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THE CARATHEODORY METRIC AND HOLOMORPHIC
MAPS ON A CLASS OF WEAKLY

PSEUDOCONVEX DOMAINS

R. MICHAEL RANGE

The boundary behavior of proper holomorphic maps
between two smoothly bounded pseudoconvex domains in
Cn is studied by means of the Carathέodory metric. The
Holder continuity of such maps is proved in case the image
domain satisfies some technical conditions; these are satisfied,
for example, by strictly pseudoconvex domains and convex
domains with real analytic boundary.

In recent years it has become clear that pseudoconvex domains
with smooth boundary may exhibit rather pathological behavior in
the absence of strict pseudoconvexity (cf. the examples of Kohn
and L. Nirenberg [13] and Diederich and Fornaess [4]). Therefore
it might be of interest to consider conditions weaker than strict
pseudoconvexity and to extend classical results to more general
settings.

Investigations related to Holder estimates for solutions of the
5-equation (cf. Range [18]) have led the author to introduce a
technical refinement of the following classical condition (cf. Behnke
and Thullen [1], p. 29): The domain D is called totally pseudocon-
vex at PedD if there is an analytic hypersurface MP in a neighbor-
hood U of P, such that Mc Π D = {P}. The refinement involves two
parts. First, there should be supporting analytic hypersurfaces Mζ

for all points ζedD near P, and Mζ should depend smoothly on ζ.
Next, in order to obtain estimates of some sort, one needs finite
order contact between Mζ and 3D at ζ. The resulting condition is
called uniform total pseudoconvexity of finite order (cf. Definition
1.8 for the precise formulation). Simple examples of domains which
satisfy this condition at every boundary point are strictly pseudo-
convex domains and convex domains with real analytic boundary.

In this paper we prove the following generalization of a classi-
cal result.

MAIN THEOREM. Let A and D2 be bounded domains in Cn with
smooth boundary. Assume that D2 is uniformly totally pseudocon-
vex of finite order at every point P e dD29 and that D2 has a Stein
neighborhood basis.1 Then there is a > 0, such that every proper

1 Theorem 2.2 and, as a consequence, the Main Theorem, are valid without assuming
the existence of a Stein neighborhood basis, provided one assumes high differentiability
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holomorphic map F: D1 —> D2 is Holder continuous of order a; in
particular, F extends continuously to Dt.

ADDED IN PROOF. The Main Theorem holds without requiring
the existence of a Stein neighborhood basis for D2. The necessary
modifications for the proof are sketched in footnote 1.

For D2 strictly pseudoconvex (plus a mild restriction for A) the
Main Theorem was proved by Henkin [9] and, independently, by
Pinchuk [16]; a somewhat weaker result was obtained by Vormoor
[20]. Based on these results, the author [17] proved the Main
Theorem for biholomorphic maps between domains with piecewise
smooth strictly pseudoconvex boundary. By a different method,
Fefferman [5] proved that a biholomorphic map between strictly
pseudoconvex domains with C°° boundary extends as a C°° diffeomor-
phism D1 -» S2.

The proof of the Main Theorem uses the argument of Henkin
and Pinchuk. The main analytic tool is an estimate for the Cara-
theodory metric of the image domain D2. For strictly pseudoconvex
domains such an estimate was obtained by Henkin and Pinchuk, and
also by Graham [6], by approximating the domain by balls and
using supremum norm estimates for 3. The proof given here is
based on an explicit local construction, and the passage from local
to global is handled by Hδrmander's L2 estimates for 3; in particular,
one obtains a new proof for the strictly pseudoconvex case.

Briefly, this paper is organized as follows. In § 1 we introduce
the various notions of total pseudoconvexity and prove some basic
results; in particular, we discuss the relationship with (Euclidean)
convexity and the existence of peaking functions. The estimate for
the Caratheodory metric is proved in § 2. In § 3 we combine a
result of Diederich and Fornaess [3] and the estimates of § 2 with
the techniques of Henkin and Pinchuk to prove the Holder continuity
of proper holomorphic maps.

The results in § 1 were, essentially, obtained in 1975, but they
have not been published in detail before. The author has lectured
on several occasions about different versions of these results in the

of the boundary. In order to see this, one observes that in the proof of Theorem 2.2

the d-closed (0,1) forms ajt l^j^n, which are defined on Dε, satisfy, for each keN, an

estimate | labile* ^ ^ r * I W L ~ ẑ-ε), where 0<rΛ< c c . By Kohn's global regularity result

([12], Theorem 3.19) and Sobolev's Lemma, for sufficiently large k there is a bounded

solution operator Tk: CoΛDΓ\ker~d-:>C1φ) for "d. So Uj=^Tk(aj) satisfies duj — aj and

IWIσ 1^) ^ Bk\\L™liDε) for some constant Bk; this estimate is sufficient to complete the

proof of (2.2).
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context of Holder estimates for 3, notably at the 1975 Seminar on
Spaces of Analytic Functions in Kristiansand, Norway, and at the
1975 AMS Summer Institute on Several Complex Variables in
Williamstown, Massachusetts (cf. [18]). Initially, uniform total
pseudoconvexity of finite order was formulated in terms of special
coordinate systems which are now relegated to a technical device;
the version adopted here, which emphasizes the supporting analytic
hypersurface, seems the more natural one. The problem of finding
a tractable characterization of total pseudoconvexity in terms of
local invariants of the boundary remains open; its solution should
contribute to a better understanding of pseudoconvexity.

NOTATIONS. For xeRn and EczRn, d(x, E) denotes the Eucli-
dean distance from x to E. For a e Cn, the components of a are
denoted by alf •••, an; we sometimes write a •==• (a', an), where ar =
((&!, ••, α«_i) 6 C*"1; the Euclidean norm (Σ?=i <MQ1/2 is denoted by \a\.
For PeCn and c > 0, B(P, c) denotes the open ball in Cn with center
P and radius c; Δ denotes the open unit disc in C with center 0.

For a C1 function / in a neighborhood of PeCn, df(P) denotes
the (1, 0) form 3/ = Σ?=i Sfjdzi{P)dzi. The natural pairing between
a cotangent vector a at P and a tangent vector v at P is denoted
by <α, v); in particular, <3/(P), v) = Σf=1 df/dz^v,.

A domain DaCn has a Ck boundary at PedD, 1 ^ k <. <χ>, if
there is a CA function r: U-+R defined on a neighborhood ?7 of P,
such that <2r(P) =£ 0 and D f] U = {ze U: r(z) < 0}; a function r
satisfying these conditions is called a defining function for D at P.
The real tangent space of 3D at P is denoted by TP(dD), and the
complex tangent space TP{dD) DV^ΛTpiβD) is denoted by HP(dD);
for any defining function r, Hv{dD) = { v e Λ < 3r(P), t; > =0}.

In order to avoid the use of many constants, we adopt the
following convention: If A(x) and B(x) denote expressions which
depend on a variable x 6 R\ A(x) < B(x) means that there is a con-
stant K, 0 < K < oo, such that | A(x)\ ^ K\B(x)| for all x under
consideration; A(x) ~ B(x) is equivalent to A(x) < j?(#) and J5(a?) <
A(x).

1. Total pseudoconvexity. We first discuss some properties
of the simple point version of total pseudoconvexity which may be
of independent interest.

DEFINITION 1.1. A domain D in Cn is called totally pseudocon-
vex at the point PedD if there is a nonsingular analytic hypersur-
face M in a neighborhood U of P, such that Mf]Df]U={P}. M
is called a supporting analytic hypersurface for D at P.
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From now on we will assume that D has a C1 boundary at P;
the coordinates of Cn and the defining function r for D are chosen
so that P = 0, H,{dD) = {z e C": sft = 0} and 3r(0) = <few. If Λf is a
supporting analytic hypersurface for D at 0, the tangent space of
M at 0 coincides with H0(dD); so, near OeC*, M can be described
as the graph of a holomorphic function g defined in a neighborhood
U' of 0 e C -1: ikf n (U' x C) - {(z'f zn) eU' x C: zn = g{z')}. To say
that D is totally pseudoconvex at 0 6 dD is therefore equivalent to
the following: There is a holomorphic function g on U', with g(0) =
0, such that r(z', g{z')) > 0 for z' Φ 0.

It will be convenient to linearize M by a suitable holomorphic
change of coordinates. Choose a holomorphic function <ρ on a neigh-
borhood [7 of 0, such that I n U= {zeU: φ{z) = 0} and dφ(O) = dzn.
Define F: U-*Cn by w = F(z) = (z', 0(z)); the Jacobian matrix l^o
of JP at 0 is the identity matrix; hence, after shrinking U, F: U-*
F(U) is biholomorphic, and

F(UΠ M) = F(U)Π{weCn: wn - 0} = i^(J7) n H0(dF(Df] U)) .

we thus have the following definition equivalent to Definition 1.1.

1.2. D is totally pseudoconvex at PedD if there is a holomorphic
change of coordinates w = w(z) in a neighborhood U of P, such that

w(D ΠU)f] Hw{P)(dw{D n U)) = {w(P)} .

So, geometrically, total pseudoconvexity is just the biholomor-
phic image of convexity in the directions of the complex tangent
vectors. The following result shows that by relaxing the regularity
of the coordinate change at P, one can achieve convexity also in
the remaining tangential direction.

PROPOSITION 1.3. Let D be totally pseudoconvex at P e 3D. Then
there are a neighborhood U of P, a neighborhood Ω of Df] U—{P}, and
a biholomorphic map G: Ω—>G(Ω)czCn with the following properties:

(a) G extends continuously to P and G(P) = 0;
(b) Gφn U- {P})(z{weCn:Rewn>0}.

Proof. Choose the coordinates of Cn, r and F as before;
p = γoF~ι is a defining function for F{D Π U) at 0, and dwp(0) = dwn.
By assumption, there is c > 0 such that p(w', 0) > 0 for 0 < | w'\ < c.
Therefore, by Taylor's theorem, if \w\ < c and wr Φ 0,

p{w) = p(w', wn) = p(w', 0) + 2 R e ^ - « 0) wn + o(\wn\)
dwn

> 2Rel wΛ + o(ΐ)-\wn\ .
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Choose U so small that o(l) \wn\ g |Re wn\ + |Im wn\ for weF(U);
if p(w) ^ 0, one obtains

0 > 2 Re wn — I Re wn | — | Im wn | ,

or

(1.4.) -Έ.ewn> - |Im wn\ for we F(D n tf) with w' ^ 0.

This shows that, on F(D f) U— {P}), — wn omits the nonpositive
real axis R~. If one chooses that branch of the square root defined
on C — R~ which satisfies l/Γ~= 1, i/ — wn is holomorphic on C — R~
and, by 1.4, satisfies R e V - w n > 0 for weF(D Π U- {P}), and
hence for w e F(Ω), where Ω is some neighborhood of D f] U— {P}.
If S(w) = (w'f V—wn), the map G = S°F is biholomorphic on Ω and
satisfies (a) and (b).

REMARK. AS the proof shows, the singularity of G at P is
quite simple. It is not known whether one can choose G holomor-
phic at P, so that 1.3(b) still holds.2

COROLLARY 1.5. Let D be totally pseudoconvex at PedD. Then
there is a neighborhood U of P such that P is a peak point for
the uniform algebra A(D f] U).

Proof. The function h(z) = exv[-Gn(z)] is in A(D Π U) and
peaks at P.

By using Kohn's global regularity result for 9 [12] and standard
techniques (cf. Pflug [15], or Hakim and Sibony [8]), one obtains
the following global version of 1.5.

COROLLARY 1.6. Suppose D is a bounded pseudoconvex domain
with smooth boundary. If D is totally pseudoconvex at P, then P
is a peak point for the uniform algebra A(D).

Furthermore, by a variation of the proof of a result of Rossi
([19], Theorem 5.13), Corollary 1.5 implies:

COROLLARY 1.7. Suppose D has a C2 boundary near P and
D is totally pseudoconvex at P. Then P is a limit point of strictly
pseudoconvex boundary points of D.

For the details of the simple modification required, see, for
example, [8].

2 T. Bloom recently found an example for which there is no such map G holomorphic
at P. (cf. Duke Math. J. 45 (1978), 133-148.)
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We now come to the parametrized version of total pseudocon-
vexity.

DEFINITION 1.8. Let D have a Cι boundary at PedD, and let
r be a defining function for D. D is uniformly totally pseudocon-
vex at P if there are positive constants δ, c and a Cι-map φ: 3D (Ί
B(P, δ)xB(P, 2δ)-+C, such that, for all Ze3Df]B(P, δ) the following
are satisfied:

( i ) φ(ζ, •) is holomorphic on B (ζ, δ);
(ii) φ(ζ, ζ) = 0 and dzφ\z=ζ ̂  0;
(iii) r(z) > 0 for all z with φ(ζ, z) = 0 and 0 < | z — ζ | < c.

Clearly Definition 1.8 implies that D is totally pseudoconvex
at all points ζedD near P; the supporting analytic hypersurface
for D at ζ is given by Mζ = {z: φ(ζ, z) = 0}.

For ζ e 3D, we denote by πζ the orthogonal projection TζC
n —>

Hζ{dD).

1.8 (Continued). D is uniformly totally pseudoconvex of finite
order at P if, in addition to (i), (ii), (iii), there are meNand 7>0,
such that

(iv) r(z) ^ 71 τrζ(z - ζ) |w for all z e B(ζ, c) with φ(ζ, z) = 0.

REMARK 1.9. Definition 1.8 is independent of the choice of
holomorphic coordinates in a neighborhood of P and of the particular
defining function r which appears in (iii) and (iv). The smallest
integer m for which (iv) holds with some constants 7 and c for all
ZedD in a neighborhood of P is called the order of 3D at P. Note
that if D c Cn with n > 1, one must have m ^ 2.

By multiplying r and φ by suitable nonzero functions of ζ, one
may further assume

( v ) 13r(ζ) I - 1 and dr(ζ) = dzφ |z = ζ for ζ 6 3D n

EXAMPLE 1.10. A bounded domain DaRd with a C1 boundary
is called totally convex if for each PedD the tangent space TP(3D)
intersects D only at P. If DaCn is totally convex, then D is uni-
formly totally pseudoconvex at all points P 6 3D; in fact, if r is a
defining function for D in some neighborhood U of 3D, the func-
tion <KC, *) = Σ?=i ar/aWOte - Q satisfies 1.8(i)-(iii).

EXAMPLE 1.11. Let D be strictly Levi pseudoconvex at PedD,
i.e., if r is a C2 defining function for D near P, the Levi form

L(r; P,v)= ± *r
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satisfies, with some 7 > 0,

L(r; P,v)^Ύ\v\2 for veHp{dD) .

By continuity, it follows that L(r; ζ, v) ^ 7/2 M 2 for veHζ(dD) and
ζedD near P. It is classical that in this case D is uniformly totally
pseudoconvex of finite order 2 at P; the function φ is given by

ΛC, z) = ± -|^(C)te - C) + 4- Σ -wh-W*ι ~ £«)(*/ - 0).

Typically, this is proved by choosing r strictly plurisubharmonic
(cf. Gunning and Rossi [7], Chapter IXB); however, it is easy to
obtain this result by just using any defining function r, as follows.
By Taylor's expansion,

r{z) - r(ζ) + 2 Re φ(ζ, z) + L(r ζ, z - Q + o(| z - ζ |2);

fix ζedD; for 2- with ^(ζ, 3) = 0 one has 2 — ζ = τrζ0 — ζ) + o(\z — ζ|);
therefore, for some c > 0, one obtains

- L(r; ζ, z - ζ) + o(|« - ζ|2) ^ 1/2 L(r; ζ, ττζ(z - ζ))

^ 7/4|ττc(z - ζ) | 2 for all z e £(ζ, c) with 0(ζ, «) = 0 .

If Z) is not strictly pseudoconvex at P, it is usually condition
1.8 (iv) which is hardest to verify. Even though one may be able
to obtain for each ζedD near P an estimate r(z) ^ 7ζ|ττζ(2 — ζ)|mc
for z e B(ζ, cζ) with φ(ζ, z) = 0, there remains the nontrivial problem
of choosing 7ζ, cζ9 mζ independently of ζ. As an example, consider,
for m > 2, even, the domain Bm = {|^|2 + |^ 2 |m < 1} with defining
function rm(z) = | ^ | 2 + |^ 2 | w — 1. i?m is totally convex, and at points
ζ = (ζlf ζ2) e 35m with ζ2 ^ 0 it is strictly pseudoconvex. If φ(ζ, z) —
< drm(ζ), z — ζ>, one obtains the following estimates for ζedBm

and z 6 B(ζ, 1) with φ(ζ, z) = 0:

ζ(^ - ζ) | 2 ^ 7ζ|τrc(^ - O r , if C2 ^ 0;

c ( , ~ ζ ) r , if ζ2 = 0 .

Here, for ζ2 Φ 0, 7ζ > 0 is, essentially, the eigenvalue of the Levi
form; since 7C —> 0 as ζ2 ~> 0, the constants one obtains by the
"obvious" point estimates do not depend continuously on ζ at non-
strictly pseudoconvex boundary points. Nevertheless, as pointed out
in [18], one can show that Bm is uniformly totally pseudoconvex
of finite order m.

More generally, one has the following result.

PROPOSITION 1.12. Let D be a bounded domain in Cn with real
analytic boundary. Suppose D is uniformly totally pseudoconvex
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at every point P e 3D, and that the function φ(ζ, z) given by 1.8
can be chosen real analytic in (ζ, z). Then D is uniformly totally
pseudoconvex of finite order at every P e 3D.

COROLLARY 1.13. Let D be a bounded convex domain in Cn

with real analytic boundary. Then D is uniformly totally pseudo-
convex of finite order at every P e 3D.

To prove the corollary, observe that the hypotheses imply that
D is totally convex; the conclusion then follows by 1.10 and the
proposition.

In order to prove 1.12 we first introduce the parametrized
version of the coordinate system given by 1.2; this will be used
in § 2 as well.

Thus, suppose D is uniformly totally pseudoconvex at P, and
let U = B(P, δ), c, r{z), and φ(ζ, z) be as in 1.8, so that (i), (ii), (iii),
and (v) are satisfied. Choose smooth orthonormal sections ϋ7(1)(ζ),
. . . , E{n"l){ζ) of the holomorphic tangent bundle H(3D) over 3D Π U.
For ζ e 3D Π U define the holomorphic map z —> w — Fζ(z) by

w» = Σ WC)0*i - C*), v = 1, , n - 1, and wn - φ(ζ, z) .

The Jacobian matrix (Fζ)*ζ has rows E(ί)(ζ), , J ^ - ^ ζ ) , (dφ/dzάζ, 0,
• , 3φ/3zn(ζ, ζ)), and so it is unitary, by (v). After shrinking the
neighborhood U of P, one may choose c > 0, d > 0 so small that
Fζ maps B(ζf c) biholomorphically onto the neighborhood Fz(B(ζ, c))z)
B(0, d) of 0 in Cn for all ζ e 3D Π ?7. Also, one may assume that
F ζ and -Fζ-1 have uniformly bounded Jacobian matrices; hence there
are positive constants Alt A2 such that

(1.14) A\z - z*| ^ |Fc(s) - Fc(2*)| ^ A2\z - «*|

for 2, z* 6 β(ζ, c) .

The analytic hyper surf ace {ze J5(ζ, e): φ(ζ, z) = 0} is mapped by F c

biholomorphically into { ^ e C f t : ^ = 0}. The function pc = roF^1 is
a defining function for Fζ(D Π i?(C, c)); a calculation shows

(1.15) 3wpζ(0) =

The conditions (iii) and (iv) are, respectively, equivalent to

(iii bis) ρζ(w', o) > 0 f or 0 < | w'\ < d

(iv bis) pζ(w', o) ^ 7 \w'\m for 0 £ \w'\ < d .

Proof of Proposition 1.12. By assumption, the functions r and
φ may be chosen real analytic, which implies that the map Fz(z)
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constructed above may be chosen real analytic in (ζ, z). One thus
obtains a nonegative real analytic function J2(ζ, w') = pζ>(w'9 o) defined
on Ω=(3D n U) x {wf e Cn~ι: \w'\< d). Let Z={(ζ, w') e Ω: R(ζ, w') =
0}; by (iii bis), Z - {(ζ, w')eΩ: w' = 0}, and d((ζ, w'), Z) ^\w'\. By
a theorem of Lojasiewicz ([14], p. 124), given U'aaU and 0<d'<d,
one can find a constant 7 > 0 and a positive integer m, such that

22(C, w') ̂  7d((C, w'), ̂ Γ = Ύ\w'\m ίor ζedDf) W and |w' | ^ d' .

Thus (iv bis) holds.

Finally, by modifying the proof of Proposition 1.3, one obtains
a more precise estimate for φ(ζ, z).

PROPOSITION 1.16. Suppose D is uniformly totally pseudocon-
vex of finite order m at the point P 6 3D. Let φ(ζ, z) satisfy (i)—(v)
in (1.8) for ζ e 3D Π B(P, δ). Then there are constants A, c* > 0,
such that

(vi) I φ{ζ, z) I ̂  A[d(z, 3D) + I Im ψ(ζf z) \ + | ζ - z \m]
for ζedDf] B(P, δ) and zeDn B(C, c*).

Proof. Fix ζe3Z>n 5(P, δ) and introduce ft = roF^1 as above.
Taylor's theorem, 1.15 and (iv bis) imply, for \w\ < d,

Pt(w', wn) = pζ(w', 0) + 2 Re ( | ^ - « 0) wn) + o(| wj)

where o(l) —> 0 as w —>• 0, the convergence being uniform in ζ, as
o(l) depends only on the modulus of continuity of the first order
partial derivatives of roF^1.

Since m ^ 2, |w' | w = |w | w + o(l) | w j ; thus, if 0 < d% < d is
chosen so small that the combined terms o(l) \wn\ satisfy o(l)-\wn\<L
I Re wn I + I Im wn \ for \w\ ̂  d\ one obtains

(1.17) - 2 R e w w + | R e w J ^ -ft(w) - |Im wn\ + 7 |w| m for

and hence

3 ] R e wn\ i> —ρζ(w) — \Imwn\ + y\w\m .

Choose c# so small that Fc(B(ζ, c#)) c B(o, d*). If 2 e 5(ζ, c#), the last
inequality and (1.14) imply

3 ] R e ^ ( ζ , z)\^ -r(z)- \lmψ(ζ, z)\ + Ύ

Since |r(z)\ > d(z, 3D) for zeD and 5 |^ | > 3| R e ^ | + 2| I m ^ | , it
follows that
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\φ(ζ, z)\ > d(z, 3D)

for 2 e 5 n B(ζ, c#).

2. The Caratheodory metric* The infinitesimal form CD of the
Caratheodory metric on a domain D in Cw is defined as follows: for
zeD a n d veCn,

CD(z, v) — s u p {I (df(z), v)\: f: D > Δ, holomorphic} .

For a holomorphic map F: Dx —> D2 one trivially obtains

CD2(F(z), F*Mv) £ CDl(z, v) ,

where F*z denotes the Jacobian matrix of F at z. Furthermore,
by restricting /: D -» Δ to the ball B(z, d(z, 3D)) c D and applying
Cauchy's derivative estimates, one obtains

LEMMA 2.1. The Caratheodory metric satisfies

CD(z, v)^\v\ d(z, 3D)-1

for all zeD and v e C\

The main result of this section is the following estimate from
below for the Caratheodory metric.

THEOREM 2.2. Let D be a bounded domain in Cn with C1

boundary, and let r be a defining function for D defined on a
neighborhood of D. Suppose that D is uniformly totally pseudo-
convex of finite order m at every point P e 3D, and that D has a
Stein neighborhood basis1. Then

CD(z, v)>\v\ d(z, 3D)-ι/m + \{3r{z\ v)\d(z, 3D)~l

for zeD and veCn.

REMARK 2.3. CD(z, v) may grow faster than d(z, 3D)~ι/m for
certain tangential vectors v, but in general, no better estimate is
possible for all v. As an example, consider D — {zeC3: |Zi|2-H£2|

2 +
| z 3 | 4 < l } and P = (1, 0, 0) e 3D; one can show that D is uniformly
totally pseudoconvex of order 4 at P; for v = (0, 1, 0) and v* =
(0, 0, 1) 6 HpipD) one obtains CD{z, v) - d{z, 3D)~U2 and CD(z, v*) -
d(z, 3D)~ι/4c as z —> P along the inner normal to 3D at P.

The proof of Theorem 2.2 involves a technical local result which
we state separately. First we define, for ζ e 3D, δ > 0 and ε > 0,

, δ, e) = ( f l n S(C, δ)) U {z: δ/2<\z-ζ\<δ; r{z) < e} .
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MAIN LEMMA 2.4. Let D be uniformly totally pseudoconvex of
order m at Pe 3D. Then there are positive real numbers δ, ε, α, M,
such that the following holds.

For each xeDn B(P, δ), if ζxe3Df] B(P, 23) is chosen so that
x — ζx I = d(x, 3D), there are

( i ) functions hi, , hi defined and holomorphic on Ω(ζx, δ, ε),
(ii) an orthonormal basis vl, , v\ of Cn with vx

n perpendi-
cular to Hζx(dD),
which satisfy the following conditions:

(iii) I h%z) \^Mforze Ω(ζx, δ, ε), j = 1, . . . , n;
(iv) I (3h%x), v* ) I > d(α?, 3D)~1/m for d{x, 3D)< a and f = 1, • ,

n — 1;
(v) I (dhl(x), vl) I > d{x, 3D)"1 for d(x, 3D) < a.

We first show how the Main Lemma implies the theorem.

Proof of 2.2. Fix Pe 3D; for x eDnB(P, δ) let hi, , K be the
functions given by the Main Lemma. The essential part of the
proof involves replacing these functions by functions H% j — 1, , n,
which are holomorphic on D and still satisfy properties (iii), (iv),
and (v) above.

• Choose χ e C°°(R) such that 0 ^ χ <; 1 and

ίl for t ^ 5S/8

(O for t ^ 7δ/8

define, for ζ e Cn, the function χζ 6 C~(Cn) by

Now fix x 6 D Π B(P, δ) with d(x, 3D) < δ/2; to simplify notation, we
will omit the superscript x in h* and v% and we set ζ = ζx; unless
otherwise noted, the index j runs from 1 to n.

Set aό — d(χζhj) on fl(ζ, <5, ε); a, extends trivially as a 3-closed
C ĵ. — form to the domain JD£ = D U {̂ : r(«) < ε}. Choose a Stein
domain G, such that ΰ c c G c ΰ £ . By Hormander [10], there are
functions % e C°°(G), such that 3% = a:,- and

< sup IfeXίs)! ^ ikf.
z e β ( ζ , δ , ε )

By interior elliptic estimates for 3,

(2.5)

Define iϊy = χ^^ — uy; H3 is holomorphic on D, and by 2.4 (iii)
and (2.5)
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\Hά(z)\ ^ (1 + Z1) ΛΓ= Jlf' for zeD .

Furthermore, observe that u3- is holomorphic on G Π 2?(ζ, 53/8); since
for zeDf] B(ζ, δ/2) and wίGΠ J5(ζ, 55/8), | z - w| ^ min(<5/8, dist
(Z>, CΛ — G)) > 0, it follows that for some constant K2,

\dud(z)\ < II wy|U.(β) ^ ίΓ2.M for * e D Π B(ζ, δ/2) .

From dHj(x) == dhj(x) — du3{x) one thus obtains

which implies that (iv) and (v) in 2.4 still hold with H3- instead of
hj, provided d(x, 3D) < α', where 0 < α' ^ a is suitably chosen. Since
H3/M':D-±J, one has C O , ^ ) ^ l/M'\(dH,'(x), vs}\; it follows that

CWa?, vy) > d(α, 3Z>)-1/m , i = 1, , n - 1 ,

and

CD(x, vn) > d(aj, dDΓ .

By 2.4 (ii), this implies

CD(x, v)>\v\ d(x, 3D)~1/m + I (dr(x), v)\d(x,

for all v e Cn; here x is any point in D Π J?(P, §) with cZ(a?, 3i?) < af,
and the constant implicit in > is independent of x. A standard
compactness argument now shows that the above estimate holds for
all xeD.

Proof of the Main Lemma. The plan of the proof is as follows:
one first constructs the required functions and vectors with respect
to the coordinate system w = Fζχ(z) given in § 1, and then one pulls
back everything to the domain D.

We use the notation developed in § 1. d > 0 is chosen so small
that for all ζedD Π B(P, 25) the biholomorphic map Fζ is defined on
2?(ζ, δ) and pζ = roF^1 satisfies (1.17) for |w| < d\ i.e.,

(2.6) -2Rew % + |RewJ + \lmwn\ ^ -

By (1.14), if δ is chosen sufficiently small, there is b > 0, such that

Fζ({z:δ/2< | s - ζ | <δ})<z{w:b< \w\ < d*} .

Let ε = τ&m/2 and define

JS(ζ) = {w: \w\ < d\ ρζ(w) < 0} U {w: b<\w\<d\ ρζ(w) < ε}

observe that Fζ(Ω(ζ, δ, ε))ci2(ζ).
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(2.6) shows that for w 6 R(ζ) the function wn omits the nonnega-
tive real axis; hence one can define a holomorphic branch of w^™
on JS(ζ). For j — 1, •••, n — 1 we define holomorphic functions gs

on jβ(ζ) by gs(w) = wrw~1/m; then

(2.7) (JLg\w) = w-i/ , j = l, . . . , n - 1 .
\ 3wό /

From (2.6) one obtains

4 I w» I *> e if 6 < I w | < ώ* and pζ(w) < ε

A\wn\^7\w\m ^y\wj\
nt if | w | < d # and ft(w) < 0

this implies that there is a constant M such that

(2.8) \9i(w)\ ^M for weR(ζ) , j = 1, . . . , n - l .

In order to define βrw we modify the function /(w)=exp(—i/—w»)
which was used in the proof of Corollary 1.5; / is well defined and
holomorphic on 22(ζ), \f{w)\ < 1 for weR(ζ) and f(w)—>1 for w—>0.
Fix y 6 JS(ζ) and let φq be the holomorphic automorphism of Δ which
sends q — f(y) to 0 and 1 to 1. Since \φ'q(q)\ = (1 — Itfl2)"1 and

1 - M = 1 - 1/001 - 1 - e x p ( - R e i / - » . ) < \Vyn\ ,

it follows that

Therefore, if one defines gl—φ/{y)°f, one obtains, by the chain rule,

(2.9) \^Hv
n

and

(2.10) \gζ(w)\ < 1 for

Now fix xeDf] B(P, 3) and choose ζxe3D Π J?(P, 2δ) such that
|α? - ζ . | = d(x, 3D). Let y = Fζχ(x), and set ΛJ = gάoFζχ for i = 1,
•••, n - 1, A; = flftojFV Then, by (2.8) and (2.10), conditions 2.4 (i)
and (iii) are satisfied. From the explicit form of the matrix (F^^z
(cf. the definition of Fz in § 1), it follows that the vectors v* =
(F^toid/dWj), j = 1, •••, n, satisfy 2.4 (ii). Let t) =
then

v - = t; + o(| a; - ζ.|) = tj + o(d(^, 3D)) ,

and therefore there is K < <χ>, such that
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whenever d(x, dD) is sufficiently small. Also, yn = φ(x, ζx) implies
\v%\ ^ l« — Cxi = d(x, dD). Hence, there is a > 0, such that for all
x 6 D (Ί B(P, <5) with d(x, 3D) < α one obtains, by (2.7),

for j = 1, , n —

and, by (2.9),

- K
σw,_

This completes the proof of the Main Lemma.

3* Proper holomorphic maps*

LEMMA 3.1. Let A and A be bounded pseudoconvex domains
in Cn with smooth boundary. Then there is a positive integer I
such that every proper holomorphic map F: A —• A satisfies

d(z, 3D,)1 < d(F(z), dD2) < d(z, dD,)1/l

for all z e A

Proof. By a theorem of Diederich and Fornaess [3], there are
continuous functions φv\ ϊ)v-^Ry v = 1, 2, with the following proper-
ties:

( i ) φv\ A is smooth and plurisubharmonic;
(ii) φu\Dv < 0 and φ»\dDv — 0;
(iii) for some leN, {φv)

1 is smooth on A
iii implies

(3.2) I φXx) I < d(α, dDυ)
ι/ι for x 6 A -

Let α/rx — φ2°F. Since JF is proper, ψ1 is continuous on A? and
it satisfies (i) and (ii) with respect to A

In order to push forward φlf observe that F: Dί —> A represents
A as a λ-sheeted branched analytic covering over A Define ψ2 on
A by

τ/r2(̂ ) = max

where {zlf , zλ} = F~\w), counted with multiplicities. ψ2 is con-
tinuous on A and plurisubharmonic on A (cf. [16], p. 646); also,
ψ21A < 0 and f 213D2 = 0.

The classical normal derivative lemma [11], also known as Hopf
lemma (cf. [2]), implies

(3.3) \ψXx)I > d(x, dD,) f o r xeDu,v = l,2.
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By combining (3.2) and (3.3) one obtains

d(z, 3A) < 1 (̂2)1 - \φ2(F(z))\ < d(F(z), 3D2γ
ίl

and

), dA) < I W O O ) I ̂  1^(3) I < d(s, 3A)1/ι

THEOREM 3.4. Let A αwd A &β bounded domains in Cn with
smooth boundary. Suppose there is δ>0 such that the Caratheodory
metric of D2 satisfies

(*) CJh{w,v)> \v\d(w,dD2y
δ

for all w e A &nd v e Cn. Then there is a > 0, such that every
proper holomorphic map F: A —* A is Holder continuous of order
a, i.e., there is K < w

- F(z*)\ ^ ί Γ | « - 2;*|α for all z, z* e A .

Proof. The hypothesis (*) implies that A is a domain of holo-
morphy, hence pseudoconvex. If there is a proper holomorphic map
F: A —* A> then A must be pseudoconvex also, and hence 3.1
holds. So one has all the ingredients which are required to apply
the classical argument of Henkin and Pinchuk. As the argument is
very short, we include it here for the convenience of the reader.

By applying (*) to F(z) and F*zv, and by Lemma 2.1, one
obtains

\F*xv\d(F(z), dD2Γ < CJh{F(z\ F*v) ^ Cφ, v) £ \v\d(z, d A Γ

by multiplying with d(F(z)9 dD2)
δ and 3.1,

\F*gv\ < \v\d(z, dD,)-1^1'1 ,

i.e.,

\\F*z\\ < d(z, 3A)"1+α, with a = δ/l > 0 .

The analogue of a classical result of Hardy and Littlewood now
implies that F is Holder continuous of order a.

Theorem 2.2. and Theorem 3.4 clearly imply the Main Theorem
stated in the introduction. From Corollary 1.13 one obtains the
following special case of the Main Theorem.

COROLLARY 3.5. Let A and A be bounded convex domains in
Cn with real analytic boundary. Then every biholomorphic map
F: A -* A extends to a homeomorphism F: A —> A
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Open Problems 3.6. Some natural questions arise at this point.
First, one would expect that the extension F in 3.5 is differentia-
ble, or even real analytic, up to the boundary. Next, one may ask
whether Corollary 3.5 remains true if one only assumes that DL and
D2 are bounded pseudoconvex domains with smooth boundary. Finally,
one may consider similar questions for proper holomorphic maps;
specifically, can the Main Theorem be strengthened to yield a diffe-
rentiable extension to the boundary? It appears that methods quite
different from those used in this paper would be needed to attack
any of these problems.
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