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DENTING POINTS IN Bp

JOSEPH A. CIMA AND JAMES ROBERTS

It is shown that in the weighted Bergmann space Bp of
analytic functions all points of the unit sphere are denting
points of the unit ball.

!• Introduction and definitions* Let Δ be the open unit disk
in the complex plane (C). For each fixed p in (0,1) we define a
finite positive measure dμ(z) Ξ= (1 — \z\2)1/p~*dm(z), where zed and
dm(z) is the usual Lebesgue measure on Δ. We consider the closed
subspace J5P = Bp{dμ) of L\dμ) consisting of all functions in L\dμ)
that are analytic on J. Bp is the containing Banach space of the
Hardy space HP(Δ) and indeed Bp is the Mackey completion of Hp.
(See Duren, Romberg, and Shields [4] and Shapiro [7].) Let B be
the closed unit ball and S the unit sphere in Bp. Although the
closed unit ball of Lϊ(dμ) has no extreme points we shall show that
the ball B has certain smoothness properties. It is not a fortiori
clear that B has extreme points. However, several functional analy-
tical properties of the space Bp are known. In particular a result
of Shields and Williams [8; p. 295] shows that Bp is complemented
in L\dμ). An argument of Lindenstrauss and Pelczynski [5; p. 248]
can then be used to prove that Bp is topologically isomorphic to
the sequence space l\ It is known that I1 (being a separable, dual
space) has the Radon-Nikodym property. A good reference on the
Radon-Nikodym property is Diestal and Uhl [3]. Hence, if T is a
topological isomorphism of Bp onto I1 then TB = C is a bounded,
closed convex subset of I1 and as such has extreme points. In fact
B is the closed, convex hull of its extreme points.

If X is a Banach space and xeX with ||α?|| = 1 we say that x
is a denting point of the unit ball of X if for each e > 0 the closed
convex hull of the set

{yeX: \\y\\^l a n d \\y - x\\ ;> e}

does not contain x. The Radon-Nikodym property for I1 also
guarantees that C(=TB) has denting points [3; p. 25, 30] and hence
there are points of S Q Bp which are denting points. Finally we
define strong extreme point.

DEFINITION. A point x in a Banach space X, with \\x\\ = 1 is
a strong extreme point of the unit ball of X if for each ε > 0 there
is a 3 > 0 such that
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m a x { | | £ + y\\, \\χ - y\\) rg 1 + δ

implies | |y| | <; $.
The strong extreme points of the unit balls in H°° and H1 have

been characterized (Gima and Thomson [2]). McGuigan [6; p. 116]
has shown that any denting point is a strong extreme point.

In the next section we give a straightforward proof that Bp is
rotund and we use this to prove that every point on the sphere S
is a denting point.

2* The points of S are denting points* We recall an elemen-
tary fact from measure theory. The equality (for positive finite
measures)

9(z)\dμ(z) = ί \f{z)\dμ{z) + \ \g(z)\dμ(z)

holds if and only if f(z)/g(z) == P(z) almost everywhere, where P(z)
is a nonnegative measurable function on the set {z\f{z)g(z) Φ 0}.

THEOREM 1. Each point of S is an extreme point.

Proof. Assume /, g, and h are in S and f = 112(o + h). The
equality

\ \g{z) + h{z)\dμ{z) = \ \g{z)\dμ{z) + \ \h(z)\dμ(z)

must hold. There is a nonvoid open set ^ c J such that g(z)jh(z) —
P(z) is a real valued, nonnegative holomorphic function. It follows
that g(z) = Xh(z) in £?, where λ is a constant. The fact that g
and h are in S shows that they equal on J. Hence / is an extreme
point of B.

It is not known if Bp is isometrically isomorphic to the dual
of a Banach space. However, Bp is equivalent to the dual space
(λΓ1)* (or (λΓ1)*) (see [4; p. 49]). The space λΓ 1 is the Lipschitz
space of functions / analytic on Δ whose (n — l)st. derivative f{*~l)

satisfies

lim
I AM) h

= 0,

The norm is the usual one (a condition on the second differences of
fin-D i s r e q u i r e d for / to be a member of λ^"1)- The duality relation-
ship is given as follows: Γ e (Xn~ψ corresponds to g(z) = Σ"=o ^z16

in Bp by
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Γ(h) = (h, g) = lim Σ to*r* ,

Σ?=.M k and C 2 | |Γ | | ^ ||fir|U3? ^ CMI/ΊI The functions

(2 ) hζ(z) = (1 - ζ z Γ = Σ CV
fe=o

are in λ""1 for each fixed ζ, | ζ | < 1. Thus if a sequence {fn}ξZB
converges weak * in Bp it also converges pointwise since fn(ζ) =
(fn> hζ). However, the inequality

(3) |/(s)I ^ C(p)\ 11/11(1 - |« | r^ f /6B»

implies that norm bounded subsets of I?p are normal families. Then
{fn} converges uniformly on compacta of A. Thus every sequence
in B that converges weak * in Bp also converges uniformly on
compacta of A.

LEMMA 1. B is weak * compact. Also the weak * topology, the
topology of pointwise convergence and the topology of uniform con-
vergence on compacta all coincide on B.

Proof. Using the equivalence of Bp and (λ^"1)* we have a
weak * compact ball Bo of some positive radius such that B c Bo.
Thus we must show B is weak * closed. Since λ«-1 is separable, B
is metrizable. Suppose {/J c B and {/„} tends to / in the weak *
topology. By our preceding remarks limn^ fn(z) = f(z) for each
zeA. But then

( \f(z)\dμ(z) ̂  lim \\Uz)\dμ(z) £ 1

by Fatou's lemma. Thus feB.

By the preceding comments the weak * topology is stronger
than the topology of uniform convergence on compacta, which in
turn is stronger than the topology of pointwise convergence. Since
the topology of pointwise convergence is Hausdorff and the weak *
topology is compact all three of these topologies agree on B.

LEMMA 2. Let {/„}£.£> and feS. Then fn converges pointwise
to f if and only if \\fn — f\\ -> 0 as n ~> oo.

Proof. If fn converges pointwise to /, then Lemma 1 implies
that fn converges uniformly on compacta to /. Let ε > 0 be given
and choose an annulus A(r) = {z: r 5g | z \ < 1} £ A such that
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\ \f(z)\dμ(z)<±.
lAW) 4

T h e r e e x i s t s a p o s t i v e i n t e g e r N s u c h t h a t i f n ^ N a n d z e A ( r )

\fn(z)-f(z)\<±.
4

Thus

L \fΛz)\dμ(z)^[ \Λz)\dμ(z)-i \fn(z) - f{z)\dμ{z)
JA{r) J.4(r) JAlr)

Hence,

and finally

JA(r)

\ \f(z)\dμ(z) + \ \fM\dμ(z)

< + + e.
4 4 2

The converse follows directly from (1).

THEOREM 2. Each point of S is a denting point of B.

Proof. Let feS and let ε > 0. We show that / is not in the
closed convex hull of B\Bε(f)(Bε(f) = {g eB p: \\f - g\\ < ε}). As a
consequence of the preceding lemma the weak * neighborhoods of /
in B form a neighborhood base for / with the norm topology on B.
Thus there exists U, a weak * open set, such that feU and B f]
UaBdBeif). Then B\U is weak* compact and f<£B\U. By an
equivalent formulation of Proposition 25.13 in Choquet [1; p. 107]
since / is an extreme point of B, f is not in the weak / closed
convex hull of B\U. Thus / is not in the norm closed convex hall
of B\Bε(f).

COROLLARY. Each point of S is a strong extreme point of B.

The situation in Bp is similar to that of H1 where each outer
function F of norm one is a strong extreme point. In contrast, a
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point / in the unit ball of H°° is a strong extreme point if and
only if it is an inner function.
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