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A REMARK ON INFINITELY NUCLEARLY
DIFFERENTIABLE FUNCTIONS

TEOFILO ABUABARA

There is an infinitely nuclearly differentiable function of
bounded type from E to R which is not of bounded-compact
type, when E — ll9 the Banach space of all summable se-
quences of real numbers.

Let E and F be two real Banach spaces. A mapping f:E-+F
is said to be weakly uniformly continuous on bounded subsets of E
if for each bounded set BaE and each ε > 0, there are φί9 φ2, •••,
φk 6 E' and δ > 0 such that if x, y e B, | φt{x) - φt{y) | < δ(i = 1, 2, . , k),
then \\f(x) — f(y)\\ < ε. CZ(E; F) is the space of m-times continuously
diίferentiable mappings f:E-^F satisfying the following conditions:

(1) dff(x)e^w(
jE;F)(xeE,j^m)

(2) djf: E —> &w (3Έ; F) is weakly uniformly continuous on
bounded subsets of E, where ^w(

mE; F)(m e N) is the Banach space
of continuous m-homogeneous polynomials which are weakly uniformly
continuous on bounded subsets of E, its norm being the one induced
on it by the current norm of ^{mE\ F). Set

Cΐ(E; F) = Π CZ(E; F) .
m=0

Cζ(E; F) is endowed with the topology τf generated by the
following system of semi-norms

feC:(E; F)suv{\\d>'f(x)\\;xeB, j S m} ,

where B runs through the bounded subsets of E.
For further details we refer to Aron-Prolla [1].

PROPOSITION 1 (Aron-Prolla [1]). If E' has the bounded appro-
ximation property, then &f{E\ F) is τΐ-dense in C%(E; F), for all
m ^ 1.

Hence, since \\P\\ ^ | | P | | ^ for every Pe^N(mE; F)(meN), then
cgNhe{E\ F) is contained in C™(E; F).

PROPOSITION 2 (Aron-Prolla [1]). Let f:E->F be a weakly uni-
formly continuous mapping on bounded sets. If BaE is a bounded
set, then f{B) is precompact.

PROPOSITION 3. WπbXh) ^ î VΛX that is, there is an infinitely
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nuclearly differentiable function of bounded type from lx to R which
is not of bounded-compact type.

Proof. Set

(e-ι/t t > 0
g:R >R t\ > g(t) = Q

Let us define

/ : Zx — > Λ (xn)n > f((xn)n) = Σ

Then / is an infinitely nuclearly differentiable function of bounded
type, but it is not of bounded-compact type. Indeed,

(a) / e i?jw(Zi). (i) / is bounded on bounded subsets of lx. More
precisely, there is ε > 0 such that if x e llf \\x\h ̂  R, then |/(a?)| ^
R(l + 1/ε). Indeed, since limt_01/ί g(f) = 0, there is ε > 0 such that
if | ί | < e , then g(t) <\t\. Now, if \\x\\x^Rt then we get that
card({w; \xn\ ̂  ε}) ̂  R/ε. Therefore, if \\x\h ̂  R, we have that

l/(aθl = Σ ^ f e ) = Σ e ~ 1 / % + Σ g(Xn) £ R/e + \\x\l £ R(l + 1/ε) .

Hence / is bounded of bounded sets.
(ii) feC00^). Indeed, for every fixed x = (xn)nell9 let K~

{xn}nczR and let

λ -times
4-oo ^ ^> : s

JLJk\Ju) — / j y x^n/^n ^ "n ^ ^\ yn ?

for k = 1, 2, •••, where βΛ = (0, 0, ••-, 0, 1, 0, •••)• Notice t h a t

Lk(x) e£?(%), since if M= snvn\g{k\xn)\, then \\Lk(x)(h19 K , Wll ^
Λf| l^i I LI |Λ2 Hi 11 T̂fo |lr. Let us show that dkf{x) exists and dkf{x) =
Lk(x) for k = 1, 2, , using induction on &. Indeed, for k = 1, since
<7 is uniformly differentiable on compact sets, given ε > 0 there is
δ > 0 such that

| ι ; | < § = = > \g(t + v) - git) - g'(t)v\ < ε\v\ ,

for every teK. Therefore,

hel19 \\h\\, <δ==>\f(x + Λ) - f(x) - L ^ Λ I <

I t follows t h a t df{x) = L^a;). Let us assume t h a t dkf(x) =

Then,
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\\dkf(x + h) - dkf(x) - Lk+ι(x)h\\

>τn

f k ) ( x n + ft.) - g{k\xn) - gUc+ί\xn)K)'en x e , x - x « ,

k\xn + ft.) - gw(xn) -

Now, since gik) is uniformly differentiate on compact sets, given
ε > 0, there is δ > 0 such that

\v\< δ — |</(fc)(£ + v) - ff<*>(«) - ^ f c + 1 )(ί)^i < e|

for every teK. Thus,

ΛeZ,, HλlL < δ==> \\dkf{x + h)-dkf{x) - Lk+I(x)h\\ <

Hence, dk+1f(x) -= Lk+ί(x). It follows that / e C 0 0 ^).

(iii) d*f(x)^= Σί=i ^ ( & )(^) el e ^ ( % ) .
Moreover, 5*/ h —> ^V(fcίi) is bounded on bounded sets. Indeed,

since lim^l/ί*gik)(t) — 0, there is ε > 0 such that if | ί | < ε , then
\g{k)(t)\ <\t\. N o w , i f xelίf \\x\\, ^ i 2 , t h e n c a r d ({n; \ x n \ ^ ε } ) ^ R/ε.
Therefore, if Wx]]^ R, we have that

Σ

where if P=2'α f t2*, then | P | = J | α n | 2 * . Hence the assertion follows.
(iv) The mapping dkf: lt —>• ̂ N{kl^) is diίferentiable of first order

when ^B

ίΓ(*Zι) is endowed with its nuclear norm. Indeed, set

for k = 0,1, 2, . Then

\\d"f(x + h)-dkf(x)- Tk(x)h\\N

+ 0 0

^ Σ \oM(χ» + K) - 9{k)(χJ -

As in (iii), given ε > 0, there is δ > 0 such that

hell9 \\h\l < δ ==> \\dkf{x + h) - dkf(x) - Tk(x)h\\N < ε

Hence, d{dkf){x) = Tk(x), when &*N(%) is endowed with the nuclear
norm. Moreover, the mapping Tb: lx —> Sf{lύ ^N(%)) is continuous,



TEOFILO ABUABARA

for k = 0,1,

Tk(xΛ

Therefore,

II Tk{x + h)

2, --

- h) -

-τt

- τh

(x)\

Indeed,

(x) = Σ

1 = sup^
H oo

Σ
+ OO

^ sup
l l l l

K) -

- g'k+ιg'k+ι\xn))wn ek

n

where ^ 6 (a?,, α?» + K). Set α =
set δ = min {s/α, 1}. Then,

helί9
Tk(x

lg{k+2)(v)\- Given ε > 0,

Tk(x) ε .

It follows that Tk is continuous. Thus, Tk is differentiate of first
order.

(i)-(iv) imply / e ^ f t ) .
(b) fϊ&mΛli)- Indeed, d/(βj = β^ e.. Therefore, d / ^ ) is

not a precompact subset of l[, where Bt is the unit ball of ίx. Hence
the assertion follows of Propositions 1 and 2 above.

Hence Proposition 3 follows.
I thank Richard Aron for valuable conversations.
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