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COMBINATORIAL GEOMETRY AND ACTIONS OF
COMPACT LIE GROUPS

TOR SKJELBRED

In this paper a theorem of combinatorial geometry will
be applied to prove results about actions of compact Lie
groups on manifolds.

In order to understand actions on differentiable mani-
folds, the weights of the tangential representations at fixed
points of a maximal torus can be taken as basic data. Those
weights are related by the structure of the equivariant
cohomology ring of the manifold. The weights can also be
considered as just a finite set of vectors or as a finite set
of points in a projective space. From this point of view,
theorems of combinatorial geometry can be used. Hence
representation theory, equivariant cohomology theory, and
combinatorial geometry can be used to understand differen-
tiable actions. We will use the following result of com-
binatorial geometry which has been generalized by Sten
Hansen [11], It was conjectured by Sylvester[16] in 1893
and proved by Gallai in 1933.

THEOREM 1 (Sylvester-Gallai). "Given a finite set of points in
the real affine plane, there is a line containing exactly two of those
points, unless the point set is collinear."

It was during discussions with Ted Chang concerning his
results in equivariant homotopy theory, that I realized that the
theorem of Sylvester-Gallai was useful. I am grateful to Ted for
explaining Theorem 5 to me. A very simple example of a result
in equivariant homotopy theory follows.

THEOREM 2. "Let a torus T be acting on S2n and on S4n~\
such that the action on S4*'1 is effective and such that F(T, S4^1) —
0 and F(T, S2n) is connected. If rank T ^t 4, then every equivari-
ant map S4^1 —» S2n has trivial Hopf invariant" The attaching
map Slδ -» S8 of the Cayley projective plane has nontrivial Hopf
invariant and admits an effective action of a torus T of rank 3
with F{T, Slδ) = 0 and F(T, Ss) = S\ Hence the bound rank
T >̂ 4 cannot be relaxed.

In general the results one can prove using combinatorial geo-
metry say that a group acting on a specific manifold with a specific
fixed point set cannot have rank exceeding a certain number. An
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example of this kind concerning transitive actions, is the following
result which was first proved by Chang-Skjelbred [7].

THEOREM 3. "Let G be a connected compact Lie group and let
H be a closed subgroup containing no nontrivial connected normal
subgroup of G. If G/H is orientable and of Euler characteristic 3,
then rank G <i 4."

The proof we will give here of the theorem does not apply the
classification of simple Lie groups, as did the proof in [7].

In combinatorial geometry the theorem of Sylvester-Gallai has
passed through stages of reproving [10] and generalization, notably
by Motzkin [14] and Sten Hansen [11] who gave the theorem its
final form.

THEOREM 4 (Sten Hansen). "Let Ω be a finite set in real pro-
jective space PR such that Ω spans PR. Then there are linear
hyperplanes Ln~2 c Hn~ι c PR such that H%~x is spanned by Rn~λ Π
Ω and such that there is an 0)Q e Hn~x Π Ω with

H"-1 n Ω = (Ln~2 Πfi)U {ω0} ."

Hansen's result is in fact stronger in that it shows how to find
a large number of such hyperplanes Ln~2 czH71'1. By setting n = 2,
we obtain the theorem of Sylvester-Gallai.

Certain problems concerning transformation groups give rise
to problems in combinatorial geometry. The combinatorial feature
of transformation groups is apparent in the Golber formulas for
torus actions, see [9, 6, 4]. At the end of this paper, we will pose
a problem in combinatorial geometry whose solution is of interest
in the theory of transformation groups of rank ^ 3.

We will now establish a formal link between combinatorial
geometry and the geometry of transformation groups. Let T be a
maximal torus of the transformation group, and let x be a fixed
point of T in a differentiate manifold M where T is acting diffe-
rentiably. Let L(T) be the Lie algebra of Γ, and let L*(T) be the
set of linear maps f:L(T)—>R such that Ker (/) is the Lie algebra
of a closed subgroup of T. Then L*(T)^Hom(Γ, 17(1)) (8) Q and
άimQL*(T) — rank T. The weights of the tangential representation
of T at x e M are elements of L*(T) with certain multiplicities.
The weights lie in Hom(Γ, 17(1)) cL*(Γ), and for this reason we
will call them integral weights. The multiplicity of an integral
weight w at x is
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mult.(w) = — (dim.(F(Ker w)) - dimXF(Γ)) .
Δ

By a weight we will understand an element of the protective space
P(L*(T)). For any weight ω, choose weω where w is an integral
weight, and is nondivisible. We set

multx(α>) = Σ rrίxύtx(nw) .

The Borel formula (B) at x then follows from the splitting of the
tangential representation at x in subspaces of dimension <;2. We
will also consider topological actions on a space M which is para-
compact, connected, and of finite cohomology dimension over Q.
We will from now on assume either that M is a cohomology mani-
fold over Q, or that the ring iϊ*(M; Q) satisfies Poincare duality.
The latter means that for some n, the cup product

H\M; Q) (x) H*~\M\ Q) > H*(M; Q) ~ Q

is perfect for all i, and we set dim M = n. If M is a cohomology
manifold, dimikf is its dimension as such. For certain M, dimikf
has now been defined in two ways. One simply has to be consistent,
using either local or global cohomology all the time. The cohomology
theory will be Cech cohomology with rational coefficients and closed
supports. Let a torus T be acting on M and let F\ F2, be the
components of the fixed point set. For any subgroup KaT, let
F*(K) be the component of F(K, M) containing F\ If M is a
cohomology manifold, then so is each F*, according to Conner-Floyd,
see [2, p. 81]. If H*(M; Q) satisfies Poincare duality, then so does
each H*(Fim, Q), according to the thesis of Ted Chang. Two proofs
of this result is given in Chang-Skjelbred [5], and a later third
proof appears in Bredon [3]. A fourth proof due to the author
appears in [13]. In any case dim Fι is consistently defined. Let
KaT be Si subtorus, that is, a closed connected subgroup of T.
We set

mulUK) - —(dim F\K) - dim F*) .

We say that if is a local weight at Fι if rank K = rank T — 1 and
mult^if) > 0. Then there is the Borel formula at F\

(B) dim M - dim Fι = 2 Σ mult^X)

where the sum extends over all subtori K with rank i£=rank T— 1.
For cohomology manifolds this formula is due to Borel [2, p. 175],
see also Hsiang [12, p 343]. For Poincare duality spaces it is due
independently to the author and to Allday-Skjelbred [1]. For each
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subtorus N of T. there is a Borel formula for the action of T on
the invariant subspace F*(N).

(BO dim F\N) - dim Fι = 2

where the sum extends over all corank-one subtori K containing N,
see [12, p. 343]. For each subtorus K of corank-one, K is uniquely
determined by the kernel of the restriction map L*(T) —>L*(ίΓ).
For any generator ω of this kernel, we set K = ωι. For a general
subtorus iSΓ of T, we set iSΓ = (ωίf , ft)fe)

L when ωlf , ft)fc generate
the kernel of L*(T)-+L*(N). We set mult^ft)) = mult^α)1) for each
0 =£ ωeL*(T), and we say that ω is a local weight at Fi if this
multiplicity is positive. For any 0 Φ a e Q we consider ft) and aft)
as identical local weights since ft)L = (aft))1. The Borel formula can
then be written

dim M - dim F = 2 Σ
ω

dim F^iV) - dim F* = 2 Σ
Z i V

where the latter sum extends over all a) such that iSΓcω1. If JY=
(ft)!, •• ,ft)fc)1, then Naω1 if and only if ω is a linear combination
of ωlf ---,ωk. An "F-variety containing Fι" is a set of the form
F\N) where N = (ωl9 •••, ωkγ and each ωt is a local weight of F\
Now if F\N) contains Fj as a set, it is also true that F*(N) =
Fj(N) is an "F-variety containing jPi>?. Hence, there are local
weights λlf , λp at Fj such that

(Xlf . , λ,,)1 = (ω19 , ft),)1 = N .

For a proof of this result in the case where H*(M; Q) satisfies
Poincare duality, we refer to Chang-Skjelbred [7]. We say that
F*(N) is a corank-a F-variety where α = corankiV. We say that
the action of T on M is c-effective if for each circle subgroup S
of Tf and each component Y of F(S, M), dimF<dimikf or
F(S, M) — 0 . When M is a cohomology manifold, this means that
the ineffective kernel of the action is finite. When H*(M; Q) satisfies
Poincare duality, an elaboration of the concept of c-effectiveness is
found in [7]. In both cases, if F(T, M) Φ 0 , the action is c-effec-
tive if and only if the local weights at each Fι generate L*(Γ)

THEOREM 5 (Ted Chang). "Let a torus T of rank ^ 2 be acting
c-effectively on M, and let F1 and F2 be two components of the
fixed point set. Assume that every corank-one F-variety containing
F1 also contains F2. Let Ω = {ft̂ , ft)2, •} be the set of local weights
at F1 and let N = {v19 v2, •} be the set of local weights at F2 which
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are not local weights at Fι. Then dim F2 ^ dim F1, and if
dim Fz > dim F1, (N, Ω) satisfies the following properties (i) and
(ii). Here Lin ( ) will denote linear span over Q.

( i ) For each pair ωif ωά e Ω, there is some vkeN such that
Lin (ωt, ωΰ ) = Lin (ωi9 vk).

(ii) For each pair ωt e Ω, vk e N, there is some ω3- e Ω such
that Lin (a)if vk) — Lin (ωit ft)/)-"

Proof. Since each F\ωt

L) contains F2, it follows that each ωt

is a local weight at F2. Since F1(ωt) = F2{ωl)7 we have

2 mult^ω,) — 2

= (dim F\coi) - dim F1) - (dim F\ωi) - dim F2)

= dim F2 - dim F1, for all ωt .

Let ωίf ωj e Ω. The Borel formulas of X=F\(ωi, ωά)
L) = F\{ω%9 ω5)

L)
at F1 and at F 2 are as follows, where V = Lin (ωιf ω3 ).

dim X - dim F1 = 2 Σ ^ , ) ,

dim X - dim F 2 - 2 Σ mult2(ωfc) + 2 Σ mult2(yj .

Subtracting, we obtain

dim F2 - dim F1 = Σ (dim F 2 - dim F ι ) - 2 Σ mult2(y,) .
<okev vpev

Since ^ e F for k = i, j , we obtain

2 Σ mult2(^) ^ dim F 2 - dim F1 ^ 0 .
v ; )6F

In case dim F2 > dim î 71, there must be some vpe V — Lin (ωt, ω5)
so that property (i) holds. For property (ii), let ω^Ω and vkeN
be arbitrary. We then have

Fι\jF2d F\ωi) c ^((α),, v,)1) - Y, say.

The Borel formula for Y at JP1 is, with W — Lin (α)̂  vk),

dim Γ - dim F1 - 2 Σ mult^ω.) .
ωse \V

And at F2, dim Γ - dim F2

= 2 Σ mult2(α)β) + 2 Σ mult2(i0

^ 2 mult2(ά)J + 2 mult2(vfc) ,

and hence

dim Y ^ dim ί72 + 2 m u l t ^ ) + 2 mult2(pΛ)

= dim î 71 + 2 mult^tyj + 2 mult2(vj .



202 TOR SKJELBRED

Inserting this in the formula at Fι

f we obtain

Σ mult^αO ^ multi (ωt) + mult2 (v*) > multx (ω,) ,

and hence there is some ω5 e W = Lin (α>,, i^), % =£ ω*, and (ii)
holds.

LEMMA 6. "Let T be a torus acting on M where H*(M; Q)
satisfies Poincare duality, such that the fixed point set has two
components F = F1 (J F\ ά\mQH*(M; Q) = dAmqH*{F', Q) and where
iJ*(M; Q) —> H*{Flmj Q) is onto. Then each corank-one F-variety
containing F1 also contains F2 and hence Theorem 5 applies."

Proof. If there were a jF-variety F\K) not containing F2,
then by equivariant cohomology theory, dimQH*(Fχκy, Q) =
dinV?*(i^; Q), i = 1, 2.

As H*{F\K))Q)-^H*(Fι)Q) is onto, it is an isomorphism.
When corank K = 1, we then have mult^ίQ — 0, so that iΓ is not
a local weight at Fι and F\K) is not a corank-one F-variety at
F\ (Here dim ί^X) = dim F1 because "dim" is taken in the Poin-
care duality sense.) This contradiction concludes the proof.

We now come to the connection with combinatorial geometry.
When a torus of rank n is acting, the sets N and Ω of Theorem
5 are strictly speaking sets of points in PQ~\

DEFINITION 7. "Given two finite disjoint sets N and Ω of points
in real projective space P%, we say that (N, Ω) is a special figure
in P™ if Ω spans P™ and the properties (i) and (ii) of Theorem 5
hold, that is, letting L( ) denote the join of linear subspaces,

( i ) For each pair of points ω, ωτ in Ω, there is some v e N
with v e L(ω, ω').

(ii) For each pair of points ω e Ω, v e N, there is some ωf e Ω
with ωf 6 L(ω, v) and ωr Φ ω"

THEOREM 8. "There is a special figure in PR only when m^2."

Proof. Assume m ̂  3 and let Lm~2 c Hm~ι c P% be the hyper-
planes whose existence is guaranteed by the theorem of Sten
Hansen. Then Hm~ι is generated by Ω f) Hm~ι and there is ωoeΩ
such that

Ω Π H™-1 = (Ω n Lm~2) U {ω0} .

Then Ω f) Lm~2 generates Lm~2 and since m — 2 ̂  1, there are at
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least two points ωί9 ω2 e Ω f] Lm~2. By property (i), there is some
veNn L(ω19 ω2), and by property (ii) there is some ω3 Φ ω0 with
ω3 6 Ω n L(ω0, v). Clearly ω3 e Ω Π Hm'x and since ωz Φ ωQ, we have
ω3eΩ f] Lm~\ Hence, ωz e Lm~2 Π L(ω0, v) = {v} and this shows that
Ω Γ) N Φ 0 , a contradiction.

THEOREM 9. "Let a torus T be acting c-effectively on M such
that the assumptions of Lemma 6 are satisfied. Then rank

Proof. Since Theorem 5 applies to the sets N, Ω of local weights
at F1 and F\ they satisfy properties (i) and (ii) of that theorem.
Since the action is e-effective, L*(T) is generated by Ω. Hence
(N, Ω) is a special figure in PQ'1 where n = rank T.

By Theorem 8, n - 1 <: 2 and hence rank T ^ 3.

COROLLARY. A proof of Theorem 2. Assume that the map
f: S4""1 —* S2n has nontrivial Hopf invariant. Let Cf be the mapp-
ing cone of ff with vertex v. Then the fixed point set of T in Cf

is {v} U F(T, S2n). Since F(T, S2n) is connected by assumption, and
H*(Cf; Q) satisfies Poincare duality, the assumptions of Lemma 6
are satisfied by this action. By theorem 9, rank T 5̂  3. Hence, if
rank T ^ 4, the Hopf invariant of f must be trivial.

Proof of Theorem 3. Here G/H is orientable of Euler chara-
cteristic 3. Let WH, WG be the Weyl group of H, G. We now
use a result of [7], that WH is the normalizer of WH° in WG.
This result is shown there in a classification free way. Let TczH
be a maximal torus; it has fixed point set F(T, G/H) = N(T)H/H=
WG/WH consisting of three points. The tangential representation
of T at a fixed point gHeG/H, geN(T), has weights Δ{G)-
Δ{gH*g~ι) where ΔG is the root system of G. If for all geN(T),
Δ(H°) = Δ^gH'g'1), then N(T) would normalize H°, WG would
normalize WH°, and hence WH = WG, a contradiction. Let a be
a root of H° which is not a root of gWg~ι for some geN(T).
Then the point p = 1 H is a component of 7 = ^(α 1 , G/£T), and F
must have a component of dimension 2 since a is a local weight of
multiplicity one at the point gH. By equivariant cohomology theory,
Y =z {p} u S2. Since α 1 is acting effectively on G/H with fixed point
set Y, it follows from Theorem 9 that rank aL ^ 3, and hence that
rank G = rank T ^ 4.

A problem in combinatorial geometry. This is the problem of
finding all special figures in PJ and in PI, see Definition 7. The
special figure arising from torus actions such as in Chang's Theo-



204
TOR SKJELBRED

rem 5, all he in PJ. So far only one type of s p e c i a l figure i n p 2

is known; tins „ the figure arising from the action of £ on GIB
m the proof of Theorem 3 in case rankG=4. There are suet
actions on the Cayley protective plane. According to Brβdon a

lZ P t ή ^
ZΛl ΆT ' I n t h e d r a w i n S s > the points of Ω a r e

marked by dots and the remaining intersection points of two lines

" the"te,° PO Ύ1? figUΓe W ί t h Pi a Π d Q> i S a < * M V^eon
entΐe of P P P P Ϊ " T V " & Γ"" 0 1 1 ^ w M c h W e c a l 1 th«centre of P^P^P,. Applymg Pappus' theorem to the hexagons

of the form Q^P^Q^, B . Elstad has shown that a centered
pentagon determines a special figure just as does a regular p e l g o n

Centre f T ?*"*' ° = {P» ̂  ^ P» ̂  ^ w h e r e ° * ^
that \ +

e T a g Γ E 1 S t a d a Π d W F e n c h e l h a v e b°th shown
P E l Γ ί Γ«T{ P e \ g ° n C a n n O t h a V e r a t i 0 n a l coordinates of all
P , Elstad [8] has shown that choosing four points Pu i ^ A with
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rational coordinates, no three of which are collinear, there are
two choices of P5 giving a centered pentagon, and that the coordi-
nates of P5 are not rational but lie in Q(τ/5).

Problems. (1) Show that for any special figure in PQ, card
Ω = 4.

(2) Show that for any special figure in Pj, card Ω — 6 or 4.
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