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ALMOST PERIODIC FUNCTIONS ON SEMIDIRECT
PRODUCTS OF TRANSFORMATION

SEMIGROUPS

H. D. JUNGHENN

The notion of semidirect product of two transformation
semigroups is introduced, and its space of almost periodic
functions is expressed as a tensor product. The general
techniques developed are applied to the special case of a
semidirect product S © T of two semigroups. As a conse-
quence new results are obtained on the characterization of
the almost periodic compactification of S © Γ as a semi-
direct product of compact semigroups. A related result is
the splitting of the enveloping semigroup of a semidirect
product of certain flows into a semidirect product of envelop-
ing semigroups.

0. Introduction. Let S and T be semitopological semigroups

and S (?) Γ a semidirect product of S and T. In an earlier paper
[10] we showed that, under certain conditions, the almost periodic
(a.p.) compactification (S © T)r of S © T is a semidirect product
of the a.p. compactification of T and a certain compact topological
semigroup containing a dense homomorphic image of S. A simple
corollary of this result is that the space of a.p. functions on S © T
is a tensor product of the space of a.p. functions on T and a sub-
space of a.p. functions on S.

In this paper we introduce the notion of semidirect product of
transformation semigroups and determine exactly when its space of
a.p. functions may be expressed as a tensor product in analogy with
the semigroup case described above. Cast in this general setting
the problem of characterizing the space of a.p. functions on a semi-
direct product of semigroups becomes clear, and the techniques
developed lead to elegant necessary and sufficient conditions for
(S © TY to be a semidirect product. As a consequence we are able
to show that (S © T)' is a semidirect product for all semitopological
semigroups S with identity and all semitopological groups T, thus
generalizing results of [10, 11, 12]. The same conclusion holds
if T merely contains a dense subgroup. In a similar vein, but using
different techniques, we show that in a wide variety of cases the
enveloping semigroup of the semidirect product of two equicontinuous
flows is (canonically isomorphic to) a semi- direct product of the
original enveloping semigroups.
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1* Preliminaries. Let S and T be semitopological semigroups
[1] and let τ: T x S —> S be a separately continuous map satisfying

Γ(ί, 38') = Γ(t, 8)τ(ί, β') , Γ(tt', 8) - Γ(ί, r(t ' , 8)) .

Thus t—> τ(t, •) is a homomorphism from T into Horn (S), the semi-
group of all homomorphisms on S. We shall assume that the map
(s, t) —> sτ(t, s'): S x T-^S is continuous for each s 'eS. The semi-
direct product S © T of S and T is the topological space S x T
with the multiplication1

(8, ί)(8', ί') - (βr(ί, 8'), «') .

The above conditions on τ imply that S © T is a semitopological
semigroup. If S (respectively T) has an identity 1, we shall require
that τ(t, 1) = 1 (respectively, r(l, •) is the identity mapping).

A transformation semigroup is a triple (S, X, π) where S is a
semitopological semigroup, X is a (Hausdorίϊ) topological space, and
π: S x X —> X is a separately continuous mapping (called an action)
which satisfies π(ss', x) = ττ(s, 7r(s', a?)). Usually we suppress the
symbol π and write sx for π(s, x). The orδΐί of cc 6 X is the set
Sx = {sx: s e S}. In case S has an identity 1 we require that Ix = x
for all x e X. Note that every semitopological semigroup is a trans-
formation semigroup, where the action is left multiplication.

If X is compact, the transformation semigroup (S, X) is called
a flow. The enveloping semigroup of a flow (S, X) is the closure
in the product space X x of the set π(S, •) = {π(s, ):seS} [8]; it is
denoted by E(S, X), or simply Ex. If the flow (S, X) is equicontinu-
ous (i.e., τr(S, •) is an equicontinuous family of mappings) then Ex is
a (compact) topological semigroup with respect to the relativized
product topology and composition of mappings.

Let (S, X) be a transformation semigroup, B a Banach space,
and C(X; B) the Banach space (uniform norm) of continuous bounded
I?-valued functions on X. A function feC(X B) is almost periodic
with respect to the action of S on X if the set {/,: s eS) is relative-
ly compact in C(X; B), where fs(x) = f(sx). The (closed) subspace of
all a.p. functions in C(X; B) is denoted by AP(S, X; B). lΐ B is the
complex field then we shall suppress this symbol from the notation.
Thus the usual space of a.p. functions on S is denoted by AP(S).
(S, X) is called almost periodic if AP(S, X) = C(X). The reader is
referred to [1, 2, 4, 5] for the general theory of a.p. functions on
semigroups.

1 The definition of semidirect product given here agrees with the classical definition
for groups (see, for example, [9, p. 6]), but differs from the definition given in [10, 12].
By considering "reverse" multiplication is S, T and S ® T, however, the two definitions
may be shown to be equivalent.
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Let X and F be topological spaces, F and G closed linear sub-

spaces of C(X) and C(Y) respectively. For feF and geG define

f(x)geC(Xx Y) by (/ (x) g)(x, y) = f(x)g(y). The closed linear span
in C(X x F) of all such functions is denoted by F®G and is called
the tensor product of F and G. Note that F (x)G may be identified
with a subspace of C(X; G) via the isometric isomorphism h -»k',
where h\x) = h(x, •)• More generally, let B be any Banach space,
and define (f®b)(x) =f(x)b(feF, beB). The tensor product of F
and I?, denoted Fξ$B, is defined as the closed linear span in C(X; B)
of all functions / (x) b.

2* Semidirect products of transformation semigroups* Let
(S, X), (T, Y) be transformation semigroups and S (?) Ta semidirect
product of S and T. Let ff Γ x I - ^ I b e a separately continuous
mapping satisfying

σ(tt', x) = σ(t, σ(t', x)) , σ(t, sx) = τ(t, s)σ(t, x) .

(In particular, (Γ, X, σ) is a transformation semigroup.) We shall
also require that the mapping (s, t) —> sσ(t, x): S x Γ—• X be continu-
ous for each x e l and that σ(l, ) is the identity map if T has an
identity 1. The semidirect product (S © T, X Xσ Y) of (S, X) and
(Γ, Y) is the transformation semigroup ( S © ! Γ , I x 7 ) , where the
action on X x F is defined by

0, t)(x, y) = (sσ(£, a?), ίy) .

Note that (S©T, XXσY) reduces to the direct product (S x T, X x Γ)
if for each ί e ϊ 7 , τ(ί, •) and σ(t, •) are the identity functions.

Taking cr = τ one immediately sees that S (τ) T, when considered
as a transformation semigroup (with respect to the usual action of
left multiplication), is a semidirect product of the transformation
semigroups S and T. We shall examine the a.p. properties of this
kind of semidirect product in §4.

Another interesting class of semidirect products can be gotten
as follows: Let G be a topological group, S and T closed subgroups
of G with S normal in G, G = ST, and S f] T = {1}. Let X = G/S
and Y = G/T (left coset spaces), and consider the usual actions of
S on X and T on F (e.g., if x = s'S then sx = sβ'S). Define an
action G on X x F by st(x, y) = {stxt~\ ty). Then (G, X x F) is a
semidirect product of (S, X) and (T, F) (where r(ί, s) = tst~ι and
σ(ΐ, a?) = txt~ι).

As a third example, let (S, X) and (T, X) be transformation
semigroups, where S and Γ are subsemigroups of a topological semi-
group and st — te for all s eS, te T. Define an action of the direct



120 H. D. JUNGHENN

product S x T on X x X by ((*, ί), (x, y)) -> (six, ty). Then (S x T,
X x X) is a semidirect product. If the elements of S and T fail
to commute with one another, but if S and T are subgroups of a
topological group G with S normal in G, then the same mapping
defines a semidirect product action of S © T on X x X, where
r(t, s) = teί"1. (In each case, σ(t, x) = ία?.)

Recall that a homomorphίsm from a transformation semigroup
(T, Y) into a transformation semigroup (T, X) is a continuous map
0: 3Γ-> X such that 0(ί#) == ί0(#) for all £ e T, # e Γ.

THEOREM 1. Let (S, X) αwd (T, IT) δβ equicontinuous flows and
(S © Γ, X Xσ Y) a semidirect product. Suppose that (Γ, X, σ) is a
homomorphic image of (Γ, Y). Then (S © T, X Xσ Y) is equicontinu-
ous, and if T is a group then E — E((S © T, XXσ Y)) is canoni-
cally isomorphic (as a topological semigroup) to a semidirect product
Ex © Eγ of Ex and Eγ.

Proof. We omit the straightforward verification that (S © T,
XXσY) is equicontinuous. Assume T is a group, let Θ: Y-+X
denote the given homomorphism onto X, and let θ: Eγ —> E(Ty X, σ)
be the unique continuous semigroup homomorphism satisfying
θ{Q(θ{y)) = θ(ζy) (ζeEγ,yeY) [8, p. 20]. Let ξeEXf ζeEγ and
define Ψ(ξ, ζ): X x Γ-> X x Y by F(ί, ζ)(aj, tf) = (£0(ζ)(αO, C»). If (β,)
and (ίy) are nets in S and T, respectively, such that 8tx —> ίa?(a? 6 X)
and t5y->ζy(y e Γ), then for all y,zeY, («„ ίy)(0(«), y) = (s^(ί^), ί^)->
(ί^(ζ^), ζy) = Ψ(ξ, ζ)(θ(z), y), hence Ψ(ξ, ζ)eE. A similar argument
shows that every member of E is of this form, hence W: Ex x
EY-^Έ is a surjection. Note that Ψ is also injective (by the
surjectivity of θ and the members of Eγ) and continuous (since Ex

is equicontinuous). Thus Ψ is a homeomorphism of Ex x Eγ onto E.
Next, for feiS'x and ζeEγ define p(ζ,ξ):X->X by p(ζ, ξ) =

θ(Qζθ(ζrι) (recalling that T, hence Eγ, is a group). Identifying
seS with the map it defines in Ex, and doing the same for teT,
we see that for all xeX,

(1) p(t, s)x = θ(t)sθ(rι)x = σ(t, sσ(Γ\ x)) = τ(t, s)x .

It follows from (1) and the equicontinuity of (S, X) and (Γ, Y) that
P(ζ9 f)a? = linii,i τ(ty, sέ)x (» 6 X) whenever f = lim^ s£ and ζ = lim,- iy

(point wise limits). Therefore^, -): Ex-+ Ex. It is readily verified
that ζ—> |θ(ζ, •) is a homomorphism from Eγ into Horn (JEZ), that p
is continuous, and finally that Ψ is a homomorphism from Ex (g) £7F

onto E.

REMARK. If s e S and teT are considered also as members of
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Ex and Eγ respectively, then

(2) Ψ(s, t)(x, y) = (sσ(t, x), ty) = (s, t)(x, y) .

It is in this sense that the word canonical is used in the statement
of Theorem 1.

The following examples show that the requirement of equi-
continuity cannot in general be relaxed. In the first example, (S, X)
is equicontinuous, (Γ, Y) is not. In the second example, the reverse
is true.

EXAMPLE 1. Let I = 7 = {̂ 6 C: \z\ = 1} and S = {1, s} c Xx,

where 1 is the identity mapping and s is conjugation. For each
positive integer n define fn: X—> X by

f (e^) = F™*' ° = r = 1/2

JnK ( β -^(2- 2 r)^ 1/2 ^ r ^ 1 .

Since s commutes with each fn it commutes with every member of
the group T of homeomorphisms of X generated by the fn. There-
fore the mapping ((a, ί), (x, y)) —> (stx, ty) is an action of the direct
product S x T on X x Y such that (S x T, X x Y) is a semidirect
product. Let / denote the pointwise limit of {/„}. If Ψ: Ex x
EY—>E is any continuous mapping satisfying (2), then Ψ(s, f) =
Ψ(l, / ) . Therefore E cannot be canonically isomorphic to a semi-
direct product of Ex and Eγ.

EXAMPLE 2. Let X and Y be as in Example 1, and take S to
be the group of all homeomorphisms of X, and T the subgroup of
all rotations. Define r: T x S -> S by τ(ί, s) = ί s r 1 and σ:T x X-+X
by <τ(ί, a?) = tx. Then ((β, ί), (a?, y)) —> (six, ίy) is the action oί S © T
o n l x Γ which defines (S© T, XXσY). Let /Λ be as in Example
1, and let gn denote counterclockwise rotation by π — 1/n. Then
limw,w_M/w(flrft(l)) does not exist, hence there can be no continuous
mapping Ψ: Ex x EY-^E satisfying (2).

Recall that a flow (S, X) is distal if x Φ xf implies the existence
of a net (s,) in S such that linii SiX and limbec' exist and are un-
equal. Equivalently, (S, X) is distal if and only if E(S, X) is a
group [8] The following result is immediate.

COROLLARY 1. Let (S, X) and (T, Y) satisfy all of the hypothe-
ses of the theorem. Then if (S, X) is distal, so is (S © T, XXσ Y).

The proximal relation in a flow (S, X) is the set PaXx X
defined as follows: (x, y) eP if and only if there exists a net (s€)
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in S such that liπ^ stx — lim* s^. In general P is only reflexive and
symmetric. It is transitive if and only if E(S, X) has a unique
minimal left ideal [8, p. 39].

COROLLARY 2. Let (S, X) and (Γ, Y) satisfy all of the hypo-
theses of the theorem. If the proximal relation is transitive in
(S, X) then it is transitive in (S © T, X Xσ Y).

Proof. Let / be the unique minimal left ideal in Ex. We show
first that Jx Eγ is a left ideal in E = Ex © Eγ. Let (£', ζ ' ) e J x Eγ

and (ft ζ) 6 E. Since p(ζ, •)• EX-*EX is an isomorphism, /θ(ζ, J) = /.
Hence (ft ζ)(f', C) - (#(£ £'), CO eJxEγ.

Let i£ be any minimal left ideal contained in J x Eγ. If
(ft ζ)eK, then (f^Γ 1, f), 1) = (ft ΓOfe ζ)eK, hence the set A =
{f e /: (ft 1) 6 K} is nonempty. Since A is a left ideal, A = J.
Therefore (ft 1) e JSΓ for every ζeJ. Let ξeJ, ζe Eγ, and let e be
any idempotent in J. Then p(ζ9 e) is an idempotent in J and J —
Jp(ζ, e), so (ft ζ) = (ξp(ζ, e\ ζ) = (ft ζ)(e, 1) e K. Therefore J x Eγ is
a minimal left ideal.

Now let I be any minimal left ideal in E and set B = {ξe Ex:
(ft l )e 7}. Then 5 is a nonempty left ideal in Ex, hence JczB. It
follows that J x Eγ Π I =£ Φ, so J x Eγ = I.

3* Almost periodic functions on semidirect products • Let
(S, X), (T, Y) be transformation semigroups such that S has an
identity 1, let (S © T, XXσ Y) be a given semidirect product, and
let

F = AP((S©T,XXσY)).

Define an action of S © T on X by

(s, t)x — sσ(t, x) .

Clearly AP(S © T, X) (x) AP(Γ, Γ) c ί7. We shall determine necessary
and sufficient conditions for equality to hold.

To this end we define the following auxiliary actions on X x Y:
a: (S©T)x(XxY)-^Xx Y, a((s, t\ {x, y)) = (8σ(t, x), y)
β:Tx(XxY)->XxY, β(fi, {x, y)) = (x, ty)
7:Tx(XxY)-^XxYt Ύ(t, (x, y)) - (σ(t, x), y).

Consider the following statements:
(A) F(zAP(S© T, Xx Y, a)
(B) FaAP(T, Xx Y, β)
(C) FaAP(T,XxY,j).
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LEMMA 1. If T contains a dense subgroup G, then (A), (B), and
(C) are equivalent.

Proof. That (A) implies (C) is clear, since AP(S © T, X x Y, a) c
A P ( Γ , I x Y, 7).

To prove that (B) implies (A), let / e f and (sj, ( ί j sequences
in S and Γ respectively. There exist subsequences (pn) of (sn) and
(qn) of (O, and geF, such that f(pnσ(qn, x), qny)-z$g(x, y) (where zj
means uniform convergence in the free variables). Since feFa
AP(T, X x Y, β) and G = T, for each n we may choose rneG such
that

( 3 ) \f(p»σ(rn, x), rny) - f(pnσ{Qn, x), QnV)\ < 1/n

and

( 4 ) \f(x,rny) -f(x,qny)\ <l/n

for all x e X, ye Y. Replacing y in (3) and (4) by rn~
ιy, and x in

(4) by pnσ(Qn, &), we see that f(pΛσ(rn, x), y) - g(x, r~ιy) zX 0 and
l/(JVKr., *), ») - /(P^fe, »), V)\ < 2/n. Since r̂ e AP(T, X x Γ, β) we
may assume without loss of generality that g(x, rήιy) it h(x, y) for
some h e C(X x Y). Then f(pnσ(gn, x), y) i% h(x, y), so feAP(S © T,
X x Y, a). The proof that (C) implies (B) is similar.

We omit the elementary proof (essentially a diagonalization
argument) of our next lemma.

LEMMA 2. Let K be a relatively compact subset of a Banach
space B, and A a uniformly bounded collection of linear operators
on B such that {ux: u e A} is relatively compact in B for each xeK.
Then each sequence (un) in A has a subsequence (vn) such that (vnx)
converges uniformly for xeK.

LEMMA 3. If(T, Y) has a dense orbit then F is isometric and
isomorphic to AP(T, Y; AP(S © T, X)) under the mapping / - > / ' ,
where f'(y) = (/•, y), if and only if conditions (A) and (B) hold.

Proof. Suppose conditions (A) and (B) hold, and let feF and
B = AP(S©T, X). Clearly, then, f'(y)eB, (yeY). Claim that
/ ' : Y—>C(X) is continuous. For let y'eY and {i} the directed set
of open neighborhoods of yf. If / ' is not continuous at y\ then
there exist ε > 0 and nets (yt), (cc*), with y^ei, such that for all i,
\f(%u Vi) — f(χi> v')\ > 2ε. For each i choose tt e T such that
\f(Xu tiVo) -/(&<, Vi)\ < ^ and tty0ei9 where yoe Y has dense orbit.
Then tty0 -> y\ and for all i,
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( 5 ) \f(xi9 yr) - f(xi9 tiy.)\ > ε .

Choose a subnet {Q of (ί<) and h e C(X x Y) such that /(a;, t]y,) zX
h(x, yQ). Then h(x, yQ) =/(», 2/')» hence /(a;, ί^0) =>/(&> #')> contradict-
ing (5). Therefore / ' 6C(Y, B).

To see that f'eAP(T, Y; B), let (tn) be a sequence in Γ and
choose a subsequence (gj such that f(x, qny) zt /i(cc, #), where ft e
C(X x Y). Then ||/'(ff.y) - h\y)\\ — 0 uniformly in^/eΓ.

Since / —> / ' is clearly a linear isometry, it remains to show
that if geAP(T, Y; B) and if f(x, y) = g(y)(x), then feF. Let (sn)
and (tn) be sequences in S and T, respectively. For each s e S, te T
define u(s, t): C(X) -> C(X) by u(s, t)h(x) = fe(sσ(ί, a?)). Then {w(β, t)^(y):
s e S91 e Γ} is relatively compact in J5 for each y e Y. Furthermore,
g(Y) c {g(ty0): t e T}, and the latter is compact in B. Therefore, by
Lemma 2 there exists a subsequence (pn, qn) of (sn, t%) and h e C(X x Y)
such that f(pnσ(qn, x), y)z$h(x, y). Since h'eAP(T, Y; B) we may
assume without loss of generality that h(x, qny) zX k(x, y) for some
k e C(X x Γ). Thus / ( p ^ ? . , x), qny) =? Λ(», 2/).

Conversely, if / - » / ' maps F onto AP(Γ, Γ; J5), then (B) obvi-
ously holds, and the argument of the previous paragraph up to the
last two sentences shows that (A) also holds.

The following lemma generalizes Corollary l(iii) of [11].

LEMMA 4. Let B be a Banaeh space. If (T, Y) contains a dense
orbit then AP(T, Y; B) = AP(T, Y) (g) B.

Proof. Clearly AP(T, Y) (x) Ba AP(T, Y; B). For each yeY
define e(y): AP(T, Y; B)->B by e(y)f=f(y). Let L = L(AP(T, Y; B\ B)
denote the space of bounded linear operators from AP(T, Y; B) into
B, and give L the strong operator topology. Then e:Y—>L is
obviously continuous. Let Z denote the closure of e(Y) in L. Since
e(Y)(zΠ{f(Y):feAP(T, Y; B)} and each /(Γ) is relatively compact
in B (because (T, Y) has a dense orbit), Z is compact in L. Define
u(fi) e L(AP(T, Y; B), AP(T, Y; B)) by (u(t)f)(y) = f(ty) (teT,ye Γ),
and let U denote the strong operator closure of u(T). Then an
argument similar to the one for Z shows that U is compact in that
topology [5, Theorem 3.2]. Now let geC(Z) and let (t%) be any
sequence in T. There exists a subnet (qt) of (ίn) and v e U such
that ufai) -> v in the strong operator topology. This implies that
9°^(QiV) — g(e(y)u(qi)) converges uniformly to g{e{y)v) in yeY.
Therefore goeeAP(T, Y) for every geC(Z).

Given ε > 0 and feAP(T,Y;B), let Z19 -- ,Zn be an open
covering of Z such that \\zf— wf\\ < ε whenever z, w e Zj (j = 1, ,n).
Let glf •••, gneC(Z) such that support (gficzZj and Σ?=i0i = l.
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[7, p. 170.] Choose zseZs and set bj = zsf9 h^^q^e. Then
11/ - Σ*=i ^ (x) bi\\ < ε, hence / 6 AP(T, Y) (x) B.

The following theorem is now immediate:

THEOREM 2. Let (S, X) and (T, F) δβ transformation semigroups
such that S has an identity and (Γ, Y) has a dense orbit. Then

AP((S ©T,XXσ Y)) = AP(T, Y) (x) AP(S © T, X)

if and only if conditions (A) and (B) hold.

COROLLARY 1. Let (S, X) and (Γ, Y) be as in Theorem 2. Then

AP(S x T, X x Y) = AP(S, X) <g> AP(T, Y) .

COROLLARY 2. Lβί (S, X) and (Γ, Γ) be as in Theorem 2, and
suppose that T contains a dense subgroup and (S, X) has a dense
orbit. If either (a) (T, Y) is almost periodic, or (b) X is compact
and (T, Xj σ) is distal, then

AP((S ©T,XXσ Y)) - AP(T, Y) (x) AP(S © T, X) .

Proof. By Lemma 1, it suffices to show that condition (B) holds.
Let f eF and suppose that (a) holds. For each x eX, then, f(x, •) 6
AP(T9 Y), and since f(X9 •) is relatively compact in C(Y) (because
(S, X) has a dense orbit), Lemma 2 implies that / e AP(T91x7, β).

Now suppose (b) holds. If (ίj is a net in T, there exists a
subnet (gy) and ξeE(T, X, σ) such that <7((fc, x) —> ξa? for all a? e X.
Fix α?0 G X and let xr — ξ~ιxQ. We may assume that f(σ(qjf x), qόy) z%
g(x, y) for some g e C(X x Y). Since (S, X) has a dense orbit, a? —•
f(x, -):X->C(Y) is continuous, hence f(σ(qjf x\ q5y) — /(a?0, 9,-y) zt 0.
Therefore f(x0, qsy) zX g(x', y), so f(x0, •) 6 AP(Γ, Y). Now proceed as
in first paragraph.

4* Almost periodic compactification of S © T. Let T be a
semitopological semigroup. An almost periodic compactification of
T is a pair (T", ?Γ), where I" is a compact topological semigroup,
and Ψ: T-+ T is a continuous homomorphism with dense image such
that Ψ*C(T) = AP(Γ) (where y*: C(Γ') -> C(Γ) is the adjoint mapping
f-* f °Ψ). Almost periodic compactifications always exist and are
unique up to isomorphism [1, 2, 5].

THEOREM 3. Let S, T be semitopological semigroups with
identities, and S © T a semidirect product. The following are
equivalent:
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(a) There exist compact topological semigroups S', T'\ con-
tinuous homomorphisms φ:S-+S', Ψ:T-+Tr with dense images;
and a jointly continuous multiplication on the compact topological
space S' x Tr such that {βr x T', φ x Ψ) is an a.p. compactification
of (S© T) {where (φ x Ψ)(s, t) = (φ(s), ¥(t))).

(b) AP(S© T) = AP(S© T,S) ® AP(T).
(c) Every member of AP(S© T) is a.p. with respect to both

of the actions

(S©T)x(Sx T) > S x T: ((*, t), (x, y)) > (sτ(t, x), y)

T x(S x T) • S x T: (ί, (x, y)) > {x, ty) .

If (a) holds then (I", Ψ) is an a.p. compactification of T, and
S'x T is a semidirect product S' @ T, where ρ(Ψ(t), φ(s)) = φ(τ(t, s)).

Proof. Statements (b) and (c) are equivalent by Theorem 2.
(b) implies (a): Let ((S © T)', θ) denote an a.p. compactification

of S © T, S' the spectrum of the C*-algebra AP(S © T, S), φ:S-*S'
the evaluation mapping (Φ(s):f—>f(s)), and (T',Ψ) an a.p. compactifica-
tion of T. By hypothesis there exists an isometric isomorphism
V: C(S') (8) C(T) — C((S © TY) such that V(g ®h) = (g(g) Kf9 (g e
AP(S©T,S),heAP(T)), where φ*(§) = g, ¥*(&) - h and θ*((g®
hT) = g®h. Since C(S')®C(T) = C(S' x T) there exists a home-
omorphism ψ (S © T)' -> S' x T such that η* = V. If s e S, t e T,
g e AP(S © T, S) and h e AP{T)9 then (g <g> h){η{θ(sf t))) = V(g (x) h)
iβ{βf t)) = {g® hΓ(θ(s, t)) = flr(β)Λ(ί) = (g ® Λ)(̂ («), ?Γ(ί)). It follows
that φxΨ = 7]oθ. Let S' x T" have the unique multiplication which
makes ΎJ a semigroup isomorphism. If s, sr eS then (φ(s)f W(l))(φ(sr),
ψ(l)) =<ηoθ(ss', 1) = (φ(ssf), Ψ(X)), hence φ(S) x Ψ(ϊ), and therefore
also S' x Ψ(l)f is a subsemigroup of S' x Tf. Thus we may define
multiplication in S' so that ^ and Sf have the required properties.

(a) implies (b): If (a) holds then in particular AP(S©T) =
(φ x Ψ)*C(S' x T) = (φx r)*C(S')(g)C(r). We shall show that
φ*C(S') =AP(S© T,S). Let geφ*C(S') and ((sif tt)) be any net in
S © T. Choose a subnet (s'jf t'3) such that (φ{s'3), Ψ(t'3)) converges to
some (xf y) eSr x T. Then since S' x T is a compact topological
semigroup, the first coordinate of (?>0; τ(4 s)), Ψ{t'3)) = (̂ (sj), ?P"(*J)) x
(Φ(s), Ψ(ΐ)) converges uniformly in s e S to the first coordinate of
(x9y)(Φ(8),W(ΐ)), and it follows that geAP(S© T, S). Conversely,
let geAP(S© T, S). Then g (x) 1 6 AP(S © T) so there exists he
C(S' x T) such that g®l=h<>(φχW)m If k(x) = Λ(ajf y(l)) then
fc 6 C(S') and g = & o 0. Therefore ^*C(S') = AP(S © Γ, S). A similar
argument shows that Ψ*C{T) = AP(Γ). Thus AP(S© Γ) -
AP(S© T, S)®AP(T), and (Γ', Ψ) is an a.p. compactification of T.
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It remains to prove that if (a) holds, then S' x f is a semi-
direct product. We may take S' to be the spectrum of AP(S © T, S)
and φ: S —> S' the evaluation map. For each g e AP(S © T, S) and
teT define v(t)geAP(S© T, S) by (v(fi)g)(8) = g((l, t)s) = g(τ(t, s)).
Then δ(t, x) — v(t)*x defines an action δ of on S' such that

(6) δ(t,φ(8)) = φ(τ(t,s)).

Since this action is equicontinuous, E = E(T, S', δ) is a compact
topological semigroup, and (6) shows that EczRom(S). Since
t->δ(t, •)• T—> E is a continuous homomorphism there exists a
continuous homomorphism y-> p(y, •)• T'—> E such that p(Ψ(t), •) =
δ(ί, •) [5]. In particular, /o(?"(t), Φ(s))=Φ(τ(t, s)). Since 0, F, and ^ x F
are homomorphisms, (0(β), Γ(t))(^'), ^(0) = (Φ(sτ(t, a')), Ψ{t)Ψ{t')) =
(Φ(s)p(Ψ(t), Φ(s')), Ψ(t)Ψ(t')) (β, s 'eS; ί, t' e Γ), and taking nets we see
that (x, y)(x', y1) = (aj/oft/, ίc'), »»') (», a?# 6 S'\ y, y' e T). Therefore

s' x T = s* ® r.
The following corollary is an extension of the main results of

[10].

COROLLARY 1. Let S and T be semitopological semigroups with
identities, S © T a semidirect product, and suppose that T contains
a dense subgroup G. Then in the notation of Theorem 3, (S' © T,
Φ X ψ) exists and is an a.p. compactification of S © T, and
AP(S ®T)= AP(S ©T,S)® AP{T).

Proof. For each teT define U(t): AP(S © T) -> C(S © T) by
U(t)f(sr,t') =f(τ(t,s'),t'). By Lemma 1 of §3, it suffices to show
that U(T)f is relatively norm compact for each feAP(S © T).
Since t —> U(t)f is continuous in the topology of point wise convergence
on C(S x T), it is enough to show that U(G)f is relatively norm
compact. For xeS© T let L(x) and R{x) denote respectively the
left and right translation operators on AP(S © T). If t e G then

U(t)f(s', tf) = L{1, t)R(l, r ι)Λ(l, * W , 1)

(s' eS,t'eT), hence by Lemma 2 applied to K = R(l, T)f and A =
{L(l, 4)22(1, ί"1): ί e(?}, any sequence (ΐj of G has a subsequence ( r j
such that U(rn)f converges in norm.

COROLLARY 2. [6, 11]. Let S, T be semitopological semigroups
with identities and a.p. compactifications (S', Φ), (Tf, ψ). Then
(Sf x T', Φxψ) is an a.p. compactification of the direct product SxT.

REMARKS. J. Berglund and P. Milnes have given an example
of two left zero semigroups S and T for which the conclusion of
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Corollary 2 is false [3]. Also, the corresponding result for the
weakly almost periodic compactification can fail even if S and T
are locally compact abelian topological groups. (See, for example,
[11], p. 663.)
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