}
h,k jBih,k) JBlh.k)

x sί(s + t)

and
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P. = - Σ ( ( {F(S) - sQ(s)}{F(t) - ΪQ(t)}
h,k jB(h,k) jB(h,k)

X e x p ( x ( s + * ) ) - l ^ + 0{M(χ)) f

st(s + t)

where M{x) is defined by (2.9).

Proof. From (3.34) we see that the difference between Pί and
P4 is the replacement of s and ί by s and t. For this reason we
give the details for (3.35) only, since the estimates for P4 go exactly
in the same manner.

By (3.34) and the definitions of s and t, we have

x = -[°[°G(s,t)dudv ,
Jo Jo

where G(s, t), as above, is the integrand of the integral on the right
hand side of (3.1). Let B(h, k) and B(p, q) be Farey intervals as
defined in Definition 2.1. By Theorem 36 of [10], we have

ϋ
Let Bo = [0, {[V~x] + I)"1]. Then we have

5 0 U U U ^B{h, fc)-SoUU \JB(p9 q) - [0,

Thus

* = -« \ +Σί \ +Σί ( +ΣΣ( \
ljB0JB0 h,k JBih,k) JB0 P,g J Bo J B(p,g) h,k p,g J BUι,k) J B(p,q

hqψpk

+ ΣJ\ \ \G(s,t)dudv
h,k }β{h,k) jB(h,k))

= -« \ + 2 Σ ( t
[jBQJBn h,k JBQ JB(h,k)

+ Σ S ί }G(S, t)dudv .
h,k JB(h,k) JB(h,k))

Now if α, 6 ̂  0, then τ/2(α + 6) ^ l/"α" + T/ΊΓ. Thus

, p,g
hqψpk

ΣΣ( (
h,k p,q J B(h,k) JB(p,q)

v ' ; - 2(l/x

= I I/a? + 2τmi + I/a? — 2τπn|

= 211/ίc + π(u - v)ί\

Thus, by Lemma 3.2, we have, as x
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\\ \ G(s,t)dudv £cΛ \ \F(s) - sQ(s)\\F(t) - tQ(t)\ ί

< xm+ί[ \ \s + t\"ιdudv
JB0 JBQ

S i/^7 rl/VF
\ (I/a? + π\u - vD'^udi;

0 JO

* dw Γ (1/ίc + π(u - v)Y1dudv .
Jo

In the last integral we let w •=• π(u — v)x. Then, as

(3.39)

Next

h,k jBih,*

(3.40)

s, t)dudv * du
O

< χm+1/2 log α? .

( \G(8,t)\dudv= \ Σ \ \
,k) JBQ \ h, k .— JB(h,k)jB0

+ Σ ( S \\G(8,t)\dudv,
n ι ί h,k jB(h,k)JB0)

where R(h, k) is defined as in Definition 2.1.
By Lemma 3.2, we have, as a—> ©o,

Σ \ \ \G(s,t)\dudv

h, k t— jB(h,k) JBQ

ljvχ Λl/va; ^ ^ dUbd'ϋ

Jo Jo |sί| |s + ί|
< ίc w + 1 ( 4 / X [ X \s + t\~ιdudv

Jo Jo

where the last estimate is made as above for (3.39).
If R(h, k) > 4/τ/~aΓ, then h/k ̂  R(h, k) - ijVΊc ^ ZjVx by (2.11).

Then 2hβk ^ 2/i/F and Λ/fc - 2/l/T ̂  hβk. Thus, by (2.11),

(3.42) L(h, k) - 1/τ/F ̂  h/k - ZjVΊc ^ fe/3fc ,

where L(h, k) is defined in Definition 2.1. Thus, if R(h, k) > 4/τ/lΓ,
then, by (3.42), we have, as x-+ oo,

\G(s, t)\dudv
)B(h,k) JBQ

\ (\F(s)\ + \sQ(s)\)\F(t) - tQ(t)\— u

B(h,k)JB0 \st\ \U ~
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ί QF(s)\ + \sQ(s)\)\F(t) - tQ(t)\\L(h, k) - 1/Λ/X ^{st^
hyk) JBO

< \ \ (\F(s)\ + \sQ(s)\)\F(t) - tQ(t)\(k/h)\st\-ιdudv .

We use Lemmas 3.2, 3.3 and 3 4, and the definition of Bo to estimate
the integrand in (3.43). Thus, if R(h, k) > 4/τ/αΓ, then, as #-> oo,

B{h,k) JBO

\G{s,t)\dudv

-^ x + (l/hk)xβ/2 log'"1 x)x

< (k/h2)xm/2(xδ~ί/2 log('-1)J? x + (l/k)xβ/2 log""1 x) .

This estimate gives

( \G(s,t)\dudv

dv

,k ' JB(h,k) JB0

<χm/2Σ log{p-ί)r> x + (l/k)xβ/2 log '" 1 x)

log'"1 x) ,

(3.44)

as α ; ^ oo.

Combining the results of (3.40), (3.41), and (3.44) we have, since
m ^ 0 by (2.7) and β > 0 by hypothesis,

Σ [ [ G(s, t)dudv < xm+ί/2 log x
h,k JB(h,k) JB0

(3.45) + xm/2(xδ+1/2 log{p~1)rί x + xίβ+1)/2 l o g ' " 1 a?)

= xm+ί/2 log x + α;^+1>/2δ

+ O J ( W + ' + 1 ) / I l o g ' " 1 x ,

as
We have

I ( ( G(s, t)dudv
I JB{h,k) JB{p,q)

^eΛ \ (\F(s)\ + \sQ(s)\)(\F(t)\ + \tQ(t)\)- d u d v

JB(h,k) JB(p,q)

(3 46)
1 2 Ufl(fe,fc) }B{p,q)

jBUι,k) JB(.ptq)

F(s)F(t)
st

dudv
- , • \ \

8+ t\ JB{h,k)jB{p,q)

\ a
,k) JB(p,q)

Ίβί||β + ϊ l

F(s)n dudv
\s + t\

By (2.6), the estimate on |β + ί|, (3.38), and the definitions of
B(h, k) and B(p, q), we have, as x-+ oo,
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h,kp,q jB{h,k) JB(p,q)
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dudv
,k p,q
hqΦpk

\S + t\

~

(3.47)
log'"1

log?"1 (xu) log*0"1 (xv)dudv

π\u —

τr(u - v)x)

-1 (xu)du Uu/2

< ^ + 1 / 2 log2^1 a? .

Let M(h, k, p, q) = min {]u — v\: u 6 B(fc, fc), v e
(2.11), we have

}. Then, by

(3.48) M(h, k, p, q) =
(L(p, q) - Λ(Λ, jfe) if h/k < p/q

[L(h, k) - R{p, q) if h/k > p/q .

Let

(3.49) D(h, k, p, q) =
if , k, p,q) =

[M(h, k, p, q)-1 if M(h, k, p, q) Φ 0 .

Then, for s = 1/x + 2πui and ί = I/a? + 27rvi, u 6 JB(Λ, fc) and v e B(p, q),
we have, by (3.38),

(3.50) \s + ίl"1 ̂  2"1/2{l/x + π\u - v^'1 ^ c18Z>(ft, k, p, q) .

By Lemmas 3.3 and 3.4 and (3.50), we have, as x—> oo,

f f F(s)F(t) dudv κκ Dζhjc, p,

JB(h,k) jB(p,q)

JB(h,k) JB(p,q)

st

\8+t\

D(h, k, p , q)χS+{β-1)/2

and

jB(h,k) JB(p,q S + hkp

Combining these estimates with (3.46) and (3.47) gives, as *—> °°,

Σ Σ ί ( |G(β, t)\ dudv < Σ Σ
Λ, k p, q JBUι,k) JB(p,q) h,kp,q
hΦk k^q

) fc> P >

, p, q
hqΦpk

(3.51)

q
^q

hqψpk

+

1 log*""1" a;

1 " ^ " x)

+ x
β+1/i
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Σ + Σ
2 3

+ (1/9

+ xβ+1/2 log2'"1 x

= S, + S2 + S, + ^ + 1 / 2 log2'"1 x ,

say, where in (3.51)

(3.52) X,! is the sum over h, k, p, q such that M(h, k> p, q) <i
\hq — pk\/2kq,

(3.53) Σ 2 is the sum over h, k, p, q such that hq — pk > 0 and
M(h, k, p, q) > (hq — pk)/2kq

and

(3.54) X 3 is the sum over h, k, p, q such that hq — pk < 0 and
, k, p, q) > (pk - hq)/2kq.

Suppose (h, k, p, q) is a quadruple being summed over in (3.52).
Then, by (2.11), (3.48), and (3.49), we have D(h, k, p, q) ^ cux. Thus

(3.55) Sί - c*x ? (Vhp)(x^ lotpp-v* x

1 ) ( 1 +^ x) .

If M(h, k, p, q) = \uQ - vo\, then, by (2.11) and (3.52),

\hq - pk\/kq = \h/k - p/q\ ^ |fe/ifc - wo| + \p/q - ι;0| + \u0 -

^ 1/Al/lΓ + 1/qVx + |λ? - pk\/kq .

Thus

|Λg - pk\/2kq ^ (1/fc + llq)lV~x .

Since fe, fc, ί) and q, are integers feg Φ pk, k ^ ^ by (3.51) and # ^ τ/α?
by Definition 2.1, this gives

1 ^ \hq - pk\ g 2(k + g)/VΊΓ ^ Aq/Vx ^ 4 .

Thus

(3.56) \hq - pk\^4 and g ^ τ/ΊΓ/4 .

If fe and k are given, then q belongs to at most 8 residue classes
modulo k, since hq^a (modfc) and |α| ^ 4 by (3.56). Thus, by (2.11),
there are at most c16τ/ x fk values of q being summed over in (3.52).
If h, k, and q are given, then by (3.56) there are at most c17 values
of p. Finally, for x sufficiently large, we have, by (3.56),

(3.57) p^(hq - 4)/fc ^ (hV~x - 16)/4fc ^
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By (3.55)-(3.57), we have, as x —> oof

x < x Σ (1/λ) Σ__ Σ _ Σ (k/hi/ΊϊXx"-1 log8"-"* a:

+ (l/τ/~aΓ

(3.58) < V~x Σ Λ"2 Σ KVT/kXap-1 log2'"-1"
*=i ifcŜ S"

F a;)

Suppose (h, k, p, q) is a quadruple being summed over in (3.53).
Then, by (3.49) and (3.53), we have

(3.59) D(h, k, p, q) ^ 2kq/(hq - pk) .

Define integers m = m(h, k, p, q) and n = n(h, k, p, q) by

(3.60) hq - pk = m + nk , n ^ 0 and 0 < m <: & .

If &, &, and m are given, then q belongs to a definite residue class
modulo q, since hq = m (modfc). If h, k, m, and q are given then w must
satisfy n ̂  0 and hq — m — nk ̂  k, since #> = (fcg — m — wfc)/fc ^ 1.
Finally, if h, k, m, q, and n are given, then there is exactly one
value for p.

By (3.51), (3.59), and (3.60), we have

hq = m(k) hq—m—nk k

- l/k)xδ+{β~l)/2 log ( ^ 1 ) ( 1 + ^ x){hq - m - nk)~\m -

We then proceed as in [21, pp. 26-27] to est imate the inner sums on
q and n. This gives, as a?—• oo,

(3.61) S2 < a;23+1/2 log2*'-1**-1-1 a? + ̂ + ( ^ + 1 ) / 2 log(^-1)(1+^)+2 x .

We est imate S 3 in a way similar to S2 and get, as sc —> co,

(3.62) S 3 < x2δ+1/2 log 2 ^-^^ 1 ίr + χδ+^+1"2 \og^-^+^^ x m

Thus, by (3.51), (3.58), (3.61), and (3.62), we have, as x

Σ Σ ( \ \G(s,t)\dudv
h,k P,q JB(h,k) jB{p,q)
hqΦpk

(3.63) < Si, + S2 + S3 + x*+1/2 log2""1 x

< X2S+1/2 logVp-W- x + a a+l/m)/! log<,-im+7>+a a + a ί+i/^ log2''"1 ίC .
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Finally, by (3.37), (3.39), (3.45), and (3.63), we have, as x-*™,

i = - Σ ( ί G(s, t)dudv + O(xm+1/2 log x) + O(x{m+1)/2+δ log*'"1'* x)
h,k JB(h,k) jB(h,k)

+ O(a; ( ' l ί + ί + 1 ) / 2 log"-1 x) + O(xzs+ι/ί lOg2«>-ι"?+ι x)

+ O(a; ί + ( ί + 1 1 / 2 iog ( ' '- ι» ( 1 +"+ 2 x) + O(* ί + 1 / 2 log2'-"1 x)

= - Σ ( ( G(s, t)dudv + O(M(x)) ,
h,k JB(h,k) JB(h,k)

by (2.9). This completes the proof.

REMARK. If f(s) is an entire function, then the error term is
O(x2m+1/2logx + α 3 m / 2 + 1 ) .

LEMMA 3.6. If s = 1/x + 2πuί and t = 1/x + 2πvi, where u and

v are real, then, as as—> oo,

(3.64) P2 < M{x)

and

(3.65) P3 < Λf(a;) ,

where P2 and P3 are defined by (3.34) cmd Λf(a?) 6?/ (2.9).

Proof. As in the proof of Lemma 3.5 we prove only (3.64) since
the only difference between P2 and P3 is the replacement of s and t
by s and t.

By (3.34) and the definition of s and t, we have

p 2 = - Π M G ( S , t)dudv ,
J Jo Jo

where G(s, £) is the integrand of the integral on the right hand side
of (3.1). Let JB0, B(h, Jc) and B(p, q) be as in the proof of Lemma 3.5.
Then

(3.66) P,= - j Π + 2 Σ ( ί + Σ Σ S ί }G(s,t)dudv.
\JBQJBO h,k JB(h,k) JBO h,k p,q JB(h,k) jB(p,q))

Σ ( ί Σ Σ S
h,k JB(h,k) JBO h,k p,q JB(h

By Lemma 3.2 and the arithmetic-geometric mean inequality, we
have, as x —» oo,

I ( ( G(8, t)dudv
IJBO)BO

d u d v

JBO)BO

Λ \ \F(s) - sQ(s)\\F(t) - tQ(t)\
I # 1 1 t I

\st\\s + t\
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(3.67) ^

< xm+1 [' X [' X (u + v)~ldudv
Jo Jo

< xm+1 [' X Γ X (uv)~1/2dudv
Jo Jo

<ζ>, Jϋ

Again, by the arithmetic-geometric mean inequality, we have

I \ [ G(s, t)dudv
I JB(h,k) JB0

(3.68) ^cΛ \ (\F(s)\ + \sQ(s)\)\F(t) - ΪQ(t)\- d u d v

JB(h,k) JB0
\st\\s + t\

^ c26 \ (\F(s)\ + \sQ(s)\)Γ^= \ \F(t) -
jBih.k) \s\V u Ĵ o

We estimate the integral in (3.68) over BQ by Lemma 3.2 and the
integral in (3.68) over B(h, k) by Lemmas 3.3 and 3.4. Thus, by
(2.11), we have

G{s, t)dndv
B(h,k) JB0

< x(m+1)/\k/h)1/2 \ (\F(s)\ +
JB(h,k)

S lips' q
v

0

< x^v^k^h-^Xx5-1'* logtp-^ x + (l/k)xβ/2

as x—> co. Thus, as x—> oo,

ί ( ( )
JB{h,k) JB0

(3.69) < χ'»+1'/2+1/4 Σ h-t'Xx1-1'* log'''-1" a; Σ_ &1/2 + ίcW2 log""1« Σ j r 1 / 2 )
A = l Λ^^a; A^Va;

< a.<*+i)/2+i/«(a.*+i/4 l o g ^ - 1 ^ x + ^ / 2 + 1 / 4 log^" 1 a?) .

By (2.11), the arithmetic-geometric mean inequality and Lemmas
3.2 and 3.4, we have, as sc—> ©o,

JB(h,kk) JB(p,q)

cί7 \ (\F(s)\ + |sQ(s)|)|sr-ir1/2dw ( (|F(ί)| + \tQ(tMt^v
JB(h,k) JB(p,q)

» \ (\F(s)\ + \sQ(s)\)^- \ (\F(t)\ + \ΪQ{t)\)^r

< (kq/hp)ι/2((l/h)xs-1/2 log'"-1" x + (l/hk)xβ/2 log""1 aj)
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X ((l/p)xs-1/2 log'"-1" x + QlpqW* log""1 x)

= (kq/hp)ι/\(l/hp)x2'-1 log2"-1" x

+ (ί/hpq + l/hkp)xδ+(β-1)/2 log" - 1 ) ( 1 + " x

+ (l/hpkq)χf log2'""1' x) .

Thus, as x^ oo,

\ G(s,t)dudv
h,k) jB(p,q)

ΣΣί
h,k P,q JB(h

by the definition of

Σ and
h,k

Thus, by (3.66), (3.67), (3.69), and (3.70), we have, as x-> oo,

P 2 < £ m + 1 / 2 + χ m ^ 2 + 1 + δ log(p-1)7? x

+ x 2 δ + 1 / 2 Iog 2 ( ί ) " 1 ) ) ? x

+ xβ+1/2

by (2.9). This completes the proof.

REMARK. If f(s) is an entire function, then the error term is
O(x2m+1/2 log x + x3 w / 2 + 1).

LEMMA 3.7, If s = 1/x + 2πui and t = I/a? + 2ττvί, where u and
v are real, then, as x—> ^,

Γ \E(y)Wy = - Σ ( t
JO A,Λ JB(h,k)JBίh,k

+ sί(s + ί)

O(Λf(a>)) ,

where M(x) is defined by (2.9).

Proof. By (3.35), we have

i _ j _ Σ ί ί
I A, ft JB(h,k) jBίh,k) st(s -ί

dudv
, , \j?{$)\m{L)\—

.A, ft Jj5(A,ft) jB(h,k)

t

+ Σ1
A, ft JB(h,k) JB(h,

I,,,, f
\t\\S +
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+ Σ S ( \Q(s)Q(t)\-^L\ + O(M(x)) .
h,k jBihyk) jB(h,k) \S + t \>

By (2.6), (2.11), and Lemma 3.3, we have, as x —> oo,

Σ \ \ | F ( s ) Q ( ί ) | ^ ^
h,k jBίh,k) jBihJc) \8\\S + t\

< Σ ( \F(s)/s\ du \ v-^ log"-1 (xv)^-
h,k jB(h,k) jB(h,k) ±/X

(3.72) < x Σ Σ_ (/rV~1/2 log^-1" x)(l/kW)(k/hy+i log""1 (Λa /iS;)

log"-1" x Σ ^"^ 2 log""1 (λα) Σ
k=l ^

+) χ f

since β > 0.
Similarly, as a? —

(3.73) Σ ( S
Λ.fc )B(h,k) jB(h,

a? .
\\ \S +

Finally, by (2.6), we have, as x

Σ ί ( \Q(s)Q(t)\
h,k JB(h,k) JB(h,k) \S

(3.74) « r r
^yd/ + π\u — v\)

log2''1 x ,

where the last estimate is obtained in the same way as was the
estimate (3.47).

Thus, by (3.71)-(3.74), we have, as x-> oo,

\
h,k) jB{h,k

jB(.h,k) jB{h,k) St{S + t)

(3.75) < a; s + ( ί + 1 ) / 2 log ("-1)(2+1" x + xβ+1/i log"-1 x + M(x)

< M(x) ,

by (2.9).
A similar argument, using the estimate (3.36), gives, as x

(3.76) P4 - ί - Σ ( ( F(s)W)eXV{^f + ^ ~ 1dudv\ « Af(aj).
I h,k jBUι,k) JBih,k) St{S + ί ) J

By (3.33), (3.75), (3.76), and Lemma 3.6, we have, as x-> oo,
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- j-s \ \
I h,k jB(h,k) jB(h,k)

y
(S + t)

st(s + t)

= Pι _ \ - Σ ί ί F ( s ) Ί W f ^ ^
\ h,k JBih,k) jB{h,k) St{S + t)

K h,k jB(h,k) jB(h,k) St(S + t)

< M(x) .

This completes the proof of the lemma.

REMARK. If f(s) is an entire function, then the error term is
O(x2m+1/2 + x3m/2+1).

3.2. Proof of Theorem 1 and Corollary 1. We give the details
only for the case when f(s) is not entire. The proof when /(s) is
entire is similar and is obtained by using the estimates given in
the remarks to the lemmas.

Proof of Theorem 1. For s = 1/x + 2πui and t = 1/x + 2πvi let

(3.77) J(λ, fc) = ( [ F(s)F(t)exv (χ(s + ^ ~ 1dudv .
JB(h,k) jB(h,k) St(S + ί )

By (2.3), (2.4), and (2.7), we have, as x-+ oo,

Jo

(3.78) ^ c31\s\'m Σ \e(n)\ exp (-k(μn Re (l/s))α)

where the last estimate is obtained in the same way as the estimate
in Lemma 3.2. Similarly, as a; —» oo,

(3.79) \F(t) - tQ(t)\ < xml* .

Let

(3.80) F(«, υ) = sQ(s)tQ(t) exp (2 + 2ττx(tt - r)i) - 1
(1/x + 2πui)(l/x - 2πvi)(2/x + 2π(u - v)i)

and



216 DON REDMOND

(3.81) I\h, k) = \ [ F(u, v)dudv .
jB(h,k) JB(h,k)

If u,ve B(h, k), then, by (3.80) and (2.11), we have

exp (2 + 2πx(u — v)i) — 1F(u, v)

sQ(s)tQ(t) 2πui)(l/x - 2πvi)(2/x + 2π(u - v)i)

(3.82)

^ cM((h/k)*x-1)-1

By (3.77)-(3.80), we have

h, k)=[ \ (sQ(s) + O(xm/2))(tQ(t) + O ( ^ )
sQ(s)tQ(t)

dudv

Thus, by (3.81), (3.82), and (2.11), we have, as α-> oo,

(3.83) |I(ft, fc) - /'(Λ, k)\ < x^+1)/\k/h2) \ \sQ(s)\du + xw/fc2 .
jB(Λ,fc)

By (2.6), we have, as in the proof of Lemma 3.4,

\sQ(s)\ du < \s\~β log''1 \s\ du

(3.84) < (l/kVT)(k/hY log'-1 x

< (l/k)x<β-ί)/2 log'-1 x .

Thus, by (3.83) and (3.84), we have, as x

(3.85) J(ft, k) ~ I\h9 k) < α ( w ^ ) / 2 /r 2 log'-1

In a similar way we let

(3.86) J(h, k)=[ \ F

and

, k)

Sί(δ + ί)

in analogy to (3.77) and (3.81), and obtain in a similar way

(3.87) J(h, k) - J'ίλ, A) < x{m+β)/2h~2 log''1 x + α m /r 2 .

By Lemma 3.7, (3.77) and (3.86), have, as x-> oo,
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Γ \E{y)fdy = - Σ Oh, ft) - Σ ^Λ, ft) + O(Af(»))
Jo h,k h,k

(3.88) = - Σ (I(h, k) - I\h, k)) - Σ /'(A, Jfc)
λ,ife h,k

, A;) - J'(h, k)) - Σ J\h, k) + O(M(a;)) .
h,k

As in the estimate (3.47), we have, as x-^ °°,

(3.89) Σ /'(λ, k) < ccί+1/2 log2""1 a;
h, k

and

(3.90) Σ AK k) < x^+1/2 log*""1 x .
A , A;

By (3.85), we have, as as-> oo,

(3.91) Σ ( I ( f e ' Λ ) " Γ ( λ ' & ) ) < ( a ; ( ' ) / l o r x + ^m ) Σ ^"2 Σ L

"1 x + a;m+1/2 .

In a similar way, by (3.87), we have, as #—> <*>,

(3.92) Σ (•/(*, fc) - AK k)) < χi»+w* log?-1

 x + ^+1/1 β

Thus, by (3.88)-(3.92), we have

\" \E(y)\2dy < x^+1/2 log2^"1 αj + aj ( m + / ! + 1 ) / a log""1 a? + xm+1/2

< M(x) ,

as a—> co, by (2.9). This completes the proof of the theorem.

Proof of Corollary 1. By [3, p. 152], we can take m = r. If
f(s) is entire, then the result follows immediately from Theorem 1.
If /(s) is not entire, then we have, by the hypotheses on the poles
of /(s), that 0 < β ^ r. Thus, by (2.8), δ = β ^ r = m. The result
then follows from Theorem 1 and (2.9). This completes the proof
of the corollary.

4* The sums of the squares of the coefficients*

4.1. Preliminary lemmas. In this section we assume that
χn — n for all n.

By [14, p. 121] we have \a(n)\ ^ c3QnCZ7, for all n. Thus, the sum
defined in (2.2) converges absolutely for Re (s) > 0.

LEMMA 4.1. Ifs = 1/x + 2πui and t = 1/x + 2πvi, where u and
v are real, then for each positive integer x} we have
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(4.1) Σ HnW = Γ Γ
*=i Jo Jo exp(s

Proof. We have, for n ^ 0,

F(s)ensdu = Γ Σ a(m)e~m8+nsdu
o Jo

Thus

o Jo
F(β)F(t)β (fϊ>cludv

If we sum on n, we have

Σ eMe+tTdudv
o Jo w=o

F(s)W) I
exp(s + t) — 1

This completes the proof of the lemma.

The integrand of the double integral on the right hand side of
(4.1) is periodic in u and v of period 1. Thus we may integrate
over any interval E of length 1. Thus, by Lemma 3.1,

(4.2) £ W»)| = \ \
=i J^J exp(s + ί ) — l

Let E = [l/[l/7], 1 + l/lVΊc]]. Let B(h, k) be as defined in
Definition 2.1. If we note that J5(l, 1) = [1 - l/[l/F], 1 +
then we see that

# = U ^ U B(h,k).

In the remainder of §4 we will denote by

Σ the sum Σ _ Σ
h,k ^k^ l£hSk

Then, from (4.2), we have

(4.3) ΣIΦOI2 = Σ Σ \ S
exp (s + t) —
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LEMMA 4.2. For s — 1/x + 2πui and t = 1/x + 2πvi, where u and
v are real, we have, as &-» oo,

Σ \a(n)\> = Σ \ \
n^x-1 h,k JBίh,k) jB(h, + t) —

O(x2δ \o&w+1 x) .

Proof. If |*| < 3τr/2, then \ez - 1| ^ c38|z|. Thus, for 0 < \z\ <
3π/2, we have

(4.4) \eM - 1Γ £ cM\zr .

Suppose u 6 B(h, k) and v 6 B(p, q) with Λ,̂  =̂  pk. Then, with s
and t as defined above, we have s + f — 2/α? + 27τ(t6 — v)i, where
— l ^ u — v^l, since the integration in (4.2) is over and interval
of length 1.

In (4.4) we take z = s + t + 2πi if - 1 <; w - v £ -1/2, » = s + ί
if -1/2 <u - v <l/2 and a; = s + t - 2ττi if 1/2 ^ w - v ^ 1. Then
we have, by (3.8) and (3.50),

\es+τ _ χ|—i ^ C 4 o ( | s + j | - i + | 8 + J + 2τri|-1 + |s + t

(4.5) ^ c4l((l/x + π\u- v\)~' + (1/aj + π\u - v + II)"1

+ (l/α? + 7 r | w - v - ID" 1 )

(4.6) ^ c42(D(ft, A;, p, q) + i?(λ + k, k, p, q) + D(h, k, p + q, q)) .

By Lemma 3.3 and (2.11), we have, as x-> ©o,

( |F(s)F( ί ) ld^^ ̂  c43 S w\F(s)/s\du [ \F(t)/t\vdv
Bih,k) JB{p,q) JB(h,k) JB{p,q)

< (Vh)(xs-ι/ί log'""1" xXh/kXl/pXx1-1" log1"-1" a;)(p/ϊ)

(4.7) = (x™-1 log2"--1" x)/kq .

Thus, by (4.3) and (4.7), we have, as a;

Σ \a(n)\» - Σ
T t ^ l h,k jB(h,k) JB(h,k)

^ c» Σ Σ ( ί
Λ,fc p,q jB(h,k) JB(p,q)

" 1 ^ x Σ Σ (l/kq)(D(h, k, p, q)
h,k p,q
hqψpk

+ D(h + k, k, p, q) + D(h, k, p + q, q))

(4.8) S CuX™-1 log21""1" x Σ ' Σ ' IKK k, p, q)/kq
h,k p,q

hqψpk

(4.9) ^ cttx
u~ι log2'"-1" a; ( Σ + Σ + Σ)D(h, k, p, q)/kq ,

where in (4.8) the dash indicates that the sums are over h, k, p, q
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such that k <: V x , h <; 2k, (h, k) = 1 and g ̂  i/ X , p <; 2g, (p, g) = 1,
respectively, and in (4.9) the sums are over the regions (3.52), (3.53),
and (3.54), respectively

We estimate the sums

Σ , Σ , and Σ
1 2 3

as in [21, pp. 43-47] and obtain

(4.10) Σ + Σ +
1 2 3

Thus, by (4.9) and (4.10), we have, as x

ίΣ |α(*)P- exp(s + t) —

a? .

This completes the proof of the lemma.

REMARK. If f(s) is entire, then the error term is O{x2m\ogx).

4.2. Proof of Theorem 2 and Corollary 2.

Proof of Theorem 2. We give the details only for the case that
f(s) is not entire. The details when f(s) is entire are similar except
that we use the estimate given in the remark to Lemma 4.2.

Let s = 1/x + 2πui. Then we have, by (2.3), (2.4), and (2.7),

\F(s) - sQ(s)\ =

(4.11)

Σ |e(«)l exp (-k(μ
n
 Re (l/s)

α
))

-c
64
(a;/(l + tfΛ

!
)")}

a;
α
|s|

2α
) exp (-ejx

a
\s\

2a
)

as x
Let s be as above and ί = I/a; + 2jm, where % and v are real,

and

(4.12) I(h,k)=\ \ F(s)Ί^)^ψ±I^λ
JB(h,k) JB(h,k) βXp (S + t) — 1

Then, by (4.11) and (4.12), we have, as x^> oo,

I(h, k)

= | \ (sQ
JB(h,k) JB(hJc)

dudv .

β —
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Let

(4.13) F(u, v) = sQ(s)tQ(t)(exp (x(s + t)) - l)/(exp (s + t) - 1)

and

Γ(h, k) = [ [ F(u, v)dudv .
JBihtk) JB{h,k)

Then, by (4.5), we have

I(h, k) — Γ(h, k) < xm/2km~2a\ \ \&Q(β)\ min (x, \u — v\~ι)dudv
JBUι,k) jB(h,k)

as x-^oof by (2.11). We estimate the double integral as in the
estimate (3.84). This gives

(4.14) I(h, U) — Γ(h, k) < Jc^-^-^m+β-D/Z J o g ί , χ + ^J^m-a-Z ^

a s x —» oo.

By Lemma 4.2, (4.12), and (4.14), we have

Σ \a(n)\2 = Σ I(h, k) + O(x2δ log2^"15^1 x)

= Σ /'(fc, fc) + Σ (/(Λ, k) - Γ(Λ, fc)) + 0{x2δ log2^-^+1 x)

(4.15) = Σ Γ(h, k) + O(^2δ log2^-"^1 α; + Λ(a?)) ,

as α?—> co, where h(x) is defined by (2.10).
Suppose β > 1. Let C(λ, fc) be the union of those intervals whose

points are either all ^R(h, k) or ^L(h, k), so that B(h, k) U C(h, k) =
(— °°, + °°). Let

I"(h, k) =

which converges for /3 > 1, by (2.6) and (4.13). Then, as #
we have, by (4.4) and (4.13),

Γ(h, k) - Γ(h, k) < f ( [ +[ [ \F(U, v)dudv
{jB(h,k)JC(h,k) JC(h,k) JBUι,k))

(4.16) < \+"\sQ(s)\du\ min(x, \u - v^
J-oo JC(h,k)

By (2.6) and (2.11), we have, as x—> co,

S min (a?, |u — vl^ltQit^dv
C(h,k)

x\ tQ\(t)\dv + \ \tQ(t)\\u - v\~'
JCih,k) JC(h,k)

<
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(4.17)
C(h,k)
\u-v\2ii

\tQ(t)\\u- v\-χdv

< x(k]/Ίε)β log?"1 x(l/x) + (kVΊcΎ log'"1 x Γ vιdv
Jl/Z

< kβxβ/2 log'"1 x .

Thus, by (4.16), (4.17), and (3.84), we have, as x

Γ(hf k) - Γ(h, k) < ((l/k)x{β~l)/2 log'"1

(4.18) < kβ~ιxβ~1/2 \og2ip~l) x

By (4.15) and (4.18), we have, as x-^ oo

(4.19) - s- 1

+ O(x*β/2 log2^2 x + x2δ

By (4.13) and the definition of s and t,

log'"1 x)

x + h(x)).

Γ(h, k) = (+ [+ sQ(s)ti$(t) Σ exp {n(2/x + 2π(u - v)i)}dudv
J—oo J —oo n=0

X-l I Γ+oo ^

= Σ \ sQ(s) exp
ί l=0 I J—oo

i)~1 ( wQ(w)enwdw
Jil/x)

= Σ

where we have made the change of variables w — 1/x + 2πui to
obtain the last integral on the right hand side. Since wQ(w) is the
Laplace transform of Q'(x) we have [8, p. 227]

x-l

Σ
tt=0

Γ'(Λ, fc) = Σ \Q\n)\* .

By (2.5), we see that Q'(x) ~ cxβ 'log*1 ' ' ix, as χ-> <χ>, where c is
some complex constant. Thus, as a;—> » ,

(4.20) 2 ί- 2 log2"" 1 log2""2 x ,

where A is some positive constant.
Thus, by (4.19) and (4.20), we have, as a;

Σ \a{n)f < a;2ί log2""2 x + A(») .

Replacing x by x + 1 and letting it be an arbitrary real number
gives the second part of Theorem 2.

If 0 < β ^ 1, then the integral defining Γ'(h, k) does not converge
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and we must estimate Γ(h, k) in another manner. By (3.84), we
have

/'(ft, k) ̂  c65 ( ( \sQ(s)tQ(t)\ min (x, \u - v\~ι)dudv
jBih,k) JB(h,k)

^ceix[ \sQ(s)\du[ \tQ(t)\dv
JB(h,k) JB(h,k)

< (1/Wlog2 '-2 x ,

as x->oo. Then, as x —> &o,

Σ Γ(h, k)< Σ _ Σ (%β log2""2 xW
h,k k^x h^k

(4.21) < z* log3'-1 x .

Thus, by (4.15) and (4.21) we have, as * —> »,

Σ |o(w)|* < ̂  log2''-1 x + a;25 log2"-1'^1 x + h{x).

Replacing x by x + 1 and letting sc be an arbitrary real number
gives the first part of Theorem 2.

This completes the proof of Theorem 2.

Proof of Corollary 2. Corollary 2 follows from Theorem 2 exactly
as Corollary 1 follows from Theorem 1 and so the details will be
omitted.

5. Application of a theorem of E* M* Wright* In this sec-
tion we will prove a theorem that will ensure the validity of (2.7)
for a class of Dirichlet series that satisfy the functional equation
(1.2).

Let A(s) be as defined in (1.1).
Let

4 = Σ α * » B = Σ β k , logD = Σoίklogak ,
fc=l fc = l fc = l

(5.1) /i = (1 - iSO/2 + -B f 0 = 2(log D - A log A) and

ft = 2exp(-0/2A) .

As in [4, pp. 100-102], we can show that, as \u\ —> oo,

(5.2) I(u) = A&'W^Jw+^ihu1'**) + O(ur/i+ι/8Λ-1) ,

where I(u) is defined by (2.1), A1 = Z)1M and Jy(cc) is the ordinary
Bessel function of order υ. Then, as |β| —> °°,
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Fn{s) = Γ I(μnx)e~sxdx
Jo

~ A Γ (xμ.)r/t+utΛ-1Jv+Ar-ί(.Kμ.xrtΛ)e-"dx
Jo

(5.3) = (AJμ.) \ V 1 " " ' " - ^ ^ ^ 1 ' " ) exp (sx/μn)dx ,
Jo

since r/2 + 1/8A > 0.
We state as a lemma the special case that we will need of a

more general thearem of E. M. Wright [23, Theorem 1].

LEMMA 5.1. Suppose b and d are complex numbers, a and c
are positive real numbers and Γ(b + at) has no poles if t is a non-
negative integer. Let, for Re (z) > 0,

andLet φ

Then,

(5.4)

— b —

as \z\

d, j

H(z)

TT(zλ

lo = (1 + c

W=(l

y, Γ(l
&=o Tit

•• - aψ

+ c —

r-{l 4

) + α/u) β
•7 i s*jy\

b ~\ UtVJ

2—δ-t*ίZ/»l/2—d

a)(.a'c-z

M-l

1=1

(-2)»

&!

where M is a positive integer and the Blf 1 :g I ̂  M — 1, are
certain constants independent of z.

LEMMA 5.2. Suppose Re (ω) > 0, Λ, 7 > 0 awd Re (yυ + λ) > 0.
Then, as \θ)\ —> oo,

(5.5) Γ x^JXhx^e-'^dx - MhβYω^r^-r) e x p (_
J

A? = (1 -

Proof. We have, since Re (ΎO + λ) > 0,

xχ-1J0(hxr)e-*'ωdx - (λ/2)w Σ tM^ Γ a;

i+r«'+»ri-iβ-./«dfl.
1=0 l\Γ(Ό + i + 1) JO

(5.6) = (h/2Yω^ ± Γϊϊ +™ + ̂ h-hWffl .
ι=o l\Γ(υ + 1 + 1)

We apply Lemma 5.1 with a = 2τ, b = λ + yυ, c = 1 and d =
y + 1. Thus 9? = λ - 1 + y(7 - 1), A = 2 y + 1 (l - 7)8/2-λ+,(i-r)7λ+r»-i/«

and W = 2(1 - 7)((2Ύ)rhωr/2)1/{1-r). Thus, by (5.4), we have, as
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(5.7) Σ Γ ( λ + 7υ + 2yl\-hW/4:)1 ~ ΛωrU~1)/(1"r) exp (-
ι=o l\Γ(υ + 1 + 1)

Combining (5.6) and (5.7) we get (5.5). This completes the proof
of the lemma.

THEOREM 3. If A> 1/2 and Re (μ + Ar) > 0, then in (2.7) we
may take m — Ar/(2A — 1) and a = (2A — I)" 1.

Proof. By (5.3) and (2.3), we have, as

ι~r Γ I(μnx)e~sxdx
Jo

(5.8) ~ Λ Σ b(n)μlr* Γ ar'M'XA-ίJv+Λr.ιQ^'tA) exp ( - sx/μn)dx .
JO

In Lemma 5.2 we take 7 = 1/2A, ω — μjs, λ = r/2 + 1/2A and
o — 2μ + Ar — 1. The condition Re (TL> + λ) > 0, of Lemma 5.2,
translates into Re (r + μ/A) > 0 or, since A > 1/2, Re (μ + Ar) > 0.
Thus, as n—> ©o, we have

(5.9) i^(s) - ^-^/(.A-l^Ar/dA-D-l e χ p (^kfjiJήl/VA-iη $

where A3 = ALA*(h/2Y't+Ar-1 and A; = (2A - lX/^AΓ^- 1 ' . Since λ > 0
and A > 1/2 we see k > 0. Thus, by (5.8) and (5.9), we have, as

(5.10) Σ 6(^K" r Γ I(μnx)e's*dx
Jo

^ - ^ " - " exp (-

Comparing (5.10) and (2.7) gives the result and completes the
proof of the theorem.

As an application of Theorem 3 we give the following theorem
which is an application of Theorem 1 to Dirichlet series with posi-
tive coefficients.

THEOREM 4. Suppose that f(s) = Σ α(w)λ~s satisfies the function-
al equation (1.2) with A > 1/2 and Re (μ + Ar) > 0, where A and μ
are defined by (5.1). Suppose that for all n we have a(n) Ξ> 0.
Then we may take m = Ar/(2A — 1) in Theorem 1. Also, as x-> oo,

(1) if A > 1, then we have

[' \E(y)\2dy < x*m/9+1 + x2m+1/2 log x + xm+1/2 log'" 1 x + xr+1/2 log 2 '" 1 x
Jo

(2) if A — 1, then we have
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Γ \E(y)\2dy < x3r/2+1 log 2 '" 2 x + x2r+1/2 log 2 ' " 1 x
Jo

( 3 ) if 1/2 < A < 1, then we have

[' \E(y)\2dy < xm+1/2 log x + a;m/2+r+1 log'" 1 α? + x2r+1/2 log 2 '" 1 a; .

Jo
Proof. By Theorem 3 we have m — Ar/(2A — 1). By a theorem

of Landau (see [14, p. 874]), if a(n) ̂  0, then /(s) has a pole at
8 = r. Thus /3 = r. If A > 1, then m < r. Thus <5 = m < r = /S
and 97 = 0, by (2.8). If 1/2 < A ^ 1, then m ^ r . Thus δ = β =
r <> m and 57 = 1, by (2.8). The results then follow by comparing
the exponents of the terms in M(x), in (2.9), in each of the three
cases. This completes the proof of the theorem.

6* Comparison of Theorem 1 to the theorem of Chandra-
sekharan and Narasimhan* In this section we make a comparison
of our Theorem 1 to Chandrasekharan and Narasimhan's Theorem 1
of [6] For reference we state their theorem in our notation.

THEOREM A. Suppose the functional equation (1.2) is satisfied
with r > 0, A ^ 1 and μn = cmn, Xn = c67n, where cββ and c67 are
positive constants. Suppose the only singularities of f(s) are poles
and that for some real numbers a and b

Σ \b(n)\2<x2a-ίlogbx 9

as x —> co. If 2a — r — I/A ^ 0, then, as x —> 00,

\E(y)\2dy = cQSx
2d+ί + O(x2d+1/2A logb+2 x) ,

where c68 is a certain positive constant and d = r/2 — I/A A. If
2a — r — I/A > 0, ίfoew cm ί/te δαsis 0/ ί/te further assumptions that

and b ^ 2(|0 — 1) we have, as x —• 00,

Γ \E{y)\2dy < α?2i+1 + ^2 α + 1-1 / 2 4 logδ+1 α;.

From the estimates (4.19) and (4.20) and Remark 2 after the
proof of Lemma 3.4 it seems likely that the estimate

Σ \a(n)\f < x2β-> log6 x ,
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as x —> oo f hold for some nonnegative integer b in the case when f(s)
is not entire. In many of the special cases that estimates for the
sum (1.6) are known an estimate of this type is obtained. For ex-
ample, for the coefficients of zeta functions of algebraic number
fields [5, Theorem 3] and for the case a(n) = dk(n) [19, p. 199] such
estimates are obtained. Thus in Theorem A we could take a = β.

Since our Theorem 1 gives only an O-estimate for the integral
of the square of the error term, Theorem A is better when 2/9 —
r — I/A <̂  0. In a sense this says that the parameters for the
estimate are relatively small.

Suppose 2/9 - r - I/A > 0. Then both Theorem 1 and Theorem
A give only O-estimates. The estimate from Theorem A is

(6.1) Γ \E(y)\2dy < aj 2^ 1" 1^ logδ+1 x ,
Jo

as x—> oo. If we take each possible term in (2.9) in both cases (3 =
m and d = β) and suppose it to be maximal, we see that the result
of Theorem 1 is no worse than the estimate (6.1) if either A ^ 1 or
β ^ I/A. The first condition, A ^ 1, is part of the hypotheses of
Theorem A and the second, β ^ I/A, is again a statement that the
parameters are not too small, since β < I/A and 2/9 — r — I/A > 0
imply r < I/A. If we were given β^lf then the second condition
would also be fulfilled. An example of the latter would be a
Dirichlet series with nonnegative coefficients satisfying the functional
equation (1.2) with r ^ 1.

We can then say that Theorem A gives better results if the
parameters are small, while Theorem 1 gives better results if the
parameters are large, as is the case in Examples 2 and 5 of §7 below.
Moreover, Theorem 1 is applicable in those cases where one does not
have estimates on

Σ
λ

whereas Theorem A is not.

7* Examples*

EXAMPLE 1. For k > 0, let σk(n) be the sum of Λ th powers of
the divisors of n and let Sk(x) be the associated error term. Then,
for Re (s)> k + 1,

Here we have r = /9 = & + l, A — 1 and p = 1. By (2) of Theorem
4, we have, as x —> oo,
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which is the same result obtainable from the theorem of Chandra-
sekharan and Narasimhan, but here we did not need to refer to the
size of the sum

Σ σ\(n) ,

as is required by their theorem.

EXAMPLE 2. Let dk(n) be the number of ways of writing n as
a product of k ^ 2 factors. Then, for Re (s) > 1,

Here we have r = β = 1, A = fc/2 and p = k. Thus, by (1) of
Theorem 4, we have, for fc ^ 3, as a? —> oo,

Γ \Ak(y)\2dy < a?"*-8'"1*-' log*"1 a? ,
Jo

where Jfc(#) is the error term associated with the coefficients dk(n).
For k = 2 Chandrasekharan and Narasimhan get an asymptotic result.
For k *> 3 this improves the result obtainable from their theorem.
For k *> 5 our result improves the result in Titchmarsh [19, Theorem
12.3 and §12.5, p. 270].

EXAMPLE 3. Let K be an algebraic number field of degree n
over the rationale, with n ^ 3. Let aκ(m) be the number of integral
ideals with norm exactly equal to m. For Re (s) > 1. Let

ζ*(β) = Σ aκ(m)m"8 .

Then, from [13, p. 27], we know that ζκ(s) has a simple pole at
s = 1 and is regular elsewhere. Also ζz(s) satisfies the functional
equation

ΓKsβ)ΓKs)C-sζκ{s) = Γ'i((l - *)/2)Γ'«(l - 8 )0-^(1 - s) ,

where rx is the number of real conjugates, 2r2 the number of
imaginary conjugates of K, so that n = rL + 2r2, and C is a positive
constant depending only on the field K. Here we have r = /3 = 1,
A = w/2 and p = 1. Thus, in Theorem 4, we take m = n/(2n — 2).
If E(x) is the error term associated with ζκ(s), then by (1) of
Theorem 4, we have, as x—> oo,
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This result improves the result of Chandrasekharan and Narasimhan
[6, Theorem 2] for n ^ 3. For n = 2 they get an asymptotic result.

EXAMPLE 4. Let K, r19 r2, and C be as in Example 3. Let A
be a nonprincipal Grossencharakter on the ideals of K. Let

i l ^ q ^ n
βq (2 n + l ^ g ^ n + r2

For Re (s) > 1, let

φΛ{s) = C'ζ(β, ^) - C*

where the sum is over all nonzero integral ideals Sί and N(^X) is the
norm of Sϊ If we let

then we have, for Re (s) > 1,

<PΔ(8) = Cs Σ c{m)m~s .

Then, from [11], we know that ^(s) can be continued to an
entire function and that there exist real numbers εl9 •• ,6 r i + r 2 and
nonnegtive integers dq, d

f

q, 1 ^ q ^ rλ + r2, such that <̂ j(s) satisfies
the functional equation

ΨΛ{S)ΓΛ{S) = L Γ Λ ( 1 - s)φ-Λ(X - 8)'f

where L is a constant depending on Λ and

ΓΔ(s) - rfί2Γ{[ep(s + (dp + d'p)/2 + <eJ/2} .

Here we have A = τι/2 and r = 1. Thus in Theorem 1 we may take
m = w/(2n — 2), by Theorem 3. This gives

\E(y)\2dy < ^7/4+3/(4w"4) ,

>, where 2£(£c) is the error term associated with the coefficients

By Theorem 3, we have a = I/O — 1). Thus, by Theorem 2,
we have, as x —> oo,

Σ

EXAMPLE 5. SiegeΓs zeta function. Let Q be an indefinite
quadratic form in k ^ 4 variables with rational coefficients. Let
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μ(Q, t) be the measure of representation of t by Q and let, for
Re (s) > Jfe/2,

This zeta function was first introduced by C. L. Siegel in [17].
From [17, p. 688] we know that ζ(Q, s) satisfies the functional
equation

π-*Γ(s)ζ(Q, s) = (-iyk-n)/2\Q\-1/2π~<k/2~-8)Γ(k/2 - s)ζ(Q~1, fc/2 - s) ,

where |Q| is the determinant of Q, Q"1 is its inverse form and
(n, k — n) is its signature. From [17, p. 688] we know that ζ(Q, s)
has a simple pole at s = fc/2 and is a regular function elsewhere.
Thus we have r = AJ/2 = /S, p = 1, and )? = 1. Let JS'Cα?) be the error
term associated with ζ(Q, s). Then, by Corollary 1, we have, as

Now assume that the coefficients of Q are integers. By Theorem
3 (or [3, p. 152]) we may take a = 1. Thus, by Corollary 2, we
have, as x —> °o,

log x if & = 4

if & ^ 5 .
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