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REMARKS ON A THEOREM OF L. GREENBERG
ON THE MODULAR GROUP

A. W. MASON AND W. W. STOTHERS

Introduction* For integers a and 6, each greater than 1, let
T(a, b) be the free product of cyclic groups of orders a and b. Then
T(a, b) has presentation

<X, Y: Xa = Yb - 1> .

Suppose that G<\T(a, b). If XYG has finite order in Γ(α, b)/G,
then the order is the level of 6?, denoted by n(G). We put U — XY.
When Cr has finite index μ{G), then n(G) is defined, and divides
μ{G). In such a case, t(G) — μ(G)/n(G) is the parabolic class number
of (?. These definitions agree with the usual ones for Γ(2, 3), the
classical modular group.

For 3Γ(2, 3), Newman [7] raised the question of whether there
were infinitely many normal subgroups with a given parabolic class
number. In [3], L. Greenberg showed that this was not possible by
proving that, for t > 1,

Here, as later, we write μ, t for μ(G), t(G) when the group is clear
from the context.

Mason [5] improved this to

(1) μ ^ t* .

This was also proved by Accola [1]. Implicit in his proof is a proof
that (1) holds when a and b are distinct primes.

Here, we show that, when a and b are coprime, there is a
constant c(α, b) such that, for t > 1,

( 2 ) μ£ c{a, b)t\t - 1) .

The constant is 1 when a and b are distinct primes, e.g., for the
modular group. There is no corresponding result when a and b are
not coprime.

We give examples to show that we can have equality in (2), but
only a finite number of times for given a and δ. Finally, we obtain
a better result for large t.

The referee has drawn our attention to a paper of Morris
Newman, '2-generator groups and parabolic class numbers', Proc.
Amer. Math. Soc, 31 (1972), 51-53, which contains the weaker result
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μ ^ ab ta+1 .

1* Preliminary results •

PROPOSITION 1.1. Suppose that K is a finite group, and that
H = (U) is a cyclic subgroup with order k<\K\9 and with
Γlveκ VHV~ι = {1}. If K= <X, U), then HnXHX1 = {1}, and the
cosets H, XH, UXH, •-, U^XH are distinct.

Proof. Let E = HftXHX1. As H is cyclic, so is E, and hence
E<\K. Thus, E= {1}. The last clause follows at once.

We observe that, in the situation described in 1.1, K acts as a
transitive permutation group on the cosets on H.

PROPOSITION 1.2. Suppose that a and b are coprime, and that
G <\ T(a, b) with index μ{G). Then there is a normal subgroup 6?*
of T{a, b) with G ̂  6?* and such that

( i ) t(G*) = t(G), =t say,
(ii) if t > 1, then μ(fi*) ^ t(t - 1),
(iii) G*/G is central in T(a, b)/G.

Proof Let D = (U, G), then | Γ(α, b): D\ = t{G).
Let 6?* = Γ\veτia,b) VDV~\ so that 6? ̂  6?* < Γ(α, 6). As /)/(? is

cyclic, G* = (Uk, G), for a least positive integer k. As /> = <ί7, 6?*>,
n(6?*) - k, so (i) holds.

If t > 1, then Z> is proper. From 1.1 applied to K = Γ(α, 6)/6?>iί

and JζΓ- Z>/6?*, it follows that t ^ k + 1, so (ii) holds.
For VeT(a,b), let [F] denote the corresponding element of

Aut(G*/G). Then [Xf = [Yf = 1, and [X][Y] = [U] = I, so (iii)
holds. (Cf. Lemma 3 of [3].)

COROLLARY 1.3. With the notation of 1.2,
( i ) if X or Ye Gf then t{G) - 1,
(ii) if t(G) = 1, then μ(G)\ab.

Proof. We observe that t(G) = 1 if and only if D = T(a, b).
If X or YeG, then D = Γ(α, 6), and (i) holds.
If t(G) = 1, then G* = T(a, b). By 1.2 (iii), Γ(α, 6)/G is abelian,

so that (ii) holds.

For integers a and b with 1/α + 1/6 < 1, there is a Fuchsian
group of the first kind isomorphic to T(a, b). The details can be
found in [4], We write T(a, b) for the Fuchsian group as well as
for its abstract counterpart, taking the isomorphism so that U cor-
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responds to a mapping ω t-> ω + a, with a > 0.
Also from [4], a subgroup of finite index in T(a, b) has a pre-

sentation

K, , Er, Plf - , P,, Alf Bu -. , A,, £,: JE, elliptic,
(3)

In this presentation, P^ , P t are parabolic, i.e., each is T(a9b)-
conjugate to a power of U. The amplitude of a parabolic element
is the exponent of U. We can choose the presentation with each Pt

operating anti-clockwise. This will be described as the standard
presentation.

PROPOSITION 1.4. In the standard presentation for a subgroup
of T(a, b), each parabolic generator has negative amplitude.

The proof is exactly that given for Theorem 1 in [5].

2* The inequality (2)* We write n' for the largest proper
divisor of a positive integer n.

THEOREM 2.1. Suppose that a and b are coprime, and that
G <| T(a, b) with index μ. If t > 1, then

μ ^ a'Vt\t - 1) .

Proof. By 1.2, there is a subgroup 6r* of index kt, with
k ^ t — 1, and with properties (i), (ii), and (iii).

By a standard argument on Fuchsian groups, a finite subgroup
of G* is Γ(α, &)-conjugate to a subgroup of (X) or of (Y). As G*
is normal, we can divide such subgroups into those of order β, with
β\a, and those of order /, with f\b. As t > 1, 1.3 applies, so e ^ a'
and / £ b'.

In the standard presentation of (?*, each elliptic generator has
order e or /. Using 1.4 and the normality of 6?*, each parabolic
generator has amplitude — k. As G*/G is central, the efth power of
the relation in (3) yields

Thus, n(G)\efkt. The result follows.

COROLLARY 2.2. If a and b are distinct primes, and G is as
in the theorem, then μ ^ t\t — 1).

The inequality (2) is best possible, as the following examples
show:
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(a) in the notation of [7], (Γ2)' and GZΛ are normal subgroups of
Γ(2, 3) and have, respectively, μ = 18, t = 3 and μ = 48, t = 4,

(b) in Γ(3, 4), 6? = <X, ΓXΓ3, Γ2> has index 2 and is isomorphic to
the free product C?C?C9. The product of the generators is ( J 7 ) 2 , so
n(G) = 2 and ί(6?) - 1. Thus, Gf <\ Γ(3, 4) and has μ = 36, t = 3.
Example (b) is analogous to the first example in (a). As we shall
see in § 4, there are no further examples for Γ(2, 3).

3* Non-coprime cases* In this section, we suppose that a and
b have g.c.d. (α, &) = c£, with d > 1. We produce an infinite collec-
tion of subgroups of Γ(α, 6), each with parabolic class number d.
Intersecting these with other normal subgroups, we see that there
can be no inequality of the form μ^f(t).

We begin by considering T(d, d). Let H = ( 1 7 , T(d, d)'). Then
the Reidemeister-Schreier method shows that H, which is normal in
T(d, d), has presentation

Ar = Y'XY1-', r = 0, 1, , d - 1: R Ar = 1
r=0

Then 27 is free on the first d — 1 of these generators. Further,
T(d,d) = (Y,H), so that \T(d, d): H\ = d. Finally, Ao = XY, so
that tt(U) = 1 and t(H) = d.

As (Z > 1, Dirichlet's theorem states that there are an infinite
number of primes congruent to 1 modulo d. For any such prime,
there is an integer e with oτάp(e) = d. We define H(p, e) by

H(p, β) - # ' <(A)P, 5, = ( Λ ^ r A, r = 1, , d - 2> .

This is invariant under XY. Also, for r = 0, •••, c£ — 2, YArY~ι =
Ar+1, so that, for r = 1, , d - 3, Γ ^ Γ " 1 = £ r + 1 . Finally, YBd_2Y-1

can be expressed, modulo ZΓ, in terms of the Br and (A0)
p. Thus,

, e) is normal. (The proof for d = 2 is simpler.)
Since Ao = X7, £Γ(p, e) has level p. Also, \H: H(p9 e)\ = p and

= d, so that ί(J7(p, ej) = d.
To obtain subgroups of Γ(α, 6), we observe that, if N is the

normal closure of {X\ Yd) in Γ(α, 6), then T(d, d) = T(a, b)/N. Then
T(a, b) has subgroups with level p and parabolic class number d for
an infinite set of p.

4. Frobenius factor groups* Throughout this section, we shall
assume that a and b are coprime, and that t > 1. We adopt the
notation of 1.2, and of 1.1 with K = Γ(α, &)/(? and H = 2>/G, and
write X* and ZP for the corresponding groups with G replaced by 6r*.
We regard K (resp. if*) as a transitive group on the cosets of H
(resp. H*). Our results describe the situation where there is equality
in 1.2 (ii).
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THEOREM 4.1. If k — t ~ 1, then K* is primitive.

Proof. In this case, 1.1 shows that ϋΓ* is doubly transitive.

THEOREM 4.2. Suppose that K* is primitive. Then K* is a
Frobenius group with kernel (K*Y, which is elementary dbelian.
Further, there is a prime p with t — pn = 1 (mod ft), and n — ordk(p).
Finally, k\ab.

Proof. Note that H*φK*, since ί > l . Suppose that Ve # * - # * .
As K* is primitive, JBΓ* is maximal, so that If* = (V, Z76r*>. By
1.1, if VH*ΦWH*, then VH^V'1 n WH*W~ι - {1}. Thus, JRΓ* is
Frobenius with kernel JV where |JV| = t. By [10, p. 30], JV is ele-
mentary abelian, so that t = pn.

Let ΛΓ< # * with M^N. If 1 < Jf < JV, then JET * < H*M<K*
which contradicts the maximality of JEΓ*. Thus Jf = {1} or JV. As
K*IN^ H*f (K*y £ JV, so that (K*)' = JV.

By the general theory of Frobenius groups, k = | J9Γ* | divides
p* — 1 = I JV| — 1. As U acts irreducibly on JV, [2, p. 212] shows
that, if ω is a primitive Λ-th root of unity over GF(p), then ωp\ i — 1,
w — 1, are distinct. Hence ^ = ordfc(p).

For the last part, we observe that fc = |Γ(α, δ): (Γ(α, δ))' G*|
which divides |Γ(α, δ): (Γ(α, δ))'| = ab.

Combining 4.1 and 4.2, we obtain

COROLLARY 4.3. If k = t — 1, £&ew (ί — l))αδ. For fixed a and
δ, ίfeere are finitely many normal subgroups with equality in (2).

COROLLARY 4.4. If l/2ί ̂  k <t — 1, If* is imprimitive.

Proof. This follows at once, since we cannot have ί = l (mod &).

We note that, if G <| Γ(2, 3) has genus 1 and t > 4, then 6?* = G
and ft = 6, see [7]. By [9, p. 181], if 6|ί - 1, then K* is Frobenius,
so that K* Frobenius does not imply ϋΓ* primitive. Further, for a
prime p > 3, there is a primitive K * with k — 6, t — pn, where
w = ord3(p). These subgroups have ft < ί/2 in general.

Theorem 4.2 has a converse, as we shall now show. Let p be a
prime and ft an integer prime to p. Let w = oτάk(p), and write S
for the cyclic subgroup of order ft in GF(pn)*. Let F = {(x, y):xeS,
y e GF{pn)}> and define multiplication on F by

(%, y)*{u, v) = (αw, yu + v) .
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PROPOSITION 4.5. F is a primitive Frobenius group on pn

symbols. The kernel is Ff, which is elementary abelian, and the
complement C is cyclic of order k.

Proof. It is clear that F is Frobenius with kernel N = {(1, y):
y 6 GF(pn)} and complement C = {(x, 0):xeS}.

If 1 < M < N with M<\F, then, by [9, p. 183], F/M is Fro-
benius with kernel N/M. Then k = \C\ divides \N: M\ - l = pm - 1,
where 1 <̂  m < n. This contradicts the definition of n. Hence,
N=F'.

If C < M< F, then I i f I = prk, where 1 ̂  r < n. Then \Mf]N\ = pr

and, by [9, p. 183], M is Frobenius with kernel Mf]N. Hence,
k\(pr — 1), again a contradiction. Thus, C is maximal and F is
primitive on the cosets of C.

PROPOSITION 4.6. With the above notation, suppose that k = e/,
with (e, f) = 1. I%ew we /&α?;e,

( i ) if e,f> 1, then F = <x, #>, wiί/z, a; o/ order e, y of order f.
(ii) if e = 1, ί/̂ w F = <«, 2/>, wiίfe x o/ orcZer p, 7/ of order k.

Proof, (i) As e,f\k, we can take xeC, yeCz, with zeF—C,
with x of order e and 2/ of order / . Let M= (x, y). As [x, y] e N— {1},
then I i f I = prk, where 1 ̂  r ^ w. By [9, p. 183], k\(pr - 1), so
that r — w and M — F.

(ii) We take cceiV, of order p and ?/ a generator of C The
result follows as in (i).

Since the center of a Frobenius group is trivial,

LEMMA 4.7. If G <\ T(a, b) with K Frobenius, then G = 6?*.

LEMMA 4.8. Let G <J Γ(α, 6) with K a primitive Frobenius group
with elementary p-abelian kernel and complement C cyclic of order k.
Then, (i) C is conjugate to H, and

(ii) if n(G) is prime to a, then p\a.

Proof. By 4.7, G - <S*, so that H = H* and K = X*. Let
if/6? - N be the kernel of K, and let |X| = p%&, so (p, k) = 1.

( i ) Since T(a, b)/M = C, n{M) - k. Hence (UG)kp = 1 in K.
By [9, p. 182], either (E/6?)* - 1 or (UGy = 1. It follows that
([/(?)* - 1 and so Nf)H = {1}. Thus, £Γ is a complement of N in ϋΓ.
By [9, p. 186], H is a conjugate of C.

(ii) Since M< Γ(α, 6) and | Γ(α, δ): M\ = k, X e M. Thus, X* e G
and, if (α, p) = 1, then XeG which would imply that K is abelian.
Thus, p\a.
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THEOREM 4,9. Given k > 1, a divisor of α&, and p prime to k
(with p\a if (k, a) = 1, p\b if (fc, b) = 1), έ&ere is α subgroup
G <J Γ(α, 6) wiίft If* primitive Frobenius of order pnk, where
n =

Proof. Let fc = e/, where e|α and / |6 , so that (e, /) = 1. The
result follows from 4.5, 4.6, 4.7, and 4.8.

Thus, when ab + 1 is #% with p prime, there is a subgroup of
maximal index with equality in 1.2 (ii). However, there is no cor-
responding subgroup with equality in (2), as we now show.

THEOREM 4.10. (Γ(α, b))" has level ab.

Proof. It is clear that (Γ(α, δ))' is free, has level ab and para-
bolic class number 1. The standard presentation shows that Uabe
(T(a, b))". Since the level is a multiple of ab, the result follows.

This is proved for a = 2 and b = 3 in [8].

THEOREM 4.11. If k = ί - 1 = αδ, ίfcew G = G*.

Proo/. Assume that A; = ί - 1 = αδ, but that <? =£ 6?*. By 4.1
and 4.2, K* is Frobenius with kernel of index k = ab. Also, t = pn, p
prime. Let ifcΓ/G* be the kernel. Then | T(a, b): Mj = ab. As
T{a, b)/M is cyclic, M = T(a, b)f. Thus, 6?* is free, so that the proof
of 2.1 shows that \G*\G\ = p% with s ^ 1. By 1.2 (iii), there is a
subgroup L <] Γ(α, 6) with G^L^G* and |£?*: Z,| = p.

Let A=T(a,b)/M and P^MjL. By 4.10, M'L^G*, so
P' - 6?*/X. Now, P f ^ Z(JP), and, since Γ(α, δ)/ΛΓ acts irreducibly
on M/G*, Pf = Z(P). The Frattini subgroup Φ(P) of P is the smal-
lest normal subgroup with elementary abelian factor, [2, p. 174].
Thus, P' = Z(P) = Φ(P), so that P is an extra-special p-group, [2,
p. 183].

Let A — <α>, with a regarded as an element of order d of Aut(P).
Then, in Aut(P/P'), ad == 1. Considering the action of A on M/G*, a
has order p% — 1 as an element of Aut(P/P'). Thus, d ~ pn — 1.

By [2, p. 213], pn - l |p ' + 1, with r ^ n/2. Thus, p% = 4, so
that ab — 3. As (α, 6) = 1, this is impossible. Hence G = 6?*.

COROLLARY 4.12. If G <\ Γ(2, 3) flfws equality in (2), ίΛβw ί = 3
o?* 4.

Proo/. By 4.3, 4.1 and, 4.2, ί = 3f 4 or 7. By 4.11, ί = 7 implies
G ~ G* and so gives strict inequality. For t = 3, 4, see end of § 2.
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5* Imprimitive factor groups* By 4.4, K* will be imprimitive
when l/2ί <̂  k < t — 1. For this range, we have one general result.

THEOREM 5.1. If k ̂  t/2, then # * - <F, £/(?*>, wiίΛ F 2 = 1.

PROOF. By 1.1, the stabilizer of # * has an orbit T = {XfiΓ*, ,
Uk~iχH*} of length A?. By [10, p. 44], there is a paired orbit T of
the same length k. As k ̂  ί/2, T = T'.

By [10, p. 45], there is an element FeϋΓ* with VXH* = # * and
FfiΓ* - X£Γ*. Then FX = Ur and X"*F = ί7s, for some r, s. Thus,
K* = <F, #*>, and F 2 = X ^ ^ X = l^'+ . As H* n XH*X~ι - {1},
F 2 - 1.

COROLLARY 5.2. 1/ Λtf is odd, then k < ί/2.

For T(29 3), there are subgroups with k > ί/2 For example,
the subgroups 42(2, m), defined in [6], have 42(2, m)* = 42(2, m), so
that ί(42(2, m)) = 3m, &(42(2, m)) = 2m.

If we restrict k further, the imprimitivity can be described more
precisely. For convenience, we put h = t — k.

THEOREM 5.3. If kΦt — 1, then k ̂  Λ2.

Proof. If & ̂  £ — 1, then h > 1, and we may suppose that we
have k > max{fe, (h — I)2}.

Consider the action of U on the cosets of H*. It fixes /f*, and
permutes the ί/̂ XJEΓ* cyclically. We choose Vlf •••, Vh so that

X * = VH* y ^ ^ r * u . . . u F,£Γ* U XiBΓ* U ί/XίT* U U U'-'XH* ,

w h e r e we may assume t h a t Vt = 1.
Clearly, F 2 £ P , •••, F^JEΓ* belong to cycles of length a t most

h - 1. Thus, for i = 2, ••-, fe,

with 0 < s(i) ^ fe - 1. If 2 ̂  i, i ^ Λ, then

Since s(ΐ)s(i) ^ {h — I)2 < &, the intersection is nontrivial. It can
be shown similarly that, for 1 ̂  i ^ h and 0 ̂  j ^ & — 1,

V.H^VI1 n (U'x^iUfX)-1 - {1}.

Let [£Γ*] = {FiίΓ*: i = 1, , fe} and let T7e K*. Suppose that, for
some i and j , VJI* - WVάH*. Then, for any r, VJI^V^ and
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have nontrivial intersection. Hence [H*] is a block
and so h\k. We put m = kjh.

Let KQ be the subgroup which fixes blocks setwise. If FeJfiΓ0

fixes two cosets belonging to different blocks, we may suppose that
VH* = H*, so V — U9G* for some q. Since V also fixes a coset of
the form UrXH*, 1.1 shows that V — 1. Thus, no two elements of
KQ have the same effect on H* and on XH*, so that

(4) \KQ\^h*.

The blocks are [#*] and {Ui+jmXH*: j = 0, , Λ - 1} for i = 0, ,
m - 1. Thus, t/wJBr*, ••-, Um*-X)H* fix the blocks. None of these
fixes a coset UrXH*. Taking conjugates, we obtain a similar set
for each block, i.e., fixing one element of the block, but none in any
other block. All of these are distinct and nontrivial, so

(5) | JEo |^ l + (Λ

Combining (4) and (5), we get the result.

From 5.3 and 4.3, we obtain

COROLLARY 5.4. If t > ab + 1, then μ S a'Vt\t - tι/z).

LEMMA 5.5. In the notation of 5.3, if k> max(/ι, (h — I)2), then
\KQ\ ^h\

Proof. With m - k/h as in 5.3, A - UmG*, B = XUmχ-ιG* fix
[/f*], [X£Γ*] respectively, and each has order h. Suppose that we
have ArBs = A^3, with 0 ̂  r, β, i, j < h, then A5-** = B8~j. Then,
since A fixes Jϊ* and JB fixes XH* and only the identity fixes both,
we must have r — i and j = s. Hence, Ko — {ArBs: 0 ̂  r, s < h).

LEMMA 5.6. Ifk = h2>l, then h is prime.

Proof. If A, as in 5.5, does not fix [fiΓ*] elementwise, then it
has a conjugate distinct from A which fixes some T̂ JEΓ* not fixed
by A. From the description of Ko in 5.5, this conjugate is a power
of A. Considering the effect on [H*], this must be A\ with (ef h) > 1.
As (β, fe) > 1, Aβ does not act as a cycle on [XH*]. This is a con-
tradiction since a conjugate of A would have this effect.

Thus, A fixes [H*] elementwise and has the effect of an ĵ -cycle
on the other blocks. As k = h2, there are h + 1(>2) blocks. We
label the blocks so that [H*] is block zero, [XH*] block one, and so
on. Then we have

A — coct eh ,
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where c0 is 1 and ct an ft-cycle on block i, i = 1, , ft. Similarly,

B = dςd1 dh ,

where dx is 1 and dό an ft-cycle on block j , j = 0 and j = 2, , ft.
Suppose that C is a conjugate of A fixing cosets in block two.

Then, for some r, s, C — ArBs. As C acts as an ft-cycle on block
zero, (do)

s is an ft-cycle, so that (s, ft) = 1. Similarly, (r, ft) = 1. Con-
sidering the effect on block two, we must have (c2)

r(d2)
s = 1, so that

2̂ = feΓ(?), with (w(2), ft) = 1. For the other blocks, we have cor-
responding integers w(2), •••, w(h). Since no element fixes cosets in
two blocks, the w(i) are distinct modulo h. As there are h — 1 of
them, h is prime.

LEMMA 5.7. With the notation of 5.5, if Go is the subgroup of
T(a, b) corresponding to Ko, then (6?0)* = Go and k(G0) = k/h.

Proof. By definition, (6?0)* is generated over Go by Us, where s
is the least positive integer with X~ιUsXU~s e Go. The correspond-
ing element of Ko sends # * to VtH* for some i. Thus, USXH* =
XVtH*. A s I F ^ e f l f f l ^ G * fixes [XH*] and [H*]. Thus,
[7s 6 6?o, so that (Go)* = Go. From the proof of 5.5, k(G0) = n(G0) = k/h.

LEMMA 5.8. If k = h2, then h\ab and h + 1 is a prime power.

Proof. With Go as in 5.7, |Γ(α, 6): 6?0| = kt/h', and fc(6?0) = k/h, so
ί(<?0) = fc + l( = l + fc(G0)). As in §4, T(a9b)/G0 is Frobenius and
(kfh)\ab9 and Λ + 1 is a prime power.

THEOREM 5.9. If k = h2>l, then h = 2 (w#fe X* = St).

Proof. From the previous results, K*/Ko is Frobenius of order
h(h + 1), K0 = Chx Ch, h is prime and H l a prime power.

If FeϋΓ* centralizes ^ 0 , then A F # * - VAH* = Fίί*, where A
is as in 5.5. Since A fixes cosets in [if*] only, V fixes [//*]. On
considering conjugates of A, V fixes each block setwise, and so
belongs to Ko. Hence, there is a monomorphism K*/K^ Aut(K0) =
GL(2, h). Thus, GL(2, h) has a subgroup which is Frobenius of order
h(h + 1). Its kernel N is elementary abelian of order h + 1.

If h > 2, then ft + 1 = 2s, and iVnSL(2, h) is elementary-abelian
of order at least 2s"1. The only element of order 2 in SL(2, h) is
— I, but this is central in GL(2, h). Hence, s = 1, which is impossible.

Thus, ft = 2, and K* the semidirect product of C2 x C2 by
GL(2, 2), i.e., Jf* = S4. It is clear that this will occur if and only
if one of a and b is even and the other divisible by 3, see 4.8 and
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4.9. For the modular group, Γ/Γ(4) ~ S4.

It follows that we must have strict inequality in 5.3, at least
when t > 6.

6* A final remark* Our results can be restated as results on
finite groups, e.g.,

THEOREM 6 1. If K is a noncyclίc (a, b, k)-group, with (α, 6) = 1,
then,

—k
Δ

If, in addition, K is simple, then

The second part is trivial when we observe that, in an obvious
notation, K = K* whenever the former is simple.

We should like to express our gratitude to Dr. N. K. Dickson
(University of Glasgow) for his assistance with various aspects of
this paper, particularly with the group theory in § 4.
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