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AN ALGEBRA OF PSEUDO-DIFFERENTIAL OPERATORS
WITH NON-SMOOTH SYMBOL

H. 0 . CORDES AND D. A. WILLIAMS

I n [4], [1], [7], and [5] certain algebras of zero-order pseudo-
differential operators were discussed which all were generated by
closing the operator algebra Sί finitely generated from the elements

(0.1) {α(Λf), b(D): a e J ^ + , b e

with multiplication operators u(x) —> a(x)u(x) denoted by a(M) and
convolution operators (or formal Fourier multipliers) b{D) — F*a(M)F,
with F — Fourier transform. Various classes J ^ + and J^*, and
various operator topologies were used, with the purpose of using
the generated topological algebra for proving normal solvability of
singular elliptic problems Lu — f, xe Rn, with a suitable linear
differential operator L = Σι«ι̂ iv aa(x)Da.

At present let us focus on the algebra 9L obtained from the
classes

(0.2) j / + = {αeC%R*): a(x) = 0(1), a"\x) - o(l), β Φ 0}

and

(0.3) j ^ * = {b e C°°(Rn): ¥β) e C(Bn), β e Z\) ,

with the compactification Bn of Rn obtained by continuous extension
of the vector-valued function x -> x(l + x2)~1/2, where we close under
the following operator topology: §ί, with j ^ + and ^/% as in (0.2)
and (0.3) may be seen to be a subalgebra of £f (Q8), the algebra of
continuous operators $s -> φ,, with the L2-Sobolev space $ s = {u:
ueS", ||(1 - J)s/2u\\L2 = ll^ll. < oo} of JB». This is true for every
s e R, and therefore the elements of ύ also take the Frechet space
ôo continuously to itself. A locally convex topology on Sί is gener-

ated by all the operator norms ||A||, = sup {|| Au\\8: \\u\\s ̂  1}. In
fact this is a Frechet topology, and it suffices to only take the
norms \\A\\k, keZ. All this is discussed in details in [2]. We
define SL to be the completion of St under that topology.

Similarly one may complete i as a subalgebra of any given
fixed Jzf($8) in the norm topology, to obtain a Banach algebra Sίs,
which proves to be a C*-subalgebra of £f($s), containing the
compact ideal 5£s = Λ(φ.) of £f{!Qs). In fact, %/Bs is commutative,
thus we have %/®s = C(MS), with a certain compact Hausdorff space
M, by the Gelfand-Naimark theorem. The space M" = M8 proves
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independent of s, and may be explicitly described as follows.

(0.4) M = Pn x Bn - Rn x Rn ,

with the above compactification Bn of Rn, and another one, Pn,
determined as smallest compactification allowing continuous extension
of all the functions in .Ss?+.

The homomorphism δίs > Ws/®s —> C(M) assigns a continuous
function σA to every A e 8ϊβ> which is called the symbol of A e 8ΐβ.
For A e Sίoo c 5ίs the symbol σΛ proves to be independent of s. In
fact, for A e $(, the symbol coincides with the restriction to M of
the continuous extension of the Pseudo-differential-operator symbol
of A. The symbol σA of A proves of fundamental importance for
the normal solvability of an equation An — /, u, fe ^>ro, A e ?!«,: A
necessary and sufficient condition for existence of a Green inverse
of order 0 (that is a Fredholm inverse B such that ||JB]|S is defined
for all s, and that 1-AB, 1-BA: £>_oo —> $«, are continuous and have
finite rank) is that σA Φ 0 on all of M.

All the above facts are discussed in [2] Moreover, it is shown
there that $L coincides with an algebra introduced by M. Taylor
[7], p. 505, denoted by PS(0), as the class of all Ae% such that
(1 - A)sA(l - A)~s - 4 e f t , for all s.

In the present paper we are going to attack the question of
proving existence of operators in $L, having a given symbol σA —
aeC(M). For the C*-algebras 2ίs this question is easily answered:
For every continuous function a e C(M) there always exist operators
A 6 5ίs with σA — A, because for the C*-algebra with compact com-
mutator and with unit we get 9ΪS/$S equal to C(M). One may
expect that differentiability of α, in a manner to be specified, will
guarantee existence also of an A 6 $L with σA = α. Our first result
will indeed make that point.

THEOREM 0.1. Let C™{M) denote the subalgebra of C{M) of all
functions a such that Da

xa(x, ζ) exists for all a on the subset

(0.5) W = {(x, ζ): xeRnaPn,ξe 3Bn = Bn - Rn)

of M, and that the functions a{a) = iwD"a on W, =0 on M — W,
is in C(M). Then, if αeC~(M), there exists an operator AeSC
with σA = a.

Perhaps it is remarkable that no differentiability with respect
to the ξ-variables is required at all. In fact at the entire portion
a; I = oo of the 'symbol space' M no differentiability with respect

to either x or ξ is required. On the other hand there are indica-
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tions that even the above differentiability requirement is much too
strong for the assertion of Theorem 0.1.

Our proof of Theorem 0.1 is entirely independent of conven-
tional Pseudo-differential operator calculus. The basic idea is the
in variance of SL and Sί0 under the 'translation group'

(0.6) {eu'D:teRn} .

In fact, conjugation with the unitary operators (0.6) defines a
strongly continuous group of linear operators: Sί0 —• Sίo The condi-
tion a e Cp(M) in effect means that a is in the joint domain of the
projection of the infinitesimal generators

(0.7) (adDY = Π iβdDjYi, (adDj)A = [Dif A] - D3A - ADj9 Ae%

to 8ϊo/Λo. In other words, for a e C™(M) there will exist operators
A 6 Sΐ0 such that all the commutators (ad D)aA will be well defined
elements of % again. Such operators A can be shown to satisfy
Taylor's condition, of belonging to PS(0) — SL. This idea of proof
will be discussed in details in §§ 1 and 3.

Let 3Iαd denote the algebra of all A e Sί0 with the property that
(ad D)aA e δί0 for all a. We shall see that 8t c Slα<i c 8L. However,
examples are easily given which show that not all operators in Wad

are pseudo-differential operators in the sense of [3], for example.
Accordingly one will not expect the calculus of pseudo-differential
operotors, like that in [3], § 7, for example, to be valid in 8ίαd.
Our second result is a 'Leibnitz formula' of the asymptotic kind,
showing that part of that calculus can be saved.

THEOREM 0.2. Let ^/ί c C°°(Rn) denote the algebra of all func-
tions u such that for k — 0, 1, 2, there exists N(k) with

xau{β) = 0(1) for all \a\ ^ k and all \β\^ N(k) .

For A 6 Wad let Ala) = i]a](ad D)[a)A.

Then we have the asymptotic expansions

b(D)A = Σ i"m/θϊ A[θ)b
m(D) (mod ^(-oo))

" Ab(D) = Σ ^ 7 # ! b{0)(D)Am (mod^(-oo))
0

for all AeSϋad and 6 e ^ ^ \

In details, we have the order pN of the remainder

(0.9) b(D)A - Σ i'ml0\ A{O)¥
O)(D) = RN
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going to — oo, as N—> °°. Similarly for the second expansion (0.9).
Here we say that an operator B: $„ -> #„ has order r if it induces
a continuous map § 8 —> £>8_r, for all seR.

Theorem 0.2 will be discussed in § 2. We will begin our proofs
in § 1 with showing that SΆ^ = PS(0) (Lemma 1.1), and then prove
that σ%ad = CP(M), or rather, a slightly more general result (Theorem
1.4). In § 3 we will use the Leibnitz formulas of Theorem 0.2 for
a proof of the inclusion 9ϊαdcPS(0), which will establish Theorem
0.1. Most proofs are also discussed in [2], in much broader details.

1* Taylor's algebra PS(0), and the algebras 9L, Wad. The fact
that our algebra SSL is identical with Taylor's algebra PS(0) in [7]
is a consequence of the lemma, below.

LEMMA 1.1. The algebra SC is identical with the class of all
A e δί0 such that, for every seR, (or only for every integer s = ke
Z), the unbounded operator product Λ~SAΛ% with Λs = (1 — Δ)~s/2> =
(1 + D2)~s/2 has dense domain and extends continuously to a bounded
operator on Sί0 satisfying

(1.1) Λ~SAΛS - A e f t .

Proof. The inclusion 9L c PS(0), where PS(0) denotes the
algebra of operators satisfying (1.1) for all seR, is a consequence
of Lemma 6 in [4] (for more details c.f. [2], Chapter IV, 3). In
particular (1.1) is immediate for AeSΪ, and it then follows for Ae
Sίoo, for which we have a sequence Ake§ί with | | ii — Ak\\8 —> 0 for
all s due to \\A'SAAS - Λ-sAkΛ

8\\, = \\A - Ak\\s.
Now let AeSί0 satisfy (1.1). It follows that A extends conti-

nuously to an operator A8: $8 —> φβ, for s < 0, and that, for s > 0
the restriction As — A \ $s is bounded from $ 8 to Q8, by a calcula-
tion. In fact, we have ||A||S = ||A.||, = ||yl-8A/ίs||0 < oo. To com-
plete the proof we will construct a sequence of operators in 9C
which is Cauchy, and converges to A above in 9ί0, and in every 9ί8.
By Lemma 1.2 below, which we quote without proof, it suffices to
only consider the norms || \\k with integers s = k.

LEMMA 1.2. Suppose an operator A: £f —> &" maps into $s Π
φ t for some pair of reals s < ί, and that

(1.2) \\Au\\s^c8\\u\\s, \\Au\\t^ct\\u\\u u e ^ .

Then we have

(1.3) \\Au\\r^cr\\u\\r u e ^ ,
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for all s <. r ^ t, where the constant cr may be chosen as

(1.4) cr = cc*-^)/c*-.)c(^-.)/c*- ) .

For the proof of Lemma 1.2 we refer to Seeley [6] (or [2]).
This interpolation lemma shows in effect that the topology of SL is
Frechet.

For A e Sί0 satisfying (1.1) first choose a sequence As e 8ί0 with
|| A - Ay||0-*0, as j — oo. Let χeCQ(R«), χ = l near 0, 0 ^ χ ^ 1,
and let χm(x) = χ(x/m), m = 1, 2, , and let Xw = χm(I>). Conclude
that XmAXm 6 Sίoo, because we get

\\XmAXm - XmAόXm\\ι = \\Λ-ιXm(A - A,)XmA%
(1-5)

> 0, a s j > oo ,

for fixed m, Z, since ΛιXm = (Xιχm)(D) is bounded in φ0, λ(a?) = (1 +
ίc2)~1/2. Introduce the operator A w i e 9L by

(1.6) Am i - XmAXm + (1 - XJA,X m + A,(l - XJ .

(Observe that Xm e Sί̂ , in that respect.) We write

Λ~\A - Amj)Λι = Λ-\l - X J ( A - A5)XmΛι

(1.7) + ^ ' ( A - Λ )(l - XJ^ Z - (1 - X J ( A - Ay)Xm

+ (A - A,)(l - X J + C iz - XmC3ΊXm ,

with

(1.8) Cyi = Λ~\A - Ad)Λι - (A - A,) 6^ 0 ,

because A satisfies (1.1), and As e SL also satisfies (1.1). For N =
1, 2, first choose k = kN such that || A - Ak\\Q ^ 1/4ΪV. Then keep
k fixed and choose m = m^ large to insure that

(1.9) \\CkNι - XmNCkmXmN\\0 ^ 1/41SΓ, I = 0, ± 1 , , ±i\Γ,

as follows because Xm —> 1, as m —> oo, in strong operator conver-
gence, while the operators Cu are compact.

(1.10) H A - A ^ J L ^ l / i V , l l l^ iNΓ,

so that indeed lim^oo AkNW,N = A in SiTO.

In the remainder of this section we shall be concerned with
the group (0.6) of unitary operators, referred to as the translation
group. In the introduction we have sketched the intended use for
this group.

LEMMA 1.3. For A e Sί0 with symbol σA = a let us define Bά =
EάA by
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V.i. i.i.y -t>j — \ β 3 Jxβ 3 Θ U/tf J — X , • • • , % .
Jo

Assei*tion. (i) The integrals (1.11) converge as improper Riemann
integrals in norm convergence of JSf (φ0), a n d Bj e Sί0.

( i i) The symbol bj = σB. has its first derivative dbj/dxj conti-
nuous over W, and zero at \x\ = oo, and is explicitly given by

(1.12) bj = I α(α; — £βy, ξ)e~tdt
Jo

with ey = (δ u , •••, 5Λi), and x — h = x, as |&| = oof |fe| < oo.
(iii) The function bj is uniquely determined as the solution of

(1.13) dv/dxj + v = α on itf, v, dv/dxj e <

where we interpret dv/dxj = lim^o (v(x + hejf ξ) — v(x, ξ))/h — 0, as
I x I = oo 9 (because x + hβj = x implies the difference quotient to be
zero).

(iv) The commutator [Djf Bj] = DόBj — BάDά between the un-
bounded operator Dό of £>0 with domain !Q19 and the bounded opera-
tor Bj has dense domain and extends to an operator in Jίf(ξ>0),
which in fact is in 5ί0 and is explicitly given by the equation

(1.14) A = i[Dί9 Bj] + Bj .

Proof. It is known that eiDr, r eRn is the translation operator
u(x) -> u(x + r), so that e~iDra{M)eiDr = α(Λf + r). Also e~iDrb{D)eirD =
b(D), so that the function <p(r) = e~ίDrAeiDr is norm continuous for
r eRn whenever A is a generator of 8l0. This also holds for the
general A e Sϊo> which is uniform limit of finitely generated elements.
Also, the integrand in (1.11) is 0(1), in the norm || ||0, which implies
(i). We may take symbols under the integral sign, by (i) and be-
cause the projection Sί0 —> Sίo/^o is continuous. Also, since we know
the action of the automorphism A -> e~iDrAeίDr on the generators of
Sϊo we can easily calculate the action on the symbols, using techni-
ques involving the dual map, as in [4]. This will serve to confirm
(1.12), and thus (ii). Now (iii) follows by methods involving the
Greens function of the ordinary differential operator Dά = d/dxj + 1
on R, or by simple differentiation. Regarding (iv) consider the
commutator [Djf Bj] as an operator in ^f(ξflf φ-J, and then write

[Djf Bj] =

(1.15) =
J

+ iί V^i
Jo
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where all operations may be seen to be legitimate. This proves (iv)
and establishes Lemma 1.3.

THEOREM 1.4. Let %tad,k>for k = 0, 1, •••, °o, denote the algebra

of all operators A e Sί0 with the property that

(1.16) A { a ) = i ] a l ( a d D ) a A e %, [a] = M a x a ό ^ k ,

(αd Z))α defined as operators in Jzf(&la\, Φ-ι«ι) &2/ (0.7). Lei
Ck

p{M), for k = 0, 1, , oo, δβ ί/̂ e class of functions in C(M), with
the property that aia) = i{alDd

xa{x, ξ) exist and are in C(W), and
vanish, as \x\ -• ©o, /or αZί [α] ^ fc, as w Theorem 0.1.

Assertion. For every function a e Ck

p(M) there exist operators
Ae8lαd>fc such that 0^ = α, and, more generally, σA{a) = α(β), for all
[α] ^ A.

Proof. For finite fc Theorem 1.4 is an almost immediate con-
sequence of Lemma 1.3: For aeCk

p, with finite k let ak = (&,&•••,
fc, jfc) be the unique 'largest multi-index', and just pick any operator
Pe% with symbol α(α*,. Notice that the operators Eje^f(^i0)
defined by Lemma 1.3 all commute. Then define A{a} = Eak~aP with
E? = Π?=i Eβoj Then notice that A[a] has symbol Daa, with 5 , =
d/dxj + 1, Z)'3 = Π?=i Dp. This suggests defining operators Aia) by
properly combining the A[a}: A{Q) = A[Q}, A{ej) = A { e i } — A{0}, etc. This
choice may be seen to also satisfy the commutator relations (1.16),
by (1.14), establishing the result for finite k.

Next let fc = co. Then we can make the above selection of A
and A{a)f [a] <̂  k for every fc-= 1, 2, •••. Let the corresponding
operators be denoted by Ak and Ala)tkf for a moment, and note that

() k ι fcz o, -A(α),fc A{a)ίι 6 Sϊo ,

for all k, I such that the terms are defined. Specifically,

(1.18) Ak+1 - χk(D)Ck+1>kχk(D) = Ak + {Ck+1,k - χk(D)Ck+1,kχk(D)} ,

with a suitable function χk e C™(Rn), 0 <; χk ^ 1, and χfc = 1 near 0.
Introducing the notation Fk+1 and Gfc+1 for the compact operator at
left and at right in (1.18), respectively, we find that

(1.19) Ak = Ak - Σ Fι = Am + Σ GI-ΣAFI,
1 = 1 l = m + l 1 = 1

where we have used induction. The operators Ft may carry as
many commutations (adD)a as desired, since the factor χ(D) neutra-
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lizes the unboundedness of arbitrary powers Dr, from left or right.
On the other hand a proper choice of χj9 for example as %j(x)=:X(xlτj)
with sufficiently large τj9 will insure

(1.20) WiadDyGsWo^*-', [<*] £ j .

Now the right hand side in (1.19) will converge, as & —» co, supply-
ing an operator A=lim Άk. Moreover, it follows that also (adD)"Ak

converges to (ad D)aA, using (1.20). Then it follows that A = lim Άk

is the desired operator satisfying the assertion for k = oo. This
proves Theorem 1.4.

It is clear that SΆad = 3ϊαd)OO. Accordingly Theorem 1.4 shows
that all functions in C%(M) can be obtained as symbols of operators
in Sίαd. For the proof of Theorem 0.1 we therefore must show
that SlβdCίloo, using the Leibnitz formulas of Theorem 0.2.

2* An asymptotic formula* An operator A e =Ŝ (§co) is said to
have order r if for every s e R there exists a continuous extension
As: φ s —• %>s-r* Let έ?(r) denote the class of all operators of order r.
Suppose A3 eέ?(Ps), with p/\ — °°. Then we shall say that Ae

allows an asymptotic expansion

(2.1) A = Σ A-5 (mod ^ ( - o o ) )

if for every N = 0, 1, 2, , we have

(2.2) i - Σ 4 e (<?PN+I)
3=0

With this notation we now will discuss the proof of Theorem
0.2. In that respect it is sufficient to establish the first formula
(0.8), because the second formula follows by taking ad joints.

It is convenient to introduce a concept called Fourier kernel
product (for details c.f. [2], IV, 4). For an operator Q e ^ ( i , £ _ )
let <S/"(R2n) denote the Fourier distribution kernel, defined as the
distribution q such that

(2.3) {FQF~lu, v) = (q, u (x) v}, u, v e S? .

If P, Q have the kernels p and q, and if p = φ, q, with a function
φ e Cco(R2n) then we shall call P the kernel product of φ and Q.
This relation shall be written as

(2.3) P^φAQ.

For example, if φ = φ(ξ9 η) = <p(£) depends only on f, then <p Δ Q =
φ(D)Q, and φ Λ Q = Qφ(D), if <£> depends only on 37. Also, if £, =
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Si - Vh ία = IL ξ?> then (ad D)"Q = ξ" A Q.
For A 6 Sία<i> and a function b 6 ^ ^ let us apply Taylor's formula

with integral remainder, in conjunction with the above kernel pro-
duct:

b(D)A = ( Σ W\η)lθ\ (ξ - η)1 + rN(ξ, η)) A A
(2.4) WiN

where

(2.5) rN(ζ, η) = [τN Σ ( ^ + l)/θ\Vθ\tζ + τη)dτ, t + τ = 1 .
JO |0 | iV + l

Comparing (2.4) and (0.8) it is found that for Theorem 0.2 we must
show that the order of the remainder rN £±A decreases to — oo, as
N-+ oo. This will be accomplished, evidently, if Lemma 2.1, below,
is proven.

LEMMA 2.1. For every integer 1 = 0, 1, 2, •••, there exists N0(l)

such that for N ^ N0(l) we get

(2.6) RN = rNAA = Λ*ιQNllΛ
tι, with QN>1 e% .

Proof. We note that explicitly

(2.7) RN = [τNdτ Σ W + l)/«! i~mb{θ\tξ + τη) A Aιβ) ,
JO \Θ\=N+1

where the discussion of limit interchanges is postponed. In order
to control the kernel product we write

(2.8) Vθ)(tξ + τrj) - [d'tcb{θ)W{tc)eUζteiκξτ ,

with d'/c = (2π)~n/2dfc, and with the inverse Fourier transform V.
Accordingly,

(2.9) Vθ\tξ + τη) A A{θ) = γκb^{κ)eUDAm^κτ - J ,

with the 'translated operator' Pκ = eiDκPe~ίDκ. In that respect, the
Fourier transform b{&)V = F~ΨΘ) proves to be a function in L\Rn)9

making the integral (2.8) meaningful as an improper Riemann inte-
gral in norm convergence of 9ί0, for large \θ\. In details we note
Lemma 2.2, below.

LEMMA 2.2. Let Sf\* denote the class of distributions u e &"
with singular support at 0 only, such that (i) u equals a function
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in S^ for \x\^l, (ii) xaueC\Rn) for all \a\^ N(k), with suitable
N(k), and for every k = Q, 1, ••• . Let ^€ aCoo(Rn) be defined as in
the introduction. Then we have u e ^ if and only if uA = Fu e
<9*ls (or if and only if uv e ^°ps).

The proof of Lemma 2.2 will be omitted (c.f. [2], I, Thm. 6.3).
Continuing with Lemma 2.1 note that c(/c) = b{θ)V(κ) = ( - /c)θbv(ιc) e
Ck(Rn), as θ gets large enough, by Lemma 2.2. Also ce£^ for
I a? I ^ 1. Using the identity eiξ' = (l + ?)~z(l - Δκ)

ιeι'% 1 = 0, 1, 2, ,
we formally get

(2.10) J = Λ-Ά\d'κeUD(l - AκY(c(κ)A{θh_κτ) .

There will be no trouble justifying (2.10), as an improper Riemann
integral in norm convergence of 3ίo> after Lemma 2.3, below.

LEMMA 2.3. For A e Wad we have At = eiDtAe"ίDt e Cco(Rn, 8l0), and
the derivatives are explicitly given as

(2.11) iwDΐAt = Aia)lt = eίDtA{a)e-iDt .

The proof of Lemma 2.3 is an immediate consequence of Lemma
1.3. Applying Lemma 2.3 it is found that J of (2.10) is a linear
combination (with complex constants as coefficients) of the expres-
sions

(2.12) Λ 2 l τ ^ [ d ' t c e i κ D c { a \ ι c ) A { o + β ) , ^ z , \a\ + \β\ ^ 21 .

Again c{a) e L\Rn) for sufficiently large N (and these functions are
continuous). Thus all the terms (2.12) are of the form Λ2lP, with
some P e Sί0.

This process may be repeated to create a power A21 at right:

Write the operator P — \dΊceiκDc{a\ιc)A{o+β),-tτ in the form

(2.13)

Here again we may use the exponential identity, and integrate by
parts to arrive at expressions of the form

(2.14)

The integrals (2.14) exist, as before, and supply operators Q(t) e

2ί0 depending continuously on t, in the norm of Sϊo. Hence the inte-

grals I τNdτQ(t) exist in norm convergence, and give operators in
Jo
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Sί0 again. Finally it will be necessary to justify the limit exchanges
leading to (2.7) and (2.9). But this simply is a consequence of the
fact that the integrals (2.5) and (2.8) converge as (improper) Rie-
mann integrals, in the Frechet topology of Sf. This proves Lemma
2.1 and thus establishes Theorem 0.2.

COROLLARY 2.4. For the operator QNJ e Sl0 of Lemma 2.1 we
have

(2.15) σQN>ι =0 for (x, ζ) e M - W, N ^ 1 .

Proof. We simply must observe that all the operators A{β+β+ζ))Kt

occurring in (2.14) have symbols vanishing at M — W. Also, it
already was found that all the integrals leading to the construction
of QNj converge in the sense of 8t0, so that symbols may be
calculated by integrating the symbols. This implies the corollary.

3. The inclusion SΆad c PS(0), It is clear now that for Theo-
rem 0.1 we now only are left with proving that SΆad(zPS(0). For
then, if a e CP(M) we apply Theorem 1.4, with k — oo, to construct
an operator AeSίαrf)OO = %ad with σA = α. We have A e SHβd c PS(0) =
Sίoo, by Lemma 1.1 which proves Theorem 0.1. For the inclusion
%ad c PS(0) we only must prove Lemma 3.1, below.

LEMMA 3.1. Let AeSHβd. Then we have ΛSAΛ~$ ~ i e S f l for all
seR.

Proof. Let us repeat the discussion of § 2 for the special func-
tion b(ξ) Ξ λs(ί) = (1 + £2)s/2. From Lemma 2.1 we get

(3.1) Λ°AΛ~8 - A - Σ i~ml0\ A{Θ)μθ{D)

with the functions μθ = (X8)(θ)/Xs. (3.1) is valid for large N only,
depending on the choice of I. For a given s we choose I according
to 21 > β, and then N^l large enough to insure (3.1). Then it is
observed that the entire right hand side of (3.1) is in $0, by Corol-
lary 2.4, because the symbol is calculated to be zero on all of M.
In particular we notice that μθ 6 J^*, θ Φ 0, thus μθ(D) e Sί0, and
that μθ — 0 as \ζ\ = oo, thus σUθ{D) = 0 on W. This proves Lemma
3.1.
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