REGULAR FPF RINGS

S. PAGE

It is shown that a von Neumann regular ring is FPF (i.e., very faithful finitely generated module is a generator) iff it is self-injective of bounded index.

1. Introduction. An associative ring R is called a left (F)PF ring if every (finitely generated) faithful module generates the category of left R-modules. Azumaya [1], Osofsky [7], and Utumi [9, 12] characterized the left PF rings as those rings for which any one of the following equivalent conditions holds:

 (PF_1) R is left self-injective, semiperfect, and has essential left socle.

 (PF_2) R is left self-injective with finitely generated essential left socle.

 (PF_3) $R = \bigoplus \sum_{i=1}^{n} Re_i, e_i^2 = e_i$ and Re_i is injective with simple essential socle.

 (PF_4) R is an injective cogenerator in R-mod.

 (PF_5) R is left self-injective and every simple left R-module embeds in R.

C. Faith in [3, 4] has studied semiperfect left FPF rings. In this note we are concerned with von Neumann regular rings which are left FPF. As the conditions PF_1 - PF_5 readily point out a von Neumann regular ring which is PF must be semi-simple artinian. In this note we show that if R is von Neumann regular, then R is FPF iff R is of bounded index and left self-injective. It follows that for regular rings left FPF implies right FPF also.

II. Preliminaries. In what follows R will denote an associative ring with unity and all modules will be unitary left R-modules unless otherwise noted.

A ring R is von Neumann regular if for every $a \in R$ there is an $x \in R$ such that axa = a. We will just say R is regular.

DEFINITION. For a set $S \subset M$, M an R-module, let ${}^{\perp}S = \{r \in R: rs = 0 \text{ for all } s \in S\}$. If M is a right R-module, define $S^{\perp} = \{r \in R: sr = 0 \text{ for all } s \in S\}$.

DEFINITION. Let M be an R-module. Let Z(M) be the left singular submodule of M i.e., Z(M) is the set of elements of Mwhose annihilators are essential left ideals of R. M is called nonsingular if Z(M) = 0.

S. PAGE

DEFINITION. A ring R is of bounded index if there exists an integer N > 0 such that if $x^n = 0$ then $x^N = 0$.

DEFINITION. Let M and N be R-modules. Let $N - \dim M = \sup \{n: \bigoplus \sum_{i=1}^{n} N_i \subset M, N_i \cong N, i = 1, \dots, n\}$. Also, let $D(M) = \sup \{N - \dim M, N \in R \text{-mod}\}$.

The following result of Utumi [10] gives the connection between rings of bounded index and FPF rings. We include the proof for completeness.

THEOREM 1. Let R be a ring with zero singular left ideal. Then R is of bounded index if $D(R) < \infty$ and in case R is regular D(R) equals the smallest bound on the index of nilpotence.

Proof. We can suppose R is regular for the maximal ring of quotients, Q(R), is regular and R is an essential submodule of Q(R). Suppose $x^n = 0$ but $x^{n-1} \neq 0$, for some $x \in R$. Let $K_1 = {}^{\perp}(x^{n-1})$ and consider $0 \to K_1 \to R \xrightarrow{x^{n-1}} Rx^{n-1} \to 0$. The sequence splits by regularity of R, so $R \supseteq W_1 \cong Rx^{n-1}$ and $W_1 \cap K_1 = 0$. Let $K_2 = {}^{\perp}\{x^{n-2}\} \cap Rx$ and form $0 \to K_2 \to Rx \to Rx^{n-1} \to 0$ which also splits. Therefore there exists $W_2 \subseteq Rx$ with $W_2 \cap K_2 = 0$ and $w_2 \cong Rx^{n-1}$ so that $w_2 \cong W_1$. Also since $K_1 \cap W_1 = 0$ and $Rx \subset K_1 W_2 \cap W_1 = 0$.

By n-1 applications of the above technique we obtain $W_1 \cong W_2 \cong \cdots \cong W_{n-1}$ with $Rx^{n-1} \subseteq K_i = {}^{\perp}\{x^{n-i}\} \cap Rx^i$, and $W_i \cap K_i = 0$. It follows that $D(R) \ge n$ since $(\bigoplus \sum_{i=1}^{n-1} W_i) \bigoplus Rx^{n-1} \subset R$.

Next suppose $\{L_i\}_{i=1}^n$ is an independent set of left ideals in Rwith $L_i \cong L_j$ for all i and $j \le n$. Since R is regular we can assume the L_i are all idempotent generated, by e_1, e_2, \dots, e_n , say, with $e_i e_j = 0$ for $i, j = 1, \dots, n, i \ne j$. Let $\phi_{ij} \colon Re_i \cong Re_j$. Then ϕ_{ij} is right multiplication by $e_i r_{ij} e_j$ for some $r_{ij} \in R$. Let $x = \Sigma e_i r_{i,i+1} e_{i+1}$. Then $x^n = 0$ but $x^{n-1} \ne 0$.

COROLLARY 1.1. If R is a domain which is not a left Ore domain, Q(R) is of unbounded index, where Q(R) is the maximal left quotient ring of R.

Another fundamental result is the following of Bumby [2].

PROPOSITION 1.2. Let M_1 and M_2 be injective modules with $0 \rightarrow M_1 \rightarrow M_2$ and $0 \rightarrow M_2 \rightarrow M_1$. Then $M_1 \cong M_2$.

III. Regular FPF rings. We start with commutative rings, then using Morita equivalence build up to the more general case.

170

THEOREM 2. The following are equivalent for a commutative regular ring R.

(i) R is self-injective.

(ii) R is FPF.

(iii) The trace of every finitely generated faithful module is finitely generated.

Proof. If R is injective and M is a finitely generated faithful module, then R embeds in a finite direct sum of copies of M as a direct summand. This gives $(i) \Rightarrow (ii)$.

That (ii) implies (iii) is trivial.

Assume (iii) and let $q \in Q$, the injective hull of R. Form Rq + R = M. Now trace (M) is finitely generated since M is finitely generated and faithful. Since R is regular and trace (M) is finitely generated, we have that trace (M) = Re, $e^2 = e$. Let $i \in I = \{r \in R: rq \in R\}$, an essential ideal. Then multiplication by i defines a map of M into R and this map sends 1 into i so $I \subset$ trace (M). Now take $f: M \to R$. Let $f(q) = x_0$ and $f(1) = y_0$. Then for every $z \in I$ we have $f(zq) = zqy_0$ so $z(x_0 - qy_0) = 0$, hence $x_0 = qy_0$ and $y_0 \in I$. I is generated by idempotents so we can take $y_0 = y_0^2$ so that $x_0 = x_0y_0$, that is, trace $(M) \subseteq I$ too. Since I = Re and I is essential, I = R and hence $q \in R$.

COROLLARY 2.1. If R is a strongly regular ring (all idempotents are central) then R is FPF iff R is self-injective.

Proof. If R is strongly regular left ideals are ideals and are generated by idempotents. Also if M is finitely generated by x_1 , \cdots , x_n say $M = \bigcap_{i=1}^{n} {}^{\iota}\{x_i\}$ for strongly regular rings. With these observations the previous proof goes through.

If D is a division ring and $R = \operatorname{End}_D(\gamma)$ then R is FPF iff γ is finite dimensional over D, but R is always self-injective and regular. The significant observation is that if γ is infinite dimensional over D and $f \in R$ is a map with one dimensional range Rf is finitely generated and faithful but can not generate R because roughly R contains infinitely many copies of Rf i.e., $Rf - \dim R = \infty$.

We do have the following.

PROPOSITION 3. Let R be a ring with Z(R) = 0. If R is left FPF then every left ideal is an essential submodule of a direct summand of R.

Proof. Let L be any left ideal and B a left ideal maximal with respect to $L \cap B = 0$. Form $R/L \bigoplus R/B = M$. M is faithful

and finitely generated so generates R. Now if $f: M \to R$, let $f((1 + L, 0)) = x_0$ and $f((0, 1 + B)) = y_0$. Then $x_0 \in L^{\perp}$ and $y_0 \in B^{\perp}$ so since M is faithful $L^{\perp} + B^{\perp} = R$. This gives ${}^{\perp}(L^{\perp} + B^{\perp}) = 0$ or ${}^{\perp}(L^{\perp}) \cap$ ${}^{\perp}(B^{\perp}) = 0$. Since $L \subseteq {}^{\perp}(L^{\perp})$ and $B \subseteq {}^{\perp}(B^{\perp})$ the maximality of B gives $B = {}^{\perp}(B^{\perp})$. Also, if we now take $L_1 \supset L$ and maximal with respect to $L_1 \cap B = 0$, L_1 is an essential extension of L, and ${}^{\perp}(L_1^{\perp}) = L_1$ as we have just seen. Now we have $0 = (L_1 + B)^{\perp}$ since $L_1 + B$ is essential, hence $L_1^{\perp} \cap B^{\perp} = 0$. Also $L_1^{\perp} + B^{\perp} = R$ by the above which yields $L_1^{\perp} = eR$, $e^2 = e$ so that ${}^{\perp}(L_1^{\perp}) = R(1 - e)$ a direct summand, as promised.

PROPOSITION 4. If R is a regular ring which is left FPF, then R is left self-injective.

Proof. If R is regular then certainly Z(R)=0 and by Proposition 3 each left ideal is essential in a direct summand of R. In regular rings it is trivial that a left ideal isomorphic to a direct summand is a direct summand. These two properties constitute the definition of left continuous and the last corollary of Utumi [11, Corollary 8.4] states that if R and any matrix ring over R are both continuous R is self-injecture. Since both FPF and regularity are easily checked to be Morita invariant properties, it follows that R is left self-injective.

REMARK. The integers are FPF but lack the second part of the definition of left continuous.

PROPOSITION 5. Let $\{R_i\}_{i \in I}$ be a collection of rings. Let $R = \prod_{i \in I} R_i$ as rings. Then R is left FPF iff each R_i is left FPF and for each collection $\{M_i: M_i \text{ a finitely generated faithful } R_i\text{-module} i \in I\}$ such that πM_i is a finitely generated R-module, there exists an integer N > 0 such that R_i is a homomorphic image of a direct sum of N copies of M_i for each $i \in I$.

Proof. Routine coordinate wise computation yields the proposition.

The previous proposition points out that if R is a product of matrix rings over division rings in order that R be left FPF the matrix rings had better not become to "large". It also suggests we look at the types given by Kaplansky and refined by Goodearl and Boyle [5].

DEFINITION. A regular left self-injective ring R is called type

I if for every direct summand *L* of *R*, $L \supseteq L^1 \neq 0$, a left ideal, such that for any left ideals $A \neq 0$ and $B \neq 0$ contained in L^1 , Hom $(A, B) \neq 0$. If $L = L^1 L$ is called abelian.

DEFINITION. A ring R is called Dedekind finite if xy = 1 iff yx = 1, otherwise we say R is Dedekind infinite.

DEFINITION. A regular left self-injective ring R is called type II if R contains an idempotent e such that Re is faithful, eRe is Dedekind finite but R contains no abelian left ideals.

DEFINITION. A regular left self-injective ring R is type III if $0 \neq e^2 = e$ then eRe is not Dedekind finite.

Type III rings are characterized by the fact that for any direct summand, L, then $L \cong L \bigoplus L$.

THEOREM [Kaplansky [6], Goodearl, Boyle [5, Corollary 7.7, p. 48]. If R is a regular left self-injective ring, then $R = \prod_{i=1}^{5} R_i$, where R_1 is type I and Dedekind finite, R_2 is type I and Dedekind infinite, R_3 is type II and Dedekind finite, R_4 is type II and Dedekind infinite, and R_5 is type III.

REMARK. All type *III* rings are Dedekind infinite. Also, we will adopt Kaplansky [6, p. 11] notation and say R is type I_f if R is type I and Dedekind finite, type I_{∞} if type I and Dedekind infinite, type I_{1f} if \cdots , type II_{2f} if \cdots .

PROPOSITION 6. If R is regular and FPF then R is biregular.

Proof. Let $x \in R$. We wish to show RxR is generated by a central idempotent. Let $H = {}^{\perp}(RxR)$. If H = 0, then Rx generates so RxR = R. If $H \neq 0$, then H is the left ideal maximal with respect to $H \cap RxR = 0$. It follows that H is a direct summand of R because R is self-injective. Now $H \bigoplus Rx$ is a finitely generated faithful module, hence a generator, so trace $(H \bigoplus Rx) = H \bigoplus RxR = R$.

PROPOSITION 7. If R is regular left FPF, R is Dedekind finite.

Proof. If not, then by [5, Prop. 7.4, p. 48] $R = R_1 \times R_2$ with $R_2 \neq 0$ and purely infinite, i.e., for every $0 \neq e$, a central idempotent in R_2 , eR_2e is not Dedekind finite. So assume $R \neq 0$ and purely infinite.

By [5, Thm. 6.2, p. 41] there is in R a sequence of idempotents e_1, e_2, \cdots such that for each i, $Re_i \cong R$, and $\sum_{i=1}^{\infty} Re_i$ is direct, essential and $R = E(\sum_{i=1}^{\infty} Re_i)$. Let $M = R/\sum_{i=1}^{\infty} Re_i$. We claim M is faithful. If not, there exist $x \in R$ such that $R \times R \subseteq M$. By Proposition 6, RxR = Re for some central idempotent e. Since eM = 0 it follows that $Re \subseteq \sum_{i=1}^{\infty} Rx_i$. But then $Re \subseteq \sum_{i=1}^{N} Rx_i$ for some N large enough. This implies $Re \cap Rx_j = 0$ for j > N, which implies $ex_j = 0$ j > N since e is central. However, since $Rx_i \cong Rx_j$ for all i and j and e is central, then $ex_i = 0$ for all i, a contradiction.

Thus M is faithful. M is also singular, hence R is singular so must be zero.

COROLLARY 7.1. If R is regular FPF type I, then R is of bounded index.

Proof. By [5, p. 30] we see that if R is type I, R contains an idempotent such that eRe is strongly regular and Re is faithful. It follows that R is Morita equivalent to a strongly regular ring. Then using Tominaga [8, Lemma 1, p. 139] we see that R is of bounded index.

PROPOSITION 8. Let R be a regular left FPF ring of type II_f . Then $R = \{0\}$.

Proof. Let $0 \neq R$ be as above. We claim R can not be a simple ring. If R were a simple ring since it is type II it cannot be a semi-simple ring, hence must have an essential left E. But then R/E is faithful by the simplicity of R hence a generator of This says Z(R) = R, ridiculous. Since R is not simple there R. must exist an idempotent $e_1 \in R$ such that $0 \neq Re_1R \neq R$. Now let $H_1 = {}^{\perp}(Re_1R)$. If $H_1 = 0$ then Re_1 generates R which it does not, so $H_1 \neq 0$. H_1 is the left ideal maximal with respect to $H_1 \cap Re_1R = 0$, so H_1 is a summand by injectivity of R. It follows that $H_1 \oplus$ $Re_{1}R = R$ as above. Now H_{1} and $Re_{1}R$ are type H_{f} left FPF rings so we can repeat the process to Re_1R to obtain an ideal $H_2 \subseteq Re_1R$. Continuing in this way we obtain $H_1 \bigoplus H_2 \bigoplus \cdots \subseteq R$ each H_i a nonzero two sided direct summand of R. Since each H_i is type II_f we can choose an idempotent $f_i \in H_i$ such that $H_i = \bigoplus \sum_{j=1}^i Rf_{ij}$ $Rf_i \cong Rf_{ij}$ for all $j \leqq i$. Next take $Rg = E(\bigoplus \Sigma H_i)$. Rg is a two sided ideal for the hull of any two sided ideal in a semiprime left self-injective ring is complemented by its left annihilator which is a two sided ideal. We can assume then that g is a central idempotent. Form $\prod_{i=1}^{\infty} Rf_i$ and let M be the cyclic submodule generated

by $R((f_i)_{i \in I})$. Let $N = M \bigoplus R(1 - g)$. Then yN = 0 iff y(g - 1) = 0and $yRf_i = 0$ for all *i*, so $yRf_iR = 0$ for all *i*. Then $y(\sum_{i=1}^{\infty} H_i) = 0$. But since yg = y there exists an essential left ideal *E* such that $Ey \subseteq \sum_{i=1}^{\infty} H_i$ and $(Ey)^2 = 0$ implies y = 0 so *N* is faithful. Since *R* is left *FPF*, *N* generates *R* so $R((f_i)_{i \in I})$ must generate *Rg*. It follows that for a fixed n > 0 there are maps $\sum_{i=1}^{n} Rf_{i_i} \to H_i \to 0$ for every *i*. But if i > n we see by Bumbys result $H_i \bigoplus Rf_i \cong H_i$ and *R* is not Dedekind finite.

Putting the above facts together gives:

THEOREM 9. A regular ring is left FPF iff it is left selfinjective of bounded index.

COROLLARY 9.1. A regular ring is left FPF iff it is Morita equivalent to a strongly regular left self-injective ring.

COROLLARY 9.2. A regular ring is left FPF iff it is right FPF.

Proof. By Utumi [13, Thm. 1.4] a strongly regular ring is left self-injective iff it is right self-injective.

ACKNOWLEDGMENT. I would like to thank the referee for putting the crunch on Proposition 7, to Abraham Zaks for stimulating conversation on the topic and the University of Oregon for its hospitality.

References

1. G. Azumaya, Completely faithful modules and self injective rings, Nagoya Math. J., 27 (1966), 397-708.

2. R. T. Bumby, Modules which are isomorphic to submodules of each other, Arch. der Math., 16 (1965), 184-185.

3. C. Faith, Injective cogenerator rings, Proc. Amer. Math. Soc., 60 (1976), 25-30.

4. _____, Injective cogenerator rings and a theorem of Tachikawa II, Proc. Amer. Math. Soc., 62 (1977), 15-19.

5. K. R. Goodearl and A. K. Boyle, Dimension theory for nonsingular injective modules, Memoirs Amer. Math. Soc., #177.

6. I. Kaplansky, Rings of Operators, New York (1968), W. A. Benjamin.

7. B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra, 4 (1966), 373-387.

8. H. Tominaga, Some remarks on π -regular rings of bounded index, Math. J. Okayama Univ., 4 (1955), 135-144.

9. Y. Utumi, On quotient rings, Osaka Math. J., 8 (1956), 1-18.

10. ____, A note on an inequality of Levitzki, Proc. Japan Acad., 33 (1957), 249-251.

11. ____, On continuous rings and self-injective rings, Trans. Amer. Math. Soc., 118 (1965), 158-173.

12. ____, Self injective rings, J. Algebra, 6 (1967), 56-64.

13. Y. Utsumi, On rings of which any one sided quotient rings are two sided, Proc. Amer. Math. Soc., 14 (1963), 141-147.

Received September 16, 1977 and in revised form March 6, 1975.

UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, B. C. CANADA V6T 1W5