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MULTIPLIERS FOR |C, 1] SUMMABILITY
OF FOURIER SERIES

G. S. PANDEY

In the present paper we improve the conditions of all
previously known theorems on the absolute (C, 1) summability
factors of Fourier series.

1. Let the formal expansion of a function f(x), periodic with
period 27 and integrable in the sense of Lebesgue over [—7, 7], in a

Fourier-trigonometric series be given by
1.1) flx) ~ %ao +- f} (a, cos nx + b, sin nx) = f‘, A,(x) .
n=1 n=0

We write

(u) = fle + w) + flw — u) — 2f(x)

and throughout this paper A will denote a positive constant, not

necessarily the same at each occurrence.
Whittaker [5], in 1930, proved that the series

i A,(x)n*, a>0,

is summable |A] almost everywhere.
Later, Prasad [4] demonstrated that the series

> A@)/t
n=ng
where
k—1
n, = (1’_[ log* n)(log" n)tte, logtn, >0, >0,
and

log*n = log (log*'m), ---, log* n = log log n ;

is summable [A] almost everywhere.

Chow [2], on the other hand, has shown that the series >\, 4,(x)
is summable |C, 1| almost everywhere, provided {\,} is a convex

sequence satisfying the condition >\ %™\, < co.
Cheng [1], in 1948, established the following:

THEOREM A. If

177
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o) = | lswldu = o)
as t — 0, then the series
3 A,(@)/logm)**,  5>0,
18 summable |C, |, a > 1.

In a recent paper, Hsiang [3] has proved the following theorems:

TaeEOoREM B. If
(1.2) o) =0@1)  (t— +0),
then the series >, A (x)/n* is summable |C, 1] for every « > 0.
TueoreM C. If
k
(1.3) o(t) = o{t/g log* (1/t)}

as t— +0, then the series

(1.4) >, A.(@)/(T 10" » 1og* m)*
is summable |C, 1| for every ¢ > 0.

In the present paper we prove the following theorem, which
includes the theorem of Cheng and both the theorems of Hsiang:

THEOREM. If

(L.5) ¢(t)ES:““M_“)‘du:O{(logk(l/t))v} as t— 40,

0 <6 £, then the series (1.4) is summable |C, 1| for 0 <5 < e.

The conditions of our theorem are less stringent than those of
Cheng and Hsiang.

2. The proof of the theorem is based on the following lemmas:

LEMMA 1. Let S,(x) be the nth partial sum of the series (1.1),
then under the condition (1.5), we have

(2.1) 3118, — fiz)| = Ofn(log* nY) .
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Proof. Let e, = sign[S,(x) — f(x)], so that ¢, = *+1 and it depends
only upon z and v, and is independent of . Also, we write

K,(t) = D¢, sin vt .
v=0
Thus, we have

golsv(w) —f) =2 S:?é—t)K,,(t)dt + o(n)

(g §

0 1/n

=1L+ L+ I+ on),

say. Now,

1= | ") oo

=om) | — i, o0 =2e0).
(2.3) 0 dt
1/

= 0~ tp®” + 0w | eyt
= O{n(log* n)7"} .

Also, for nt = 1, we have

L=< S" OL . gt
2= i/n t

= O{n(log* n)"} .

(2.4)

Since, by Riemann-Lebesgue theorem,
S":’i(itl sin ntdt = o(1) ,
3

we have
(2.5) I, =0(n).
Combining (2.1), (2.2), ---, (2.5), the lemma follows.

LEMMA 2. Let

__ 13
(o) = gy SPA)

Then

T.@) = 3 [t(@)] = O{n(log* n)7}
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and
3 (@) < e
Proof. Let
1 S
g,(x) = O PIHCOR

Thus, we have

n

0.(@) — flz) = —> 3 {Su(@) — f(x))

(m+1) =
— 1 - o——
2.6) lo.(x) — flw)] = W r D 2 15,(2) — flw)]
= O{(log* n)7}
by Lemma 1.

Therefore, we find that

T,w) = 3 li.(a)]
2.7 = g [S.(x) — o.(2)]

= 3118.@) — @) + 3 l0.(@) — f@)
= O[n(log* n)"]
by (2.6) and Lemma 1.
Finally, by Abel’s transformation, we have

S () @) = 3 T@d(e) - n)
() — )T (1) + 5t MO T (@)
= S 4(p) ) - o)
+ 5 () + D) + O(1)
2.8) = 5 4{(r)) - log* m'
+ E (Har) 7 (e + )7 (log* n)” + O(1)

M—-1

A - (log* n)?
i k—1
fn(H log* n)(log" n)tte
p=1
=0@1),

A

+0Q1)

n
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for m — o and M — oo,
In view of (2.7) and (2.8) the lemma is proved.

3. Proof of the theorem. Let z,(x) denotes the nth Cesiro
mean of the sequence {n(x;!)- A4,(x)}.
By Abel’s transformation, we have

T() = Z y(p,) e Aw)

(+1)

3.1) S A() 7 @ D) + (1))

( +1)un0
= TP + TP,

say. Now, by Lemma 2, we find that

Z JM(@)n = Z n i (n + 17 Z A(p)7 v + Dit(@)|, log*m, >0

= Au_ZOA(m v+ Dt(=)l Z ORIV
&2 <4 3 ap) @)
= A S A7) Ta) + A Tul@) + )
=0@1).
Also, we have
(3.3) ngnoe]é"’(x)/n = ngo ()™ - m 7 e, (w)]
=0Q@1).

From (3.1), (3.2), and (3.3), we have

i [z.(@)] =0Q1).
n

n=m

This completes the proof of the theorem.
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