A CHARACTERIZATION OF R^2 BY THE CONCEPT OF MILD CONVEXITY

SJUR D. FLAM

Let S be an open, connected set in a locally convex, Hausdorff topological vector space L. If the boundary of S contains exactly one point not a mild convexity point of S and this point is not isolated in $\operatorname{bd} S$, then $\dim L = 2$.

NOTATION. [S] denotes the convex hull of S. $\langle S \rangle$ denotes the interior of [S] relative to the affine closure, aff S, of S. int S, cl S, and bd S represent the interior, closure and boundary of S, respectively, while ext S and exp S denote the sets of extreme and exposed points of S. codim S denotes the codimension of aff S.

DEFINITION. Let S be a set in a topological vector space L. A point x is called a mild convexity point of S if there do not exist two points y and z such that $x \in \langle y, z \rangle$ and $[y, z] \sim \{x\} \subseteq \text{int } S$. [1].

The proof of Theorem 2 proceeds through some lemmas. Easy proofs are omitted.

LEMMA 1. A topological vector space over R induces a locally convex, relative topology on every finite-dimensional linear subspace. Hence the relative topology on every finite-dimensional subspace is coarser than the standard Hausdorff topology on the subspace.

Proof. Suppose the subspace M of L has finite dimension m and U is an arbitrary 0-neighborhood of L. Choose a balanced 0-neighborhood V such that

$$\sum_{1}^{m+1} V \subseteq U$$
 .

Then by Caratheodory's theorem [1]

$$V \cap M \subseteq [V \cap M] \subseteq U \cap M$$
.

LEMMA 2. Let S be an open set in a topological vector spaces. Suppose $[x, y] \cup [y, z] \subseteq S$ and $[x, y, z] \cap bd S$ contains mild convexity points of S only. Then $\langle x, y, z \rangle \subseteq S$.

Proof. If x, y, z are collinear then there is nothing to prove; otherwise S intersects aff $\{x, y, z\}$ in a set which is open relative to the standard Hausdorff topology by Lemma 1. Therefore

 $[x, y, z] \sim S$ is compact relative to this topology and so is its convex hull C. It is known that C = [ext C]. If $\text{ext } C \nsubseteq [x, z]$ then the inclusion $\text{ext } C \subseteq \text{clexp } C$ demonstrates the existence of a point $e \in$ $\exp C \cap \langle x, y, z \rangle$. Since $\exp C \subseteq \text{ext } C \subseteq [x, y, z] \sim S$ this point belongs to bd S and is not a mild convexity point of S. This contradiction implies $\text{ext } C \subseteq [x, z]$ and the conclusion follows.

LEMMA 3. If the nondegenerate interval [x, y] does not intersect an affine subspace M of a vectorspace, then there is a point x' such that $x \in \langle x', y \rangle$ and $[x', y] \cap M = \emptyset$.

LEMMA 4. If $[x, y] \cup [y, z] \cup [z, w]$ is contained in an open set belonging to a topological vector space over \mathbf{R} and u is an arbitrary vector, then y, z may be moved somewhat in the direction of u to the points y', z' so that $[x, y'] \cup [y', z'] \cup [z', w]$ still belongs to the same open set.

LEMMA 5. If S is an open, connected set in a topological vector space over \mathbf{R} and T is a subset of the same space with codim $T \geq 2$, the $S \sim T$ is polygonally connected.

Proof. S is polygonally connected. If an interval [y, z] intersecting aff T belongs to a polygonal path, then by Lemma 4, y and z may be replaced by y' and z' so that the new path is in $S \sim \text{aff } T$.

LEMMA 6. Let S be an open, connected set in a topological vector space over **R**. Suppose that the set N of points in bd S which are not mild convexity points of S is empty or has codimension at least 3. Then if $x, y \in S$ and $[x, y] \cap aff N = \emptyset$ we have $[x, y] \subseteq S$.

Proof. By Lemma 5 there is a polygonal path in S from x to y which does not intersect aff $(N \cup x) \sim x$. If $[x, x_1]$, $[x_1, x_2]$ are the first intervals in this path, then by application of the Lemmas 3 and 2 (in that order), $[x, x_2]$ lies in S and clearly does not intersect aff $(N \cup x) \sim x$. Proceeding in this manner we eventually obtain $[x, y] \subseteq S$. A digression is given here.

THEOREM 1. Suppose S is an open, connected set in a topological vector space over R, and suppose bd S contains only mild convexity points. Then S is convex.

REMARK. This theorem which follows immediately from Lemma 6 is established in [1] with the additional assumption that the space is Hausdorff.

A CHARACTERIZATION OF R² BY THE CONCEPT OF MILD CONVEXITY 373

LEMMA 7. Let S be an open, connected set in a locally convex Hausdorff space over R. Suppose the set N of points in bd S which are not mild convexity points has the property codimcl aff $N \ge 3$. Then for every $x \in N$ there exists a closed hyperplane H and an xneighborhood U such that $U \sim H \subseteq S$.

Proof. Choose two points x_1 , x_2 both different from x such that $x \in [x_1, x_2] \subseteq S \cup x$. The set (cl aff N) $\cup x_1$ is contained in a hyperplane H. Call the corresponding open halfspaces H^+ and H^- respectively. Choose an x_i -neighborhood $V_i \subseteq S$. Then the union of $U^+ = [(V_1 \cup V_2) \cap H^+]$, U^- (defined similarly) and H gives the required U by Lemma 6.

The announced result may be stated forthwith.

THEOREM 2. Let S be an open connected set in a locally convex, Hausdorff space over \mathbf{R} . If bd S contains exactly one point which is not a mild convexity point of S and this point is not isolated in bd S, then the dimension of the space is 2.

It is trivial to exhibit such a set in R^2 , and it is easy to show that the set is starshaped.

Reference

1. F. A. Valentine, Convex Sets, McGraw Hill (1964).

Received January 24, 1978 and in revised form April 18, 1978.

UNIVERSITY OF BERGEN N-5014 BERGEN, NORWAY