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CHARACTERIZATION OF A CLASS OF TORSION FREE
GROUPS IN TERMS OF ENDOMORPHISMS

E. F. CORNELIUS, J R .

Characterizations in terms of endomorphisms and quasi-
endomorphisms are obtained for torsion free abelian groups
with the property that each pure subgroup of finite rank is
a quasi-summand. A group has this property if and only if
its ring of endomorphisms with finite rank is 2-fold cί-transi-
tive, and hence λ>fold (^-transitive for every k. This property
is equivalent to complete decomposability for countable groups
the type set of which satisfies the maximum condition. A
stronger version of transitivity is required to describe
separable groups the type set of which satisfies the maximum
condition; to insure generality, it is shown that the maximum
condition does not imply countability of the type set, a result
of independent interest.

!• Introduction and preliminaries* All groups considered here
are subgroups of a fixed vector space V over the rational number
field Q; we shall refer to these torsion free abelian groups simply
as "groups". G will always denote a full subgroup of V, i.e., one
with torsion quotient V/G. V is thus the divisible hull of G and
r(G) = r(V), where r denotes rank. L(V) denotes the algebra of
linear transformations of V. E{G) is the endomorphism ring of G
and F(G) is the pure ideal of E(G) consisting of all endomorphisms
with finite rank. Similarly, QE(G) is the quasi-endomorphism algebra
of G and QF(G) is the ideal of elements having finite rank. Familiarity
with the concept of quasi-isomorphism is assumed; a complete back-
ground may be obtained from [2, 3, 9, 10]. g , —, = denote quasi-
contained, quasi-equal, and quasi-isomorphic, respectively. We consider
QE(G) = {feL(V):fG QG}. Since each element of E(G) induces a
unique linear transformation on V, we regard E(G) C QE(G) and use
the same symbol to denote an endomorphism of G and also its induced
linear transformation. All sums of groups are direct; e.g., notation
such as G == A + B implies that A and B are disjoint groups.

We take the following perspective. For feQE(G), define the
final rank of / to be the minimum among the cardinal numbers
r(fnG), n = 1, 2, . We assert the

PROPOSITION 1.1. Each quasi-endornorphism of G with finite
positive final rank (especially any such endomorphism of G) induces
a quasi'decomposition of G.
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Proof. It suffices to consider / e E(G) with 0 < r(/nG) = r(fn+1G) =
.. - < oo for some positive integer n. fn: fnG —• fnG is thus a
quasi-automorphism of fnG [9, p. 553, Th. 4.2]; suppose mfnG S
/2ί lG for the positive integer m. Let 6 e G; m/%6 = /2 wα for some
aeG. Write m& = (mb - fna) + fna; (mb - /%α) e ker fn and /Λα 6
f*G; note ker /• Π fnG = 0. Thus G = ker /• + /%G. (We do not
exclude the possibility r(G) = r(/G) < <*>, i.e., the case when / is a
quasi-automorphism of a group with finite rank.)

Thus a group with "many" quasi-endomorphisms of finite final
rank has "many" quasi-decompositions. Conversely, we exploit the
correspondence between quasi-decompositions of G and idempotents in
QE(G) [9, p. 551, Lemma 2.5]. Most proofs here involve the con-
struction of a function which induces some decomposition. We seek to
characterize summand properties of groups in terms of a "sufficiency"
of mappings. This paper is a continuation of the work begun in
[4], where groups in which each pure subgroup of finite rank is a
quasi-summand were first studied. There they were described as
quasi-separable groups with linearly ordered type sets.

REMARK 1.2. The following conditions on the group G are equi-
valent:

(1) Each pure subgroup of finite rank in G is a quasi-summand.
(2) Each pure subgroup of rank one in G is a quasi-summand.
(3) QE(G) contains a projection onto each one-dimensional

subspace of V.
(4) QE{G) contains a projection onto each finite-dimensional

subspace of V.
We frequently employ this equivalence, especially (3); cf. [5].

Each of these properties is inherited by quasi-summands and pure
subgroups.

Before pursuing the main results, we prove a lemma of general
utility. In order to accomplish this, additional notation is introduced.
For aeG, let t(a) or tG(ά) denote the type of the element α; if G is
homogeneous, t(G) also may denote the type of the (nonzero) elements
of G. Recall that type is invariant under quasi-isomorphism [3, p.
26, Lemma 7.1]. Let T{G) denote the type set of G. For the type
τ, set G(τ) = {a e G: t(a) ^ τ} and let G*(τ) be the subgroup of G
generated by {a e G: ί(α) > τ). G(r) and G*(τ) are thus fully invariant
subgroups of G. If H is a pure subgroup of G, then H(τ) = H Π G(τ).
Finally, if G*(τ) is pure in G, let Gτ = G(τ)/G*(τ).

LEMMA 1.3. (1) If G = A + B, then G(r) = A(τ) + B(τ) and
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G*(r) = A*(τ) + B*(τ)9 for every type τ.
( 2 ) Suppose T(G) is linearly ordered. If a and b are elements

of G such that t{a) < t(jb), then t(a + b) = t(a).
(3) If T{G) is linearly ordered, then for every type τ, G*(τ) is

a pure subgroup of G and H*(τ) = H Π G*(τ) for H pure in G.

Proof. (1) holds because type is a quasi-isomorphism invariant
and (A + B)(τ) = A(τ) + 5(r), (A + 5)*(τ) = A*(τ) + 5*(r) [1, p. 75, 3].

In (2), ί(α + 6) ̂  ί(α) and certainly £(δ) > ί(α + b). Hence

t(α) - t((α + b) - b) ̂  t(α + 6) Λ ί(6) = ί(α + 6) .

(3) now follows from (2).

2. ^^Transitivity* Our immediate goal is to characterize groups
with the summand property in terms of endomorphisms. Toward
this end, we introduce the concept of cί-transitivity.

DEFINITION 2.1. Let S be an independent set of elements in G
and suppose that for each type r, the pure subgroup generated by
those elements in S of type τ is homogeneous. We shall then call
S ^-independent.

PPOPOSITION 2.2. Let G have finite rank n. Then G contains
a ct-independent set of n elements.

Proof. Set G1 = G, let τγ be a maximal type of G1 [6, p. 148,
Lemma 42.1], and let {αu : j = 1, •• ,Λ1} be a maximal independent
subset of G^rJ. Let G2 be a subgroup of GL maximal with respect
to disjointness from G^rJ, take r2 to be a maximal type of G2, and
let {a2j: j = 1, •• ,fc2} be a maximal independent set in G2(τ2). By
continuing in this fashion, we obtain a cί-independent set which is
also a maximal independent subset of G.

DEFINITION 2.3. A subring R of E(G) is fc-fold cί-transitive if
for every j <̂  k the following condition is satisfied: for each ct-
independent set of elements a19 , a3- in G and each set of elements
bίf , bj in G which satisfy t(at) ̂  t(bτ), i — 1, , j , some / e R
maps at to njbu nt a positive integer, i = 1, , j .

Observe that if J?(G) is &-fold cί-transitive, then so is E(H) for
H a quasi-summand or pure, fully invariant subgroup of G.

PROPOSITION 2.4. If E(G) is 2-fold ct-transitive, then any two
elements of G have comparable types.
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Proof. Suppose the nonzero elements a and δ of G have distinct
types. If t{a - δ) = ί(δ), then

ί(α) = ί((α - δ) + δ) ̂  ί(α - δ) Λ t(δ) = t(δ) .

If ί(α — δ) and ί(&) are distinct, some / e E(G) maps α — δ to 0 and
δ to nb, n > 0. Then

t(a) ^ ί(/α) = t(fb) = ί(wδ) = ί(δ) .

For aeG, a denotes the coset of a in some specified quotient
group.

LEMMA 2.5. Suppose T(G) is linearly ordered.
(1) A subset S of G is ct-independent if and only if for each

type τ, those elements in S of type τ have cosets independent in
Gτ.

(2) If G has finite rank n, then every ct-independent set can
be extended to one containing n elements.

(3) Let G be completely decomposable of finite rank n and let
QΊI '' * 9 a% δβ ct-independent in G. If At denotes the pure subgroup
generated by au then G == Ax + + An.

Proof. By Lemma 1.3 (3), G*(τ) is a pure subgroup of G, so (1)
holds.

For (2), let S be a ^-independent subset of G and suppose T(G) =
feu *> τι) [6, P 148, Lemma 42.1]. Let Si = {au : j = 1, , ΪJ be
those elements in S of type τu i — 1, , I. By (1) above, {ai3 : j =
1, •••, ί j is an independent set in Gu, which can be extended to a
maximal independent subset of Gu, {aiό: ai3- e G(τt), j = 1, , mj, i =
1, , L Now {atji j = 1, , m/, i = 1, , 1} is a cί-independent
set containing S, and it is also a maximal independent subset of G.

In (3), we may assume t(Ax) ̂  ^ ί(AJ. For nonzero δ e A =
A1 + + An, write δ = bβ + + bn, bt e Ai9 i = i, , n, with
δ, Φ 0. Then ίA(δ) = tA(fis) = ίβ(δ, ) = ίG(δ); the last equality holds by
Lemma 1.3 (2). The conclusion now follows from [1, p. 97, Lemma

DEFINITION 2.6. A subring R of E{G) is called /b-fold transitive
if for every j ^ k independent elements alf , a5 of G and i
arbitrary elements bu , δ̂  in G, there exists / e R such that fat =
^ δ o ^i a positive integer, i = 1, , j .

REMARK 2.7. (1) Let R, alf •••, ajf and δx, •• , δ i be as in

Definition 2.3 or 2.6. Then there exists f eR such that /αί = nbί9
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i = 1, , j , for a single positive integer n. For by definition, there
exists fi 6 R such that /,(&< = mΛ, mt > 0, and / ^ = 0 for ϊ ^ i,
i = 1, , j . Now / = Σi-i IL*i ^ / * e ϋί satisfies fat = (mx rn^&i,
i = 1, -- , i .

(2) Definition 2.6 is thus consistent with [4, p. 610, Def. 3.5].
( 3 ) We retain the terminology in Definition 2.6 for two reasons.

First, it is the correct interpretation in terms of group endomorphisms
of jfc-fold transitivity in L(V) [4, p. 610, Prop. 3.6]; our definition
of transitivity in L(V) is standard [8, p. 32]. Secondly, we want
all properties of G, such as homogeneity, to be consequences of
properties of E(G). This latter desire motivates our definition of
cί-transitivity in terms of cί-independent sets.

(4) It might seem more natural to define cί-transitivity in terms
of "quasi-pure independent" sets, i.e., independent sets alf •• , α i

such that the pure subgroup generated by all the α/s is quasi-equal
to the direct sum of the pure subgroups generated by the individual
elements. By Lemma 2.5 (3), if T(G) is linearly ordered, then a ct-
independent set is in fact "quasi-pure independent", and comparability
of types is a consequence of 2-fold (^-transitivity, by Proposition
2.4. However, there exists an abundance of groups in which the
only "quasi-pure independent" sets consist of single elements, e.g.,
pure subgroups of the p-adic integers. For pathological examples
even among groups of rank two, consult [3, pp. 28-30]. Proposition
2.2 guarantees the existence of nontrivial cί-independent sets.

LEMMA 2.8. If R is a 2-fold ct-transitive subring of E(G), then
R induces a 2-fold transitive subring R in E(GT), for all relevant
types τ. Gτ is thus homogeneous and R is k-fold transitive for
every k.

Proof. That R induces a subring in E(GT) follows from Proposi-
tion 2.4, Lemma 1.3(3), and the full invariance of G(τ) and G*(τ).
To see that R is 2-fold transitive, let au a2 be independent in 6?Γ and
let blf b2 be arbitrary, a19 a2, blf b2 all in G(τ). By Lemma 2.5 (1), aL

and α2 are cί-independent (of type z) and ί(α<) ̂  *(&<), i = 1, 2. By
hypothesis, some f eR maps α* to nfi^ nt > 0, i = 1, 2, so the induced
map sends at to ntbi9 i = 1, 2. R is thus 2-fold transitive. By [4,
p. 610, Prop. 3.6] and [4, p. 607, Remark 2.1], R is Λ -fold transitive
for every k.

We proceed to show that 2-fold cί-transitivity implies A -fold ct-
transitivity for every k.

LEMMA 2.9. Let R be a 2-fold ct-transitive ring of endomor-
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phisms of G and let aif , ak be ct-independent elements of G with
£(αx) <J <J t(ak). Then there exists f e R such that faι — nalf n a
positive integer, and fai = 0, i = 2, , k.

Proof. Suppose we have established this for k — 1 ^-independent
elements, k — 1 ^ 2, and let a19 , ak be k ^-independent elements
arranged so that ί(αj ̂  <i t{ak). We distinguish two cases; first,
*(α f c)>ί(α1). By our induction hypothesis, there exists / 6 R sending
αx to naλ and at to 0, i = 2, , & — 1. If /α* = 0, / suffices. If
fak Φ 0, then ί(αx) < ί(αfc) <; t{fak), so by the 2-fold ct-transitivity
of i2, some # ei? maps αx to m ^ , m > 0, and /α f c to 0. Now #/ has
the desired property. Secondly, if t(ak) = ί(αt) = τ, we consider the
ring JR induced by R in E(GT). By Lemma 2.5 (1), the cosets a19

-- ,ak are independent in Gτ. By Lemma 2.8, some feR maps αx

to nax and αέ to 0, i = 2, , fc. If / e R induces f, we have / α x =
^α x + b19 b, e G*(τ), and /α< = 6€, &< e G*(τ), i = 2, , fc. Let J5 be the
pure subgroup of G generated by b19 , δ/c; if B = {0}, / suffices.
Otherwise, by Proposition 2.2, there exist cl9 '- ,cm cί-independent
elements of B with m = r(B). We now apply the previous case to
Gi, ci^ ' * '> Cm, (even if m = fc). There exists g e R such that gaγ = Zαx

and g^ = 0, i = 1, - - -, m; gf has the desired property.

THEOREM 2.10. If R is a 2-fold ct-transίtive sύbring of E(G),
then R is k-fold ct-transitive for every k.

Proof. Assume R is (k — l)-fold cί-transitive for k — 1 ^ 2, let
αx, , αΛ be cί-independent in G, and let 6^ , bk be elements of G
satisfying t{a^) ̂  t(bi)9 i — 1, •••, k. By Proposition 2.4, we may
assume ί(cθ ̂  ••• ̂ t(ak). By the induction hypothesis, some feR
satisfies /α* = ^6^, % > 0, i = 2, , fc. Lemma 2.9 shows that there
exists g e R such that gaγ = nau gai = 0, ΐ = 2, , k. Finally, if
heR maps ax to m(6i. — /α x ) , then % + mnf eR sends αL to (mn)b1

and α, to {mnn^b^ i = 2, , k.

PROPOSITION 2.11. If E{G) is 2-fold ct-transitive, then every
pure subgroup of finite rank in G is completely decomposable.

Proof. Let A be a pure subgroup of finite rank in G; we show
that each pure subgroup B of rank one in A is a quasi-summand of
A. Let b1 be a nonzero element of B. According to Proposition 2.4
and Lemma 2.5 (2), T(G) is linearly ordered so b1 may be extended
to a (^-independent set b19 , bn which is a maximal independent
set in A. By Theorem 2.10, there exists an endomorphism / of G
such that /&! = mbu m > 0, and /&* = 0, i — 2, , n. Observe that
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that the restriction of / to A is an endomorphism of A and thus
f/m is a quasi-endomorphism making B a quasi-summand of A [4,
p. 607, Lemma 2.2]. The complete decomposability of A now follows
from [4, p. 605, Lemma 1.5] and [4, p. 605, Th. 1.6].

COROLLARY 2.12. / / E(G) is 2-fold ct-transitive, then every
countable, homogeneous, pure subgroup H of G is completely decom-
posable.

Proof. By Proposition 2.11, every pure subgroup of finite rank
in H is completely decomposable. The conclusion follows from the
homogeneity of H and [4, p. 609, Lemma 3.1].

We now relate ctf-transitivity in E{G) to density in the finite
topology of QE(G).

REMARK 2.13. Let R be a subring of L(V) and equip R with
the finite topology [8, p. 28, Ch. II §3]. Since G is full in V, a
basis for the neighborhood system of / e R consists of all sets of
the form {geR: ga = fa for all aeH}, where H is a pure subgroup
of finite rank in G. Obviously, if / and g agree on a maximal
independent set in H, then they are equal on all of H.

Throughout this paper, topological terms refer to the finite
topology of some specified ring of endomorphisms. For a subring
R of E(G), QR denotes the subalgebra of QE(G) generated by R.
Recall [4, p. 604, Def. 1.1] that G is quasi-separable if every finite
subset of G is contained in a completely decomposable quasi-summand;
recently it has been shown sufficient for each single element to be
so contained [5].

LEMMA 2.14. (1) If R is a dense subring of E(G)9 then QR is
dense in the finite topology of QE(G).

( 2 ) Let R be a subring of E{G) and suppose that E{G) is 2-fold
ct-transitive. Then R is 2-fold ct-transitive if and only if QR is
dense in QE(G).

(3) QF(G) is dense in QE{G) if and only if each finite subset
of G is contained in a quasi-summand of finite rank.

Proof. For (1), let / 6 QE(G) and let H be a pure subgroup of
finite rank in G. Suppose nf e E{G) for n > 0. By hypothesis, there
exists geR which agrees with nf on H. Then gfn e QR agrees with
/ on H, and so QR is dense in QE(G).

In (2), the sufficiency is straightforward. For the converse, let
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/, H, and n be as in the proof of (1). By Proposition 2.2, H contains
a cί-independent set alf , am which is also a maximal independent
set in H. By hypothesis and Remark 2.7 (1), there exists geR such
that gat — l((nf)at), i = 1, , m, for some positive integer I. Thus
g/(ln) 6 QR agrees with / on H, and so QR is dense in QE(G).

In (3), the sufficiency is likewise clear. To establish the necessity,
it suffices to show that each pure subgroup H of finite rank in G is
contained in a quasi-summand of finite rank. By density, there exists
/ 6 QF(G) which agrees on H with the identity mapping of G. As
in Proposition 1.1, / induces a quasi-decomposition of G with H
contained in a quasi-summand of finite rank.

COROLLARY 2.15. // QF{G) is dense in QE(G) and every pure
subgroup of finite rank in G is completely decomposable, then G is
quasi-separable.

Proof. By Lemma 2.14 (3), each finite subset of G is contained
in a quasi-summand of finite rank, which may be assumed to be a
pure subgroup of G [2, p. 95, Lemma 9.4], and so completely decom-
posable. G is thus quasi-separable.

REMARK 2.16. (1) The converse of Lemma 2.14 (1) is false.
Consider the group S [4, p. 607] in the light of [4, p. 611, Th. 3.10
(4)]. Obviously F(S) cannot be dense in E(S).

(2 ) The converse of Corollary 2.15 is also false, since there exist
completely decomposable groups of finite rank which contain inde-
composable pure subgroups [6, p. 166].

3* Main theorems* By using the machinery developed in §2,
we now prove the principal results.

THEOREM 3.1. The following conditions on the group G are
equivalent:

(1) Each pure subgroup of finite rank in G is a quasi-summand.
(2) G is quasi-separable with linearly ordered type set.
(3) F(G) is 2-fold ct-transitivef and hence k-fold ct-transitive

for every k.
(4) T(G) forms a chain, every pure subgroup of finite rank

in G is completely decomposable, and QF(G) is dense in the finite
topology of QE(G).

(5) T(G) forms a chain, every pure subgroup of finite rank
in G is completely decomposable, and F(G) is one-fold ct-transitive.

( 6 ) For each pure subgroup H of finite rank in G, there exists
an endomorphism f of G such that fG = H and fH Φ {0}.



CHARACTERIZATION OF A CLASS OF TORSION FREE GROUPS 349

Proof. As mentioned previously, the equivalence of (1) and (2)
is established in [4, p. 606, Cor. 1.7]; it is included here for the sake
of completeness.

To see that (1) implies (3), let aί9 α2 be cί-independent elements
of G and let b19 b2 be elements of G satisfying t(at) ^ t(bt), i = 1, 2.
Let Alf A2, Bl9 B2, and A denote the pure subgroups of G generated
by aίf a2, blf b2f and At + A2, respectively. By hypothesis, A is a
quasi-summand of G and A == Ax + A2, by Lemma 2.5 (3); suppose
G = A, + A2 + C with nG Q A, + A2 + C for n > 0. Let ^ and e2

be the idempotents in E(AX + A2 + C) projecting A1 + A2 + C onto
Ai and A2, respectively. By [4, p. 611, Lemma 3.9], there are maps
/<: At —> Bt sending at to nfii for some positive integer ni9 i = 1, 2.
Now (jfo + />2)w 6 F(G) maps α* to (nnt)bi9 i = 1,2, so ί^G) is 2-fold
ct-transitive, and hence &-fold cί-transitive for every k by Theorem
2.10.

That (3) implies (2) follows from Propositions 2.4, 2.11, Lemma
2.14 (2) and (3), and Corollary 2.15.

A proof that (3) and (4) are equivalent is implicit in the preceding
arguments.

The equivalence of (l)-(4) shows that (1) implies (5).
Conversely, assume (5). Let U be a one-dimensional subspace of

V and let a be a nonzero element of A = U Γ) G. Let / e F(G) send
a to a positive multiple of itself, na, and let B be the pure subgroup
of G generated by /<?. By assumption, B is completely decomposable
with linearly ordered type set and so A is a quasi-summand [4, p.
605, Th. 1.6], B = A + C. Suppose mB £ A + C for m > 0 and let
e e E(A + C) project A + C onto A Then ef/n e Q£7(G) projects F
onto U. According to Remark 1.2 (3), (5) implies (1).

In turn, suppose (1) holds. Let H be a pure subgroup of finite
rank in G; by hypothesis H is a quasi-summand and in fact a com-
pletely decomposable one [4, p. 606, Cor. 1.7], say G == H+C. Suppose
nG Q H + C for n > 0 and let e denote the projection of H + C onto
if. Observe that e(nG) = i ϊ [2, p. 96, Cor. 9.6] via some map g; gen
is then an epimorphism of G upon H which is nonzero on H.

Finally, we show (6) implies (1). Let U be a one-dimensional
subspace of V. By assumption, there exists an endomorphism / of
G which sends G onto A — G Π U with fA Φ {0}. Let a be a nonzero
element of A and suppose fa = λα, λ a nonzero rational number.
Now f/X e QE{G) is a projection of V onto U, so (1) is true by Remark
1.2 (3).

COROLLARY 3.2. Suppose that G satisfies any (and hence all) of
the conditions of Theorem 3.1. Then G(τ) is homogeneous (of type τ)
and quasi-separable, for each τ e T(G).
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Proof. That G(τ) is homogeneous and quasi-separable follows
from Theorem 3.1, Lemma 2.8, and [4, p. 610, Remark 3.7 (4)]. It
remains to show that each nonzero element has type τ. Pick a e
G{τ), a g G*(τ). Let A be the pure subgroup of G generated by a
and let H be that pure subgroup generated by a and G*(τ). Since
the summand property is inherited by pure subgroups, H == A + G*(τ).
Thus H/G*(r) ± A, so a has type τ in G(τ) because type is invariant
under quasi-isomorphism [3, p. 26, Lemma 7.1].

In [4, p. 610, Remark 3.7 (5)], it is proved that a countable group
G is homogeneous and completely decomposable if and only if E(G)
is 2-fold transitive. This result can be extended to a class of countable
groups with 2-fold cί-transitive endomorphism rings.

LEMMA 3.3. Let E(G) be 2-fold ct-transitive and suppose that
for the type τ, Gτ is countable and homogeneous of type τ. Then
G*(τ) is a direct summand of G(τ).

Proof. By Lemma 2.8, E(Gτ) is 2-fold transitive and so completely
decomposable, by the aforementioned result on countable homogeneous
groups. The hypothesis that the nonzero elements of Gτ have type
τ and [1, p. 107, Cor. 8.7] yield the conclusion.

LEMMA 3.4. Let G be countable and let E{G) be 2-fold ct-transi-
Mve. Suppose further that T(G) satisfies the ascending chain condition
and that Gτ is homogeneous of type τ, for each relevant type τ.
Then G is completely decomposable.

Proof. By Lemma 3.3, G(τ) = Gτ + G*(τ) with GT a countable,
completely decomposable group, for each relevant type τ. By [1, p.
109, Th. 9.3], G = Σ G r (τe T ((?)).

THEOREM 3.5. Let G be a countable group such that T{G) satisfies
the ascending chain condition. Then G satisfies any (and hence all)
of the conditions of Theorem 3.1 if and only if G is completely
decomposable with linearly ordered type set.

Proof. Only the necessity need be proved. By Lemma 3.4, it
suffices to demonstrate that Gτ is homogeneous of type τ, for all
τe T(G), and this has been done in Corollary 3.2.

COROLLARY 3.6. Let G satisfy any one of the conditions of
Theorem 3.1 and let H be a countable pure subgroup or quasi-
summand of G. If T(H) satisfies the ascending chain condition^
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then H is completely decomposable.

4* Applications to separable groups* Theorem 3.1 can be

extended along the lines of Theorem 3.5 to describe a class of
separable groups in which each pure subgroup of finite rank is a
quasi-summand. In order to utilize a theorem of R. Baer [1, p. 117,
Th. 11.3], we need a series of preliminary results. We continue to
construct functions which induce decompositions.

Recall [1, p. 80, Def. 5.1] that a e G is primitive of type τ if
tG(a) = τ and hG{a) = hG{τ)(a + G*(τ)). A finite subset of G is primi-
tive if its elements are primitive with different types.

LEMMA 4.1. Let F(G) be 2-fold ct-transitive and suppose that
for each pair a, b of primitive elements having equal height in G,
there exists an endomorphism of G which maps a to b. Then G(τ)
is homogeneous (of type τ) and separable, for all τ e T(G).

Proof. By [5, Cor.], it suffices to prove that each pure subgroup
H of rank one in G(τ) is a direct summand. Now G(τ) == H + C[4,
p. 606, Cor. 1.7] and in fact 6?(τ) - H' + C [2, p. 96, Cor. 9.6] with
H ^ H' via g, provided C is pure in G(τ) (and we take it to be [2,
p. 95, Lemma 9.4]). Suppose H = H/G*(τ) and Hf = H'/G*(τ) with
H and H' pure subgroups of G. By [7, p. 114, Prop. 86.5], H =
A + G*(τ), H' = A' + G*(τ) for some subgroups A, A' of G. Let a
and a' be nonzero elements of A and A!, respectively, such that
hG(a) — hG(a'); note that a and a' are primitive. We may thus assume
9ifl) — #(«') [4, p. 611, Lemma 3.9]. By hypothesis, there exists
/ 6 E(G) such that fa = a'; denote by f the endomorphism of G(τ)
induced by /. Let e e E(G(τ)) project G(τ) onto H'. Now gef pro-
jects 6?(τ) onto £Γ, so H is a direct summand.

LEMMA 4.2. Suppose G is quasi-separable with linearly ordered
type set and let H denote a subgroup of G such that (1) H is homo-
geneous of type τ and (2) H is a direct summand of G(τ). If each
subgroup of rank one in G which satisfies (1) and (2) is a direct
summand of G, then the same holds for each subgroup of finite rank.

Proof. Suppose we have shown that each subgroup of rank ^ n
which satisfies (1) and (2) is a direct summand of G, n ̂  1, and let
H be a subgroup of rank n + 1 which satisfies (1) and (2). By [4,
p. 606, Cor. 1.7], H is completely decomposable so we may write
H = A + B with A of rank n. By hypothesis, G — A + C and so
G(τ) = A + Ciτ) and H = A + H n C(τ). Again, H Π C(τ) is a direct
summand of G, G = H f) C(τ) + B, so C = H Γ) C{τ) + Bf]C. Upon
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combining results, we have G = H + B Γ) C.

The following restrictions on a group and its endomorphisms are
sufficient for the group to be separable.

PROPOSITION 4.3. Assume T(G) satisfies the ascending chain
conidition. Let F(G) be 2-fold ct-transitive and suppose that for
each pair of primitive elements α, b which have equal height in G,
there exists f e F(G) such that fa = b. Then G is separable.

Proof. By Lemmas 4.1, 4.2, and [1, p. 117, Th. 11.3], it suffices
to show that for each r e T(G), every subgroup A of rank one in
G which satisfies t{A) = τ and G(τ) — A + C, is a direct summand
of G. Let a be any nonzero element of A; note that a is primitive.
By assumption, some / e F(G) maps a to a. Let H be the pure
subgroup of G generated by fG; H is completely decomposable [4,
p. 606, Cor. 1.7]. a is certainly primitive in H and so H — A + B
[1, p. 80, Lemma 5.2]. If eeE(H) projects H onto A, then ef e E(G)
projects G onto A.

DEFINITION 4.4. Let R be a Jk-fold cί-transitive subring of E(G).
R is said to be fully λ -fold c£-transitive if for each j<>k the following
holds: for each primitive set a19 "'faj of elements in G and each
set bίf , bj of elements in G which satisfy h(at) ^ h(bx), i — 1, , jf

there exists / e R such that fat = bif i = 1, , j .

We now obtain

THEOREM 4.5. Suppose T(G) satisfies the ascending chain con-
dition. Then G is separable with linearly ordered type set if and
only if F(G) is fully 2-fold ct-transitive, and hence fully k-fold
ct-transitive for every k.

Proof. The sufficiency is established in Proposition 4.3. Con-
versely, F(G) is 2-fold cί-transitive and hence k-folά cί-transitive
for every k, as was seen in Theorem 3.1. F(G) is fully so according
to [1, p. 80, Lemma 5.2] and [4, p. 611, Lemma 3.9].

We proceed to demonstrate that the hypotheses of Theorem 4.5
impose no countability restriction upon T{G). This result is of interest
in its own right.

5* Chains of types with the maximum condition* Somewhat
surprisingly, an uncountable chain of types can satisfy the maximum
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condition, unlike chains of heights. For the sake of deftniteness: by
a height we mean a function from the set of all primes to the set
of nonnegative integers union oo by a type we mean an equivalence
class of heights under the standard equivalence relation on heights
[7, §85]; by a representation of a type τ we mean a choice of a
height heτ.

LEMMA 5.1. Every countable chain of types can be represented
by a chain of heights.

Proof. Let τίf τ2, be an enumeration of a chain of types and
let hx be a height in τx. Suppose we have represented τlf •••, τn by
a chain of heights hlf " ,hn. Consider the three possibilities for

(1) τn+ι < τi9 i = 1, , n. Choose hn+1 e τn+1 so that hn+ι.< hi9

i = 1, •••, n.
(2) There exist τt and TJ among τί9 , τn such that τt < τn+ι < τs;

we take τ< to be the greatest such type and τβ the least such. Choose
hn+16 τn+ί so that ht < hn+1 < h3-.

( 3) τn+ι > τit i = 1, , n. Choose hn+ί e τn+ί satisfying hn+ι >
hi9 i = 1, •••, n.

We thus obtain a chain of heights ht e τtf i = 1, 2, .

REMARK 5.2. In Lemma 5.1, the countability assumption is
essential. It is not difficult to prove that any chain of heights which
satisfies the maximum (or minimum) condition must be countable.
There do, of course, exist uncountable chains of heights which
represent distinct types.

To say that the types τίf τ2 differ at an infinite number of primes
means that hx e τ1 and h2 6 τ2 differ at infinitely many primes.

THEOREM 5.3. Let τ < r" be two types which differ at an infi-
nite number of primes. Then there exists an uncountable chain
of types satisfying the maximum condition which contains τ as its
least element and τ" as its greatest element.

Proof. Choose a type τ' so that τ < τ' ^ τ" and so that τ' is
finite wherever it differs from τ. Let ^ denote the collection of
all sets C of types such that (1) C is a chain satisfying the maximum
condition; (2) r 'eC; (3) τ < σ <; τ' for all σeC; (4) if σlf σ2 are distinct
elements of C, then σx and σ2 differ from each other and from τ at
an infinite number of primes. Note that {r'} 6 ̂ .

For Clf C2 e ̂ , define Cx < C2 if there exists σ eC2 such that Ct =
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{α'eC2: σ < σ'}. By standard arguments, under this partial ordering
of ^ , chains have upper bounds in <g*. Zorn's Lemma then implies
that ^ contains a maximal element M; observe that M contains no
least element. Suppose M is countable and enumerate its elements
τl9 τ2, •••. From Lemma 5.1, M can be represented by a chain of
heights hίf h2, , with ht eτif i = 1, 2, . For a fixed heτ, we
may assume ht> h for all i. We now define a height / which re-
presents a type a such that τ < σ < τi9 i = 1, 2, , and such that
tf differs from τ and each τt at an infinite number of primes.

Set mι = l, let pnχ be a prime such that hmi(pni) > h(pni), and
define f(p) = ΛΛl(p) for all primes p, 2 ^ p <; p n i . Suppose now that
/ has been defined for all primes p, 2 <L p <^ pnjc. Choose mk+1 greater
that mk so that hmje+1 < hi for 1 <: i < m4+1 and let pWA;+1 be a prime
greater than p ^ such that hmie+1(pnk+1)>h(pnk+1). Define f(p) = hmk+i(p)
for primes p satisfying ί>WA. < p <; p%A;+1.

It is straightforward to verify that / represents a type σ having
the properties claimed, so that {cr} (J M contradicts the maximality
of M. Thus M is uncountable and the chain {τ} U M U {r"} satisfies
the maximum condition and contains τ, τ" as its least, respectively,
greatest element.

REMARK 5.4. (1) If τ and τ" are distinct types which differ at
only finitely many primes, then any chain of types between τ and
τ" is necessarily finite.

(2) The preceding arguments may be modified in an obvious
fashion to prove the existence of uncountable well ordered type sets.

( 3 ) Under the continuum hypothesis, any uncountable chain of
types has the same cardinality, 2Ko, as the set of all types.
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