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A CLASS OF ISOTROPIC DISTRIBUTIONS IN Rn

AND THEIR CHARACTERISTIC FUNCTIONS

SIMEON M. BERMAN

Let r(t) be a characteristic function. Suppose that there
is an integer n ^ 2 such that r{{t\ + + tl)1/2) is, as a func-
tion of n variables, also the characteristic function of some
distribution in Rn. Then, as is known, the distribution is
necessarily rotationally invariant, and r has a canonical
form as a certain Bessel transform of a bounded nondecreasing
function. A certain subclass of the class of such charac-
teristic functions was defined and studied by Mittal, who
furnished an analytic characterization of functions in the
subclass. The purposes of this paper are (i) to present an
alternative probabilistic characterization of these functions,
and (ii) to characterize, for this subclass, the bounded non-
decreasing function appearing in the Bessel transform.

1* Introduction and summary. Let h(x), x^O, be a nonnegative
function. For a fixed integer n ^ 2, let x be an element of Rn, and
let | |JC|| be its Euclidian norm. Consider the extension of h to a
radial function on Rn: h(x) = h(\\x\\), where x = \\x\\. If x*~ιh(χ) is
integrable over x ^ 0, then fe(||jc||) is integrable over Rny and

h(\\x\\)dx - Sn [°xn-1h(x)dx ,

where Sn is the surface area of the ^-dimensional unit sphere. If
the integrals above have the value 1, then ft(||x||) is a density function
on Rn. Its characteristic function is, by definition,

(1.1) \ exp[ΐ(ί,
JRn

and is a radial function, denoted r(| |f | |), teRn, where r is function
of a real variable. According to Schoenberg's theorem [8], the func-
tion r(ί) is necessarily of the form

(1.2) fit) = Γ(n/2)

where Jp is the Bessel function of order v, and where G is a bounded,
nondecreasing function of variation 1. The latter is directly related
to h:

(1.3) Snh{x)xn~ίdx = dG(x) .

l
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This is obtained by averaging the exponential factor in (1.1) over
spheres to obtain the Bessel kernel in (1.2), as in [8], and then com-
paring the resulting integral to (1.2). Radial characteristic functions
are commonly studied in the context of isotropic random fields where
they are called covariances.

Mittal [6] recently introduced and studied a particular class Vn

of radial characteristic functions in Rn. The construction of this
class was motivated in part by Berman's representation of charac-
teristic functions in Rx [2]. Let f(x), x > 0, be a density function
such that f(x)lxn"1 is nonincreasing, and define

(1.4) g(x) = - / £ § . , x > 0 .

&nX

Define the function K(s, t) on Rn x Rn as

K(s, t) = volume of the (n + l)-dimensional set
{(*» - ;χn,zy g{\\χ + s\\)>*,g(\\χ + t\\)>z}

where x e Rn and z > 0. For each z and t the set in Rn

{x: g(\\x + t\\) > z]

is a ball centered at — t, so that, by the invariance of volume under
translation and rotation, K is a radial function of s — t. Therefore,
there exists a function r of a real variable such that

It is shown in [6] that K arises as the covariance of a certain iso-
tropic Gaussian random field over Rnt so that r is of the form (1.2).
It will be shown in §3 below that the spectral distribution function
corresponding to K is absolutely continuous, and the density is
characterized.

The purpose of this paper is to extend the work of Mittal in
two directions:

(1) Here the class Vn is characterized in a simpler and more
probabilistic way than was done by Mittal.

(2) We show that if r belongs to Vn, then the function G in
the Schoenberg representation (1.2) is absolutely continuous, and its
derivative has a canonical form as an integral transform of the
function g (in (1.5)) with a squared Bessel kernel.

2* A new characterization of Vn.

THEOREM 2.1. The function r(t) belongs to the class Vn if and
only if 1 — r(2t), t 2: 0, is the distribution function of the product
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of independent positive random variables Y and U, where Y has a
density function f(x) such that f(x)/xn~1 is nonincr easing 9 and where
U has the density function

= 0 , elsewhere .

Proof. By a direct calculation of the volume (1.5), it is shown
in [6] that

9 foo /fcos—1(ί/2a5) \

(2.2) r(ί) - — \ (I sin*"2ada)f(x)dx ,
C J ί / 2 \ J θ /

where

c = I sin""2 ada .
Jo

Now change the variable of integration from a to u — cos α, and
then invert the order of integration:

r(t) = (2/c) (YΓ
Jθ\Jί/2li

We also find that

c / 2

It follows immediately that

(2.3) 1 - r(2ί) =

where ψn is defined in (2.1). The statement of Theorem 2.1 is now
evident from (2.3).

We can think of the relation (2.2) as defining an integral trans-
form of /. Mittal actually derived an inversion formula for this
transform, and characterized r in terms of the operations used in
the inversion [6]. However, the inversion formula is quite complicated;
furthermore, it has different forms for even and odd n. We now
deduce a simpler and different inversion formula from Theorem 2.1:

COROLLARY 2.1. r belongs to Vn if and only if 1 — r(2e~f),
— oo < ί < o o , ί s α distribution function whose characteristic function
factors into a product

(2.4) Γ eiu*f(e-*)e-*dx Veίux ^n(e~x)e~xdx ,
J-oo Jo
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where f is a density on the positive axis such that f(x)/xn

increasing, and where ψn is defined by (2.1).

Proof. According to Theorem 2.1, r belongs to Vn if and only
if 1 — r(2e~*) is the distribution function of the sum of independent
random variables — logY and — Iogί7. The factors in (2.4) are the
characteristic functions of these random variables.

According to this corollary, if r belongs to Vnf then the ratio

Γ eiutd[l - r(2β-')]

?utψJe~x)e~xdx

is the Fourier transform of the density f(e x)e~x, -co < # < oo,
which can be determined by the classical inversion formula.

We remark that Theorem 2.1 can be viewed as an extension to
n ^ 2 of a known result for Polya characteristic functions on Rx [7].
Indeed, every such characteristic function is of the form

where f{x), x ^ 0, is a nonincreasing density function (see, for example,
[2]). Thus r is a Polya characteristic function if and only if 1 — r(t),
or equivalently, 1 — r(2ί), is the distribution function of a positive
random variable Y having a nonincreasing density function. Mittal
also observed that her characterization of Vn implied the same ex-
tension to n Ξ> 2.

3* Absolute continuity of G and the canonical form of its
derivative*

THEOREM 3.1. If r is of the class Vn, then the function G in
the representation (1.2) is absolutely continuous, with the derivative
determined by (1.3). The function h is then of the form

(3.1) h(x) = -

where J is the Bessel function, and where g is the monotone function
(1.4) which defines r in (1.5).

The proof will be completed in a series of lemmas.

LEMMA 3.1. If f(x), x > 0, is a density function such that
fip^jx1"1"1 is nonincreasing, then



A CLASS OF ISOTROPIC DISTRIBUTIONS IN Rn

" 1 ) > - o o ,

Proof. First we analyze the improper integral at the upper limit.
By integration by parts:

(3.2) JVd(/(t)/t-1) - xf(x) - /(I) - n \"f(t)dt .

Since /(ί)/**""1 is nonincreasing, the left hand side of the equation
above is negative and nonincreasing in x; therefore, it approaches a
limit, finite or negatively infinite. The last term on the right hand
side converges to a finite limit because / is a density. It follows
that the term xf(x) also converges to a limit; hence, its average,

1 f *

x — 1 Ji

also converges to the same limit for x —• °o. But the latter limit is
finite: indeed, for x > 2,

—^r [yf(y)dy ^ 2 [f(y)dy | 2 \°°f(y)dv £ 2 .
X — 1 Ji Ji Ji

Therefore, the left hand side of (3.2) converges to a finite limit for
X —> o o .

By the same kind of calculation, we can show that the improper
integral in the statement of the lemma converges to a finite limit at
the lower limit of integration. This completes the proof.

As the first consequence of this lemma we note that if h is
defined by (3.1), then

S °°
h(x)xn ιdx < co .

0

Indeed, the integral above, after the inversion of the order of inte-
gration and a change of variable of integration, is equal to

i/iWWx \°z*dg(z) .
Jo

The first factor is, by a classical formula, [9], p. 405, formula (1),
equal to 1/n. The second factor is finite according to Lemma 3.1.
It follows that A(||JC||), properly normalized, is a density function
over Rn. (See the opening remarks of §1.)

LEMMA 3.2. H(x) be a nonnegative continuous function, and
g(x) a nonnegative nonincreasing function. Put
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g~\y) = sup (x: g(x) > y)

then for all continuity points a and b of g, with a < 6,

(3.3) \9')H(g^(y))dy - -[ H(x)dg(x) .

Proof. The equation above is directly verified in the case where
g is a step function with a finite number of jumps. It is extended
to the general function g by approximation by step functions and
application of the Helly-Bray theorem.

As a consequence of Lemma 3.2, we have:

volume (x: flr(||x||) > z)dz = -Bn xndg(x) ,
flf(oo) JO

where Bn is the volume of the ^-dimensional unit ball. For the proof
note that the set in the integrand on the left hand side of (3.4) is
a ball of radius g~\z)9 so that its volume is Bn(g~\z))n. Then apply
Lemma 3.2 with H{x) — xn, and let a [ 0 and 6 —> co in (3.3).

LEMMA 3.3. If r belongs to Vn, and is determined by g according
to the formula (1.5), then G in (1.2) is absolutely continuous, and
the function h in (1.3) is necessarily of the form

(3.5) h(u) = (2πΓM Γ ( β'"-
J O J { x g{\ \ χ \ \ ) > z }

where u = | |u| |, and ueRn.

)dx
2

dz ,

Proof. We are going to express the function K in (1.5) in a
form which exhibits r(\\t — s\\) = K(s, t) as the characteristic function
of an absolutely continuous distribution, and then show that the
density is appropriately related to h. For x e Rn and z > 0, let W
be the function defined as

W(x,z) = l if 0(||x||) > s

= 0 elsewhere;

then K in (1.5) may be represented as

(3.6) Γ ( W(x + 8, z)W(x + ί, z)dxdz .
JO J / 2 W

For fixed z > 0, the set {x: 0(|| r | | ) > }̂ is a ball centered at the
origin and of finite radius g~\z)\ hence, for each z > 0, W belongs
to L2(Rn), and so its Fourier transform W(u, z), u e Rn, is well defined
and is equal to
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(3.7) W(u, z) = \
{x:g(\\χ\\>z}

When the inner integral in (3.6) is transformed according to ParsevaΓs
theorem, the integral (3.6) becomes

(3.8) (2*)- Γ \
Jo jRn

W(u, z) ei{u>t~s)dudz .

Let us now show that we may invert the order of integration in
(3.8). Put s = t = 0 in (3.6); then the integral is equal to

\ W(x, z)dxdz ,

which, by Lemma 3.1 and the formula (3.4), is finite. Therefore W2

is integrable over x and z, and so, by ParsevaΓs theorem, W2 is also
integrable over u and z.

After inversion of the order of integration in (3.8), we recognize
this integral as the Fourier transform of the radial function of u,

2π)~n Γ
Jo

W(μ9 Z) dz ,

and so, by the Schoenberg representation (1.2), the integral (3.8) is
representable in the form (1.2) with h of the form (3.5) and related
to G through (1.3).

The last step in the proof of Theorem 3.1 is showing that the
function h in (3.5) may be transformed into the expression (3.1).
The inner multiple integral in (3.5) has as its domain of integration
the ball in Rn centered at the origin and of radius q = g~\z), and so
may be expressed in the form

( e'^dx ,

which, upon transformation to spherical coordinates in Rn, may be
reduced to the single integral

7Γ('

Γ((n L
where u = |jα||. By a classical formula, [9], p. 48, the latter is equal
to

so that (3.5) becomes

S g

0
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where g(0) may be finite or infinite. Lemma 3.2 implies that the
latter is equal to (3.1) because zn is integrable with respect to dg(z)
(Lemma 3.1) and the Bessel function is bounded on the real line.

4* Related work* A different but related class of radial char-
acteristic functions was introduced by Askey [1]. This represents
another generalization of Polya characteristic functions to Rn. Askey's
Theorem 2 states that if r(ί)-> 0 for t-> <*,, and if (-l)t /2V/1](ί)
is convex for t ^ 0, then r( | | ί | | ), teRn, is a characteristic function.
This condition on r is much simpler but different from MittaΓs
hypothesis on r which characterizes the class Vn. It is also of interest
to compare the explicit form of Askey's functions with the form
(2.2) of the class Vn. Under Askey's hypothesis there exists a non-
negative, nonincreasing function g(s), s ^ 0, such that

(-l)«r(m)(t) = \"g(8)d8, t ^ 0, m = [n/2] .

By repeated integration we obtain

(4.1) r(t) =

A comparable form of a function in Vn is obtained by the change
of variable u = cosα in (2.2):

(4.2) r(ί) = (2/c)Γ {Γ (1 - u2Yn-*)/2du\f(x)dx .{
Jί/2 Ut/2X

I have found no direct relation between the forms (4.1) and (4.2).
The conjectures stated by Askey [1], upon which his theorem

rests, have been proven by Gasper [4, 5] and Fields and Ismail [3].
I am indebted to the referee for bringing to my attention the re-
ferences mentioned in this section.
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