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COMMUTATIVE NON-ARCHIMEDEAN
C*-ALGEBRAS

GERARD J. MURPHY

Commutative non-archimedean C*-algebras are defined,
their properties established, and a representation theory is
developed for them. Their closed ideals are completely
analyzed in terms of the closed subsets of the spectrum
where they 'vanish.' A large class of C*-algebras is ex-
hibited. A Stone-Weierstrass theorem generalizing a result
of Kaplansky is proved.

Introduction* In this paper F denotes a complete non-archi-
medean valued field, and it is assumed that the valuation is non-
trivial. A non-archimedean normed vector space over F is a vector
space X with a norm satisfying the strong triangle inequality
\\x + y\\ ̂  max (|b||, \\y\\) for all x,yeX. If X is complete, X is
called a Banach space over F.

Let A be an associative algebra over F, and suppose that || ||
is a norm on A making A a non-archimedean normed space. If for
all x,yeA, \\xy\\ ^ \\x\\, \\y\\ (and if A is unital, | |1 | | = 1), then we
call A a non-archimedean algebra. If, further, A is a Banach space,
then we call A a Banach algebra. In this paper a Banach algebra
will be understood to be commutative and unital unless the contrary
is explicitly assumed in a particular context.

If A is a unital commutative C*-algebra over the complex
numbers C, then the Gelfand-Naimark theorem shows that if T is
the spectrum of A, then A is isometrically isomorphic to C(T, C),
the algebra of continuous functions on T with values in C. In this
paper we define a class of algebras, called L-algebras, which play
an analogous role in the non-archimedean theory to that played by
the algebras C(T, C) in the theory over C. We prove a Stone-
Weierstrass theorem concerning these algebras, and we establish
their properties. In the second section we give an abstract defini-
tion of a non-archimedean commutative C*-algebra. Such a defini-
tion has been sought for a number of years. We show that every
C*-algebra can be represented by an .L-algebra. We derive a number
of interesting properties of these C*-algebras, and in the third sec-
tion we give some examples of C*-algebras.

1* The Stone-Weierstrass theorem*

DEFINITION 1.1. A bundle is a family (Xt)iteτ) of Banach algebras
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over F indexed by a topological space T. φ ί 6 Γ X t denotes the set
of all elements x of the Cartesian product of the Xt which have
\\x\\ = : sup {\\x(t)\\: t e T} < c>o. Under the pointwise operations and
this norm, φ ί e 7 -3Γt is a Banach algebra. If A is a subalgebra of
φίeτXt w i t h l e A , a n d i f f o r a l l x e A t h e m a p s ψx\ T > R t •~>\\x(t)\\
are upper semi-continuous (USC), then we call A an algebra on the
bundle. (R denotes the set of real numbers.)

If A is an algebra on the bundle, xeφter Xt, and toeT, we say
that x is in A locally at t0 if for all o > 0, there is an open set U
in T with t0 e U, and there is an element y in A, such that for all
teU, \\x(t) — y(t)\\ S δ. We call A an L-algebra on the bundle if A
contains all the elements of φ ί e ϊ Xt which are in A locally at all
points of T.

A simple example of an L-algebra is the following: Let β =
(Xt)iteτ), where T is any topological space, and Xt — F for all teT.
Let Cb(T, F) denote the algebra of bounded continuous functions on
T with values in F. Then Cb(T, F) is an L-algebra on the bundle
β. (See the observations following Corollary 1.5.)

THEOREM 1.1. If A is an L-algebra on the bundle (Xt){teτ), then
A is a Banach algebra.

Proof, If xn is a Cauchy sequence in A, then for each t e T,
xn(t) is a Cauchy sequence in the Banach algebra Xt, so there is an
element x(t) in Xt to which xn(t) converges. Let x = (x(t))Ueτ) and
o > 0. There is an integer N such that for all n, m > N, and all
teT, '\\xn(t) - a;m(t)ll ^ δ / 2 Letting m-> oo, v̂ e get \\xn(t) - a;(ί)|| ύ
δ/2, so \\χn — x\\ < δ, for n > N. Thus we see that xe(BtsTXt, and
x is in A locally, so xeA. Hence A is complete.

THEOREM 1.2. If A is any algebra on the bundle β — : (Xt)uer),
then j\β, A] = : {x eφteτXt: x is in A locally} is the smallest L-
algebra containing A.

Proof. Suppose xey\β, AJ, and o > 0. If \\x(to)\\ < δf there is
yeΛ such that \\x(t) — y(t)\\ < δ near t0 (i.e., in a neighborhood of
t0 in T). But ||a?0O|| ^ max(||x(ί) - y(t)\\, \\y(t)\\), so ||a;(ί)|| < δ near
t0. This shows the map ψx: T--> R t -> \\x(t)\\ is USC for all x 6 y\β, Aj.

Now suppose x,yey[β, A], aeF, δ > 0, and tQeT. Then for
some x\ yf e A, we have

^ \\χ(t)y(t) - χ(W(ί) + χ(ί)/(0 - χ\t)y'(t)\\

^ msLx(\\x(t)\\'\\y(t) - y'(fi)\\, \\χ(t) -

^ max((l +
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These inequalities hold for t near tύ, because by the USC property,
||α(ί)|| S 1 + ||a;(ίo)|| near ί0, and \\y\t)\\ ̂  1 + \\y\Q\\ near t0. Now
we can choose y' to have \\y(t) — y'(t)\\ ^ δ(l + Haj(ίo)ll)"1 n e a r £o> and
then &' so that \\%(t) - x\t)\\ ^ 3(1 + Hs/WIIΓ1 near ί0. This gives
us \\xy{t) — EV(£) | | S δ near ί0. So as x'yf

 G 4 , X^ is in A locally at
each point t0 of T. Hence xyey[βf A]. It is easy to see that x + y
and ax are also in y[β, A], Thus τ[/S, A] is an algebra on β, and it
clearly contains A.

If x is in y[β, A] locally, then for each t0 e Γ, and δ > 0, there
is α'6 7[& A] with ||a/0O - x(t)\\ <: § for ί near tQ. But then there
is ye A with ||α'(ί) - #0011 ^ δ for t near ί0. So ||<&0O - #(ί)|| ^ δ
for ί near ί0. Hence xey[β, A]. Thus 7[^, A] is an L-algebra.

If Y is any other L-algebra containing A, then any element
x e y[β9 A] is in A locally, so x is in Y locally, as A is contained in
Y', and so xeY, as 7' is an L-algebra. Hence y[β, A] is contained
in 7'.

DEFINITION 1.2. If A is an algebra on a bundle /S = (Xt)iteτ),
and if for all distinct points 3, ί of Γ there is xe A with ||a;|| ^ 1,
x(s) = 0(s), and x(t) — l(ί), then we say A is separating on β.

If 1? is any clopen set of Γ, define φE by <p£(£) = l(ί) if teE,
and ^ ( ί ) = 0(t) it teT - E. If A is any L-algebra on β, then
clearly φ.EeA. Hence if T is a Boolean space (i.e., a compact,
Hausdorff, totally disconnected space)—in this case we call β a
Boolean bundle—then every L-algebra on β is a separating algebra.
The converse of this statement is our generalization of the Stone-
Weierstrass theorem. First we need a lemma whose proof is a
simple induction.

LEMMA 1.3. If A is a normed (non-archirnedean) algebra,
xl9 , xn e A, and 0 < δ < 1, and ||a?€|| ^ 1, ||1 — a?€|| < δ, (i = 1, , w),

— #! a?n|| < δ and \\xt\\ — 1.

THEOREM 1.4 (Stone-Weierstrass). Let Abe a separating Banaeh
algebra on a Boolean bundle. Then A is an L-algebra on the
bundle.

Proof. Let β — (Xt){teτ) be the bundle, and 7 = 7[/S, A]. First
we show that if E is a clopen set in Γ, then φE e A. For let
seEc = T — E, and teE. As s ^ ί , there is a # έ eA such that
lll/ΊI ^ 1, !/*(*) = l(s), and y\t) = Q(t). If 0 < δ < 1, then by the
USC property, there is a clopen set Vt in Γ with teVt such that
for all ί'e Vt, \\y\tf)\\ <; δ. Thus ί; is contained in \JteE Vt, and so
as E is compact, there is a finite number F ίχ, ••-, Vtn covering E.
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Define ys = yh -- ytn. Then yseA, and \\ys\\ ^ 1, ys(s) = l(s) and

\\ys(t)\\ < δ for all t eE. But hs = 1 - # s . Then fe8ei and ||fej| ^ 1,
Λ,(s) == 0(8). Moreover, for all teE, \\l(t) - h£t)\\ < δ. Once again,
by the USC property, there is a clopen set W, in T with seWs such
that for all s' e Ws, ||fes(s')ll < δ. So # c is covered by the sets Ws,
s e E% and as Ec is closed in T and so compact, a finite number
WSl, -, WSm cover # c . Define Λ = Λ#1

 # ' hSm. Then feeA, P | | ^ 1,
and for all s'eEe, \\h(s')\\ < δ. Now by the lemma, for any teE,
| |l(ί) - fc(ί)ll = IIKί) - htί(t) ft.m(*)ll < δ. Thus for all t e T, \\φE(t) -
Λ(ί)ll < δ, so | | ^ — fe|| <* δ. But A is closed in φtGT Xt, and fee A.
Therefore as δ was arbitrarily small, φE e A.

Now suppose that x 6 7, δ > 0, and ί0 e Γ. Then there is ztQ e A
such that \\x(t) — «ί0(ί)ll = δ for all t near ί0, i.e., for all ί in some
clopen set C/ίo with t0 e Uto. Thus T is a union of such sets, and so
by compactness there is a finite number Uh, •••, Utp covering T.
Put Eί = Z7tl, and for i = 2, , p, Et = Ut. - ( U ; « ^ ) . Then the
the Ei form a pairwise disjoint family of clopen sets covering T.
The element y = ^ 2 t l + + φ ^ ^ is in A. Also ||aj(t) — y(t)\\ =
!|x(ί) — ^ί/OII if teEi9 and this is less than or equal to δ, so
\\x(t) - y(t)\\ ^ δ, for all t in Γ, i.e., ||a? - y\\ ^ δ. Thus x e i , as
A is closed in φ ί e r ^ έ Therefore 7 is contained in A, and so 7 = A.
Thus A is an L-algebra on /3.

COROLLARY 1.5. Let β — (Xt)Ueτ) be a Boolean bundle, and βr =
{xε(BteτXt'ψx T-+R ί-> ||a?(ί)ll ί» U7SC}. 1/ 7 is αw?/ su6seί o/
φ ί e r ^ ί let It = {x(t):xel} for each teT. If A is a separating
Banach algebra on β, then

A = {x e /9': a (ί) e At for all teT, x — y e βr for all yeA).

Proof. Let the set on the R.H.S. of the equation be denoted
by B. Then clearly A is contained in B. So suppose that x e B
and t0 e T. Then there is an element xtQ e A such that x(t0) = xtQ(fQ).
Let δ > 0. Since the map ψx-Xt is USC, there is a clopen set UfQ

with toe UtQ such that for all te Uto, \\x(t) - a?to(t)|| < δ. These sets
cover T, so by the compactness of T there is a finite number of
them Uh, , Utn covering T. As in the proof of the Stone-Weierstrass
theorem we can replace these sets by a pairwise disjoint family
(JS?i)(i=i,...,») of clopen sets covering T and such that Et is contained
in Ut. for i = 1, •••, n. Now φEieA for each i, from Theorem 1.4,
so y — : 9>jE.1ίcfl + + <PEn%tn is in A, and |[& — y\\ ^ δ. But as A is
closed, this implies xeA. Thus A = B.

Suppose X is a Banach algebra over F, and T is any topological
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space. For each teT, let Xt = X. Let K denote the algebra of
constant functions from T to X. Then K is clearly an algebra on
the bundle β = (Xt)Ueτ). So y[β, K] is an L-algebra on β. Suppose
x e φteτ Xt, and tQ e T. Then a? is in K locally at t0 iff for all δ > 0,
for all ί near tQ, \\x(t) - a?(to)ll < #• T h u s £ is in if locally at ί0 iff
a; is continuous at ί0. Hence τ[/5, if] = C6(Γ, X), the algebra of all
bounded continuous functions defined on T with values in X. When
T is compact this is of course C(T, X), the algebra of continuous
functions on T with values in X. We can now state the Stone-
Weierstrass theorem for these algebras.

COROLLARY 1.6. Let X be a Banach algebra, and T a compact
space. If A is a closed separating subalgebra of C(T, X) and A
contains the constants X, then A = C(T, X).

Proof. This follows immediately from Corollary 1.5 if we show
T is a Boolean space.

Suppose s, t are distinct points of T. Then there is an element
xe A such that x(s) = 0 and x(t) = 1. Hence s is an element of the
clopen set {u e T: \\x(u)\\ < 1}, and t is not. Thus T is Hausdorff.
Moreover the connected component of s is contained in the above
clopen set, and that of t is contained in its complement. So s and
t are disconnected. Thus T is totally disconnected. Hence T is a
Boolean space.

COROLLARY 1.7. Let T be a compact space and A a closed
separating subalgebra of G{T, F) containing the constants. Then
A = C(T, F).

Proof. Trivial. Just take X = F in Corollary 1.6.

This is Kaplansky's non-archimedean Stone-Weierstrass theorem.

We now investigate the closed ideals of L-algebras. For this
the following theorem is fundamental.

THEOREM 1.8. Let A be an L-algebra on a Boolean bundle
(JQuen, and I be a closed ideal in A. Then if xeA, xel if and
only if x(t) e It for all teT.

Proof. The "only if" part of the equivalence is obvious. Suppose
then x{t) 6 It for all teT. Then for each teT, there is some ytel
such that x(t) = yt(t). If δ > 0, then by the USC property there is
a clopen set Ut with t 6 Ut such that for all ί' 6 Ut, \\x(t') - yt(t')\\ < d.
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By a familiar argument we can replace the covering (Ut)itBT) of T
by a finite covering of pairwise disjoint clopen sets Et contained in
Uti, say, (i = 1, , n) and Uh U U Utn = T. Let 1/ = φEjyh +
• + <PEnytn Then as all the 9 ^ e A, and the ̂ . e I, so y e I. Also
lls(ί) - »(*)ll = ll»(*) - V*«(*)ll < δ if ί eJ£,. Thus*||α - »j| ^ <?. But
as / is closed, this implies x e I.

COROLLARY 1.9. If I, J are closed ideals in A, the I — J if and
only if It = Jt for all te T.

Proof. This is obvious from Theorem 1.8.

DEFINITION 1.3. Let A be an algebra on a bundle (Xt)ιteτ).
We say A is full if At = Xt for all ί e T.

If all the JE, are fields, we call the bundle a field bundle.

THEOREM 1.10. Let A be a full separating Banach algebra on
a Boolean field bundle β — (Xt)ueτ). For each teT, let Mι —
{x e A: x(t) — 0(ί)}. Then Mι is a maximal ideal in A, and the map
T -> T(A) t —> Jlί* is α homeomorphism. {Here T(A) is the maximal
ideal space of A endowed with the Hull-Kernel topology.)

Proof. If β, t e Γ, then (Λf'). = X if β ̂  ί, and (M4)s = 0 if
s = ί. The second equation is obvious, so let us prove the first. If
a e Xs, then there is x 6 A such that x(s) — α, since A is full. Also
there is a y eA such that j/(ί) = 0(t) and y(β) = l(β). Let ^ = x̂ /.
Then zeM*, and «(«) = a. Hence α6(Λf*)β. Thus (AT*). = X

Suppose now that I is a closed ideal in A containing M*. Then
if s Φ t, (Mι)s = /. = JCβ. Also It - 0 or X,. Hence /, = Xs for all
seT, and so I = A, or I, = (Λf*). for all s e Γ , and so I = M*. Thus
M* is a maximal ideal in A.

Now suppose that M is any maximal ideal in A. Then ikί is
closed and M Φ A, so there is ί e T such that Mt Φ Xt. Therefore
Mt = 0, and so Λf is contained in M\ and hence Λί = M\ Thus
Γ(A) = {M4:16 Γ}.

Let 9 denote the map t —»Λf*. It has just been shown that <p
is surjective, and if M* = Λf , and s ^ t, there is yeA such that
2/0) = 0(β) and y(t) = l(t). Hence # e M s and ygMK But this is
impossible, so s = £. Hence 9? is injective. To prove φ is a home-
omorphism it is sufficient to show φ"1 is continuous, because T(A)
is compact and T is Hausdorff. Let E be a clopen set in T. Then
as φE 6 A, CKJEO = {ikP: (1 - ^ ( t ) = 0(ί)} = {M*: φE ί M*}. Thus <p(E)
is the complement in T(A) of the closed set V(AφE) = { I e Γ(A): M
contains AφE). This shows φ~ι is continuous.
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LEMMA 1.11. Let A be a full separating Banach algebra on a
Boolean field bundle (Xt)UBT). If S is any subset of T, let id(S) =
{x e A: x(s) = 0(s) for all s e S}.

( a ) id(S) is a closed ideal in A.
(b) // Slf S2 are subsets of T with Sι contained in S2, then

id(Si) contains id(S2).
(c) For all S contained in T, id(S) = id(c\ (S)).
(d) // S19 S2 are closed subsets of T, then id{S^) ~ id(S2) if and

only if S1 = S2.
( e ) If S is any subset of T, then id{S) is a maximal ideal in

A if and only if S is a singleton.

Proof, (a) and (b) are obvious, so consider (c). Clearly
id(cl(S)) Q id(S), so suppose xeid(S) and x$id(cl(S)). Then there
is an element s of cl (S) with x(s) Φ 0(s). Now V(Ax) = {Me T(A):
M "Ώ Ax} = {Mu. x{t) — 0(t)} is closed in T(A), so using the home-
omorphism of Theorem 1.10, {t e T: \\x(t)\\ = 0} is a closed set in T,
and so U = {t e T: \\x(t)\\ > 0} is open in T. Therefore as s e U, the
intersection of S and U is nonempty. But this is clearly a contra-
diction. So id(S) = id(cl (S)).

To prove (d), suppose that idiS^ — id(S2), and St is not contained
in S2. Then there is s eS19 siS2. But as T — S2 is open in Γ,
there is a clopen set E contained in T — S2 such that seE. So
φE 6 A, and <pE(t) = 0(t) for all ί e S2. Hence φE e id(S2) = id(Sj). So
φ^(s) = 0(s), implying s £ E. This contradiction shows that Sx = S2

Finally consider (e). Clearly id({t}) = MS which is a maximal
ideal. Suppose now that id(S) is a maximal ideal, and s, teS. Then
id(S) £ M% M\ so ίd(S) = Ms = M*. Hence β - ί, and S - {£} (if S
were empty, then id(S) = A).

LEMMA 1.12. Le£ T be a Boolean space, U an open subset, and
C a closed subset, with C contained in U. Then there is a clopen
set E in T such that C £ E QU.

Proof. For each xeC there is a clopen set U9 with xe Ux £ Ϊ7.
Hence the family Ux cover the compact set C, so there is a finite
number so that C is contained in their union E, say. Clearly E is
clopen, contains C, and is contained in U.

The following theorem is a structure theorem for the closed
ideals of certain L-algebras.

THEOREM 1.13. Let A be a full separating Banach algebra on
a Boolean field bundle (Xt)UeT). If I is a closed ideal in A, let
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k(I) = {teT; for all xel, x(t) = 0(t)}. Then k{I) is closed in T,
and I = id{k(I)).

Proof. Suppose that t eel (&(/)). Then there is a net (ta)a in
k(I) converging to t. Hence if x e l , then ta is in the closed set
E = {seT: x(s) = 0(s)} for all indices a. So t e E. Therefore x(t) =
0(ί). This implies that <£ e k(I). Thus &(/) is closed in T.

Suppose now xeA, and G is an open set in T containing fc(I),
and that x = 0 on G. Then teT — G implies t g &(/), so I* =£ 0.
Hence there is xte I with #t(t) =£ 0(ί). There is therefore a clopen
set Ut with έ e Ut such that a;t is nonzero on Ut. Now T — G ζZ
UteG Ut. But as Γ — G is closed in T, it is compact, and so we
can cover T — G by a finite number J7fl, , Ϊ7ίw, say. Let EL = Ϊ7tl,
and for i = 2, , n let ^ = Ut. - (\Jj<i Utj). Then the family of
sets (EJi form a pairwise disjoint covering by clopen sets of T — G.
Let P = ψiT-iE^ ~uEn)) Then <pEι, — ,φEn, P are all in A. Define
V = ^a?*! + + ^ Λ a j ί n + ί*. Then 3/ e A, and for all t e T, y{t) Φ
0(t). Hence y is invertible in A. Let z = (1 — P)(φElxh + +
<PEn%tn)y~ι Again ^eA; also z(t) = l(t) if ί e E1 U U En9 and
jg(ί) = 0(ί) otherwise. So a?(t)ί5(ί) = x(t) for all ί e T. I.e., x̂ ; = x.
But because all the xt. e J, so 2 e /. Hence xel.

Suppose now x e id(k(I)), and δ > 0. Then as x is zero on fc(J),
so fc(/) £ {ί e Γ: ||a;(ί)|| < δ}. Hence by Lemma 1.12, there is a clopen
set E containing k(I) and contained in {te T:\\x(t)\\ < d). Then
φτ_E e I, from the above argument, because φτ^E = 0 on E. Also
\\x — xφEc\\ = sup ί e Γ \\x(t) — %{t)φτ-E{t)\\ ^ δ, and since / is closed,
this gives xel. Hence id(k(I)) £ I.

The reverse inclusion is trivial, so these ideals are equal.

2. C*-Algebras.

DEFINITION 2.1. Let A be a Banach algebra satisfying the
following two conditions:

(a) If t e T(A), x e t, and δ > 0, then there is an idempotent
pet such that \\x — xp\\ < δ.

(b) For all idempotents peAf \\p\\ <; 1.
Then we call A a C*-algebra.

For example, if Γ is a compact space, then C(Γ, F) is a C*-
algebra, the idempotents being characteristic functions of clopen
sets in T.

The above conditions on a Banach algebra will be seen to be
necessary and sufficient conditions to ensure that the algebra is an
isometric isomorph of an L-algebra on a Boolean field bundle. This
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is precisely the class of algebras we want the term "C*-algebra" to
cover.

If A is any Banach algebra we define |H| s u p by ||x||βup =
sup{||flc + t| |: t e T(A)} for all xeA. Here \\x + ί|| is the quotient
norm of x + t in A/t, \\x + t\\ = inf {\\x + y\\:yet}. Thus || |UP is
a norm on A if A is semisimple.

Before proving the next theorem, let us just make some remarks
here relating the C* concept to the F*-algebras defined in [3].
Using Theorem 2.1 below, and Theorem 4, p. 149 of [3], we easily
see that a C*-algebra is a F*-algebra. Conversely, from [3] p. 165,
Cor. 2, a F*-Gelfand algebra with compact maximal ideal space (in
the Gelfand topology) is a C*-algebra.

THEOREM 2.1. If A is a G*-algebra, then || |!8up = || ||

Proof. Suppose xeA, te T(A), and \\x + t\\ < ||α?||. Now it is
easy to see that because of condition (a) in Definition 2.1, t =
cl ({pa: p = p2 and pet, ae A}). Hence \\x + t\\ = inf {\\x — xp\\: p = pz

a n d pet}. S o t h e r e i s a n i d e m p o t e n t pet s u c h t h a t \\x — xp\\ <
\\x\\, as \\x + ί|| < IM|. L e t / - U {pA: \\px\\ < \\x\\, peA, and p = p2}.
Then I is a proper ideal in A. For suppose that p, q are idempotents
in A such that \\px\\, \\qx\\ < \\x\\. Then r = p + q — pq is also an
idempotent in A, and pA, qA £ rA, because pr = p, qr = q. More-
over ||ra?|| ^ max(||pa;||, \\qx\\, \\PQX\\) < IMI This shows that / is an
ideal, and if / contained 1, then there would be an idempotent p of
A such that lepA, and \\px\\ < \\x\\. Then 1 = pa for some aeA,
hence 1 = p, so ||g|| < )|a?||. This contradiction shows that I is proper.
Hence there is a maximal ideal s in A containing /. If p is any
idempotent in s, then 1 — pί I, so ||(1 — p)x\\ — \\x\\. Hence
inf {Ha; — xp\\:pes and p = p2} = \\x\\, or ||a? + β|| = ||a?||. Thus
Ikllsup = ||»|| for all xeA.

If A is a Banach algebra, and xeA9 define x ~ (x + t)iteT(A)).
Define A = {xe φ ί e Γ U ) A/ί: x e A}. Then A is a normed subalgebra of
φ ί A/ί, and the map ®: A—> A, x-^x is an algebra homomorphism,
and is clearly surjective.

THEOREM 2.2. If A is a C*-algebra then A is a Banach full
separating algebra on the Boolean field bundle (A/t){teτ{A)). More-
over the map ®: A-^ A x—>x is an isometric isomorphism.

Proof. S u p p o s e xeAy 8 > 0, a n d E = {te Γ(A) : ||a? + t\\ < 8}.
T h e n if teE, t h e r e i s a n i d e m p o t e n t pet s u c h t h a t \\x — px\\ < δ.
H e n c e if s is a m a x i m a l idea l w i t h pesf t h e n \\x + β|| = inf {\\x — qx\\:
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q = q2 e s) ^ \\x - xp\\ < δ, and so seE. Hence V(Ap) = {tf e T(A):
Ap is contained in t'} satisfies t e V(Ap) £ E, and V(Ap) is open.
(In fact, V(Ap) is clopen, as its complement in T(A) is V(A(1 — p)),
which is closed. Recall that every maximal ideal is prime, and for
all p — p2, p(l — p) = 0, so for any maximal ideal My p or 1 — p e M.)
Thus £ is a neighborhood of all its points, and so E is open.
Hence the map <fc: T(A) --> R t --> \\x + t\\ is USC, for all x e A. Thus
A is an algebra on the field bundle (A/t)t. To show that T(A) is a
Boolean space, suppose that s, t are distinct points of T{A). Then
from the condition (a) of Definition 2.1, we see there is an idempotent
pes, p£t. Thus s e V(Ap), and tgV(Ap). As V(Ap) is clopen,
this shows that T(A) is Hausdorff. Also the connected component
of t is contained in V(A(1 — p))9 and the connected component of s
is contained in its complement V(Ap). Hence T(A) is totally discon-
nected. Thus T(A) is a Boolean space.

It is clear from Theorem 2.1 that the map © is an isometric
isomorphism, so A is a Banach algebra, as A is. That A is full is
obvious, so we have only now to show that it is separating. But we
have seen above that if s, t are distinct points of T(A) there is an
idempotent pes, p&t. Hence, as t is a maximal ideal, 1 — pet.
However \\p\\ ̂  1. Thus | |p | | ̂  1, p(s) = 0(s), and p(t) = l(t). Also
pe A. Thus A is separating.

THEOREM 2.3. Let A be a full separating Banach algebra on a
Boolean field bundle. Then A is a C*-algebra.

Proof. Let (Xt)UeT) be the bundle. We know from Theorem
1.10 that the map φ: T"--> T(A) t —> Mt is a homeomorphism. So
suppose xeM% and δ > 0. Then ||x(ί)|! = 0 < δ, so there is a clopen
set E, say, with teE, such that for all seE, \\x(s)\\ < δ. Hence
the idempotent p = 1 — φE e A, and p(t) = 0(ί) Hence p e M\ Also
\\x -px\\ = sup {\\x{s) - p(s)x(s)\\: s e T} = sup {\\x(s)\\: seE} ^δ. Finally

it is clear that if q is any idempotent of A, then \\q\\ <: 1, because for
all te T, q(t)-O(t) or l(ί), giving \\q(t)\\^l. Hence A is a C*-algebra.

THEOREM 2.4. Lβί I be a closed ideal in a C*-algebra A. Then
/ = Π F(7) = cl (U {M: P e 7 αwd p = p?}) = cl (U {̂ 7: p = p2 e I}).
(For every ideal I in A, V(I) is the set of maximal ideals contain-
ing I.)

Proof. We know from Theorem 1.13 that 7 = id(k{Ί)). Now
if xe n V(I), then x - O o n &(7), for if ϊt = 0, then ί g ί , So ^ e
id(k)(Ί)) = 7, whence # e 7. Thus Π F(7) is contained in 7, and the
reverse inclusion is trivial, so Γ) F(7) — 7.
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Now suppose that x e I. The set Gn = {t e T(A): \\x + ί|| < 1/n]
is an open set containing the closed set k(I), hence there is a clopen
set En containing k(T) and contained in Gn (using Lemma 1.12). Let
pn = 1 — φEn. Then #w is an idempotent in A, and pn = 0 on JE7n.
Hence pn e 7. Also \\x - άpj | = sup {\\x(t) - άpΛ(ί)||: p»(t) = 0(ί)} -
sup {||α? + ί||: £ el?w} <; 1/w. Now there are idempotents qn in A such
that qn — pn n — 1, 2, . Hence these qn must be in I, and
IN — ̂ 9*11 —* 0 (w —• oo). So α? e cl (U {pA: p = p2 e I}). So I is equal
to this set.

Let A be a Banach algebra, and I be a closed ideal in A. Then
the map V(I) -* T(A/I) t -^ ί// is well known to be a homeomorphism.
Also the maximal modular ideals of I are precisely the ideals of
the form t Γ) I, where t is a maximal ideal of A not containing /.
Another useful remark which it is easy to verify is the following:
If x e A, and t e V(I), then \\x + I + ί/I|| = ||α + ί||.

DEFINITION 2.2. If / is a nonunital Banach algebra we say that
/ is a C*-algebra if the following three conditions hold:

( a) If t is a maximal modular ideal of J, x e t, and δ > 0, then
there is an idempotent p oί I such that \\x — px\\ < δ and pet, or
there is an idempotent q of I such that \\qx\\ < δ and q<£ t.

(b) For all idempotents p of J, | |p| | <£ 1.
(c) I - c l ( U { p I : p - ^ 2 6 / } ) .
The following interesting lemma is used in our next theorem.

LEMMA 2.5. If A is a C*-algebra, and I is a closed ideal in
A, then for all xeA, \\x + I\\ = sup {\\x + ί||: t e V(I)}.

Proof. We know that A is an L-algebra on the Boolean field
bundle β = (A/t){teτU)), and that the map ©:A—> A, #-^x is an
isometric isomorphism. Also J = id(k(ϊ)). We assert that ||a? + 7|| =
sup{p(s)||: 8 ek(ϊ)}. Let this sup be denoted ε. Now \\x + 7|| =
inf {\\x + ^] | : y = 0 on fc(7)} = inf {supί6Γ(^ ||a?(t) + 3/(ί)II: y = 0 on
k{I)} ^ ε, as each of the terms of the inf *> ε. If ε = 0, then ic = 0
on k(ϊ), so ^6 J, so \\x + 7|| = 0. Hence w.l.o.g. ε > 0. Let εn =
ε(l + 1M), f or n = 1, 2, . Thus εw > ε, and the sets Gn = {ί 6 Γ(A):
p(ί) | | < ε j are open and contain fc(7), so there are clopen sets £7%

such that k(ϊ) £ En Q Gn (by Lemma 1.12). The elements yn =
— xφE%, — —%(1 — 9^O a r e ίn -A> a s -4 is an L-algebra on β. But as
y% = 0 on &(7), so yneΐ. Now ||» + yn\\ = sup{||ίc(ί) - sc(ί)^i(ί)||:
teΓ(A)} = sup{||»(ί)||:ίeJS'1l}^e4l. Also as ε%:r> ε, and \\x + I\\ £

+ 1/*|| ^ εn, so p + /|| <; ε, and hence ||sc + I\\ = ε.
Thus we see from this result that if t e T(A), then as t — ifeΓ*,
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so ||g + ί|| = \\x + M'\\ =_sup {p(s) | | : s ek{Mι)}_~ \\x(t)\\. Hence we

see t h a t \\x + I\\ = \\x + / | | = sup {\\x(s)\\: s e k(I)}, and as Jfc(J) =V(I),

we now see \\x + I\\ — sup {||a? + *||: s e V(I)}.

THEOREM 2.6. Let A be a C*-algebraf and I a closed ideal in
A. Then I and A/I are C*-algebras also.

Proof. Let y + / be an idempotent in A/1. Then by our lemma,
\\y + I| | = sup {||i/ + ί||: I S *}. But if ί e F(J), then ί/Jis a maximal
ideal in A//, so y + I ov 1 — y + let/1. Hence y or 1 — y e t. So
111/ + ί|| = 0 or 1, and so ||]/ + J|| ^ 1.

Suppose now that x + Ie t/I, and d > 0. Then # 6 ί, so there is
an idempotent p in t such that ||g — xp\\ < δ. Hence >̂ + I is an
idempotent in t/I, and ||(a? + I)(p + I) — (x + I)\\ ̂  \\px - x\\ < δ.
Thus A// is a C*-algebra.

Suppose first that J is a unital algebra. Then there is an
idempotent peA such that I — pA. Then the map 7:1-» A/(l — p)A
ίc -> a? + (1 — p)A is an isometric isomorphism, and so I is a C*-
algebra, as A/(l — p)A is. The only part not obvious is that 7 is
isometric. So let xel. Then ||7(#)ll = \\x + (1 — p)A\\ = sup{||x +
(1 - p)A + t/(l - p)A||: ί 6 F((l - p)A)} (as A/(l - p)A is a C*-
algebra) = sup {||a? + ί||: 1 - p e t) = sup {||a? + ί||: t e T(A)} = \\x\\ (as A
is a C*-algebra).

Suppose finally that / is nonunital. Then if p is an idempotent
in J, clearly | |p| | ̂  1. Also as A is a C*-algebra, I = c\({J {pi:
p = p2 e I}). Suppose that ί is a maximal modular ideal in 7, x e tt

and δ > 0. Then there is a maximal ideal tf in A such that t =
IΠ t', and £' does not contain /. So as x e t\ there is an idempotent
p e tf such that ||a? — px\\ < δ. If p e I, then pet. So suppose p £ I.
Now there is an idempotent q in I which is not in t'. If r — q(l — p),
then r is an idempotent in /, and r g ί , and ||ra?|| < δ. Thus / is a
C*-algebra.

Suppose now that / is a nonunital Banach algebra. Define Ie —
I@F, as Banach spaces, with norm ||$ + αl | | = max {\\x\\, \a\), for
all xel and aeF. Also define a multiplication on Ie by the rule
(x + al){xr + α'l) = xx' + ax' + a!x + a'l. Then Ie is a unital Banach
algebra containing / as a maximal ideal.

THEOREM 2.7. Let I be a nonunital Banaeh algebra. Then I
is a C*-algebra if and only if Ie is a C*-algebra.

Proof. From Theorem 2.6 we know that if Iβ is a C*-algebra,
then / is one also, as / is a closed ideal in 7e.
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Suppose that I is a C*-algebra, and t is a maximal ideal of Ie,
with xet. If t — I, then we see from (c) of Definition 2.2 that
t = c\(U{pt;p — p2et}). It follows easily from this and the strong
triangle inequality that if d is any positive number, there is an
idempotent p in t such that \\x — xp\\ < δ. So suppose now t Φ I.
Then t Π / is a maximal modular ideal in /, so there is an idempotent
p of I such that \\x~- xp\\ <δ and pet, or there is an idempotent q
of I such that ||gcc|| < δ and g ί t. Suppose the second condition holds.
Now there is an idempotent qf el, qr $ t, and so 1 — qf e t. Let
r — 1 — qqr. Then r is an idempotent and \\x — rx\\ < δ. Moreover
as q, qf are not in t, qqf & t, and hence ret.

Finally suppose p is any idempotent in Je. Then p or 1 — pel,
since I is a maximal ideal in Ie. So in any case | |p|| ^ 1. Thus Ie

is a C*-algebra.

Examples of C*-algebras* Before giving our list of examples,
let us just make a useful definition.

DEFINITION. If A is a (not necessarily unital) Banach algebra,
we call A a V-algebra if for all maximal modular ideals t of A,
Alt is a valued field, i.e., for all x,yeA, \\x + t\\\\y + ί|| = \\xy + t\\.
If A is a C*-algebra and a F-algebra, we call i a C * V-algebra. It
turns out that, except for some unimportant exceptions, *alΓ C*-
algebras are C* F-algebras.

EXAMPLE 1. Let K be a complete valued field extension of F,
and T any topological space. Then Cb(T, K) is a C*F-algebra over
F. In particular, if and Cb(T, F) are C*F-algebras over F. Also
if T is a compact space, then C(T, F) is a C*F-algebra. Recall that
a Gelfand algebra is an algebra such that for all maximal modular
ideals t of the algebra A, say, A/t = F. C(Γ, F) is a Gelfand
algebra for T a compact space. But if T is just any topological
space, then Cb(T, F) is not necessarily a Gelfand algebra, unless F
is locally compact. (See e.g., [4], page 156.)

EXAMPLE 2. If T is a compact space, and A is a closed sub-
algebra of C(T, F) with leA, then A is a C*F-algebra (and in fact,
also a Gelfand algebra).

EXAMPLE 3. If T is a locally compact space, and C^T, F)
denotes the algebra of functions on T with values in F which are
continuous and which vanish at oo, normed with the sup norm, then
CooCΓ, F) is a (possibly nonunital) C*F-algebra.
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EXAMPLE 4. If (At)t6I is any family of C* F-algebras, then
φieiAi is also a C* F-algebra. In particular if (Kt)t is any family
of complete valued field extensions of F, then φ ; Kt is a C* V-
algebra.

EXAMPLE 5. If A is any (not necessarily unital) C*F-algebra,
then the multipliers of A, M(A) = : {S: A-+ A: S is linear and for
all x,yeA, xS(y) = S(αO#} is a C* F-algebra also, if Γ(A) is strongly
zero-dimensional.

EXAMPLE 6. Let G be locally compact abelian group which is
Hausdorff and totally disconnected. In [5] it is shown that if G is
p-free and torsional, then G has an jP-valued Haar integral. With
this integral a non-archimedean group algebra L(G, F) of G can be
defined. It can be shown that L{G9 F) is a C* F-algebra. Hence
also M(G, F) = M(L(G, F)), the multipliers of L(G, F), is a C*F-
algebra, and it is possible to regard this algebra as the measure
algebra of G (see [2]).

EXAMPLE 7. Finally, if (Γ, U) is a non-archimedean uniform
space, and BUC(T, U) = {/: T'—> F: f is uniformly continuous and
bounded}, then it can be shown that BUC(T, U) is a C*F-algebra.
The definition of a non-archimedean uniform space can be found in
[4], page 27.

The proofs of many of these examples are rather long, and
can be found in [2].
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