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QUASI-ADDITIVITY AND SETS OF FINITE //-CAPACITY

DAVID R. ADAMS

The Bessel Incapacity of order α>0, BatP, and the Riesz
Incapacity of order a, Ra%p, are shown to have the same
sets of finite capacity in Euclidean Rn, ap<n. However,
they have markedly different behavior as countably "almost"
additive (quasi-additive) set functions - i.e., as applied to sets
that are partitioned by increasing concentric rings.

There are several useful versions of an Incapacity (defined on
subsets of Rn) in the literature. They are all more or less direct
generalizations of the classical notion of capacity based on Laplace's
equation in two and three dimensions (i.e., the capacity used by N.
Wiener et al.) which corresponds to the case p = 2, a = 1 below.
We will be interested here in two important canonical examples
that have attracted some attention of late: the iZ-Bessel capacity,
BayP1 and the IZ-Riesz capacity, RaiP. These set functions are quite
useful in the function theory for the Sobolev spaces and in the
theory of partial differential equations. Most of these applications
require either a detailed knowledge of the nature of the exceptional
sets (the sets of capacity zero) or estimates on the rate at which
the capacity of a sequence of bounded sets tends to zero (e.g., in
the Wiener criteria). In either case, it is local information that is
being sought, either about the capacities themselves or about the
potentials used to define them.

But these capacities give global information as well, especially
with regard to the existence of certain Sobolev functions and solu-
tions to certain elliptic partial differential equations. For example,
a subset AcRn has finite Bessel capacity BaiP iff there is a Sobolev
function ue Wa>p(Rn) (i.e., ueLp(Rn) and DaueLp(Rn), Da denoting
all derivatives of order a) such that u = 1 q.e. (quasi-everywhere)
on A. Or if Ω is an open set of Rn with RltPφ) < <*>, Ω = comple-
ment of Ω, 1 < p < n, then there is a solution to the Euler equation
div (\Pu\p~Ψu) = 0 in Ω which is equal to one q.e. on Ω and with
r

\ \Vn\pdx < oo —the "equilibrium potential." These examples are

extended to more general boundary values in [1].
In this note, however, we are interested in two special global

properties of the capacities R and B: (a) the sets in Rn of finite
capacity and (b) quasi-additivity.

(aj Our first result shows that both Ra>p and Ba,p have the same
sets of finite capacity, ap < n. Indeed, the inequality Ra,p{A) <:
Q-Ba,p(A), with Q independent of A, is elementary, but the reverse
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inequality is false. We show that if ap < n, 1 < p < co, then
there is a constant Q independent of A such that

(1) Q BaJA) <ί Ra,p{A) + Ra,,(A)*«—»

for all AaRn. Previously it was only known that Ba,p(A) ^ Q(A)
Ra,p(A), with Q(A) depending on the diameter of A (see [2]). This
result is rather interesting in view of the fact that the Bessel
kernel defining Bap has exponential decay at infinity while the Riesz
kernel defining Ra,p decays only algebraically.

(a2) For ap > n, we show that Ba,p(A) < oo iff A is bounded.
Furthermore, there is a constant Q independent of A such that

(2) Q~ι-Bβ,q{A) £ Ba,p(A) ^ Q Bβ,q(A)

whenever βq > n and ap > n.
(bO It is quite natural to think of the //-capacities as "refine-

ments" of the classical Hausdorff measures on Rn. They are refine-
ments in the sense that they can be used to distinguish between
sets of Hausdorff measure zero. In obtaining such a refinement,
however, we are forced to give up a useful property that all
measures enjoy, namely additivity. Indeed, the classical capacity
of the closed unit ball in three space is the same as that of its
boundary or its interior. Thus the question becomes: how non-
additive are B and Rl Since they are of course countably subaddi-
tive, we seek estimates of the form ΣB(A$) ^ Q B(A), where A3 —
A{qό) = AΠ [q3^ ^ | x \ < q3], j = 1, 2, , q51 + oo, Q independent
of A. When this is the case, we say that B is quasi-additive (qa)
with respect to the sequence {qβ}. If As = A(qs) — A Π [qj ^ \x\<
Qj-ι\> 0 = 1> 2, •••, with now qs | 0, we say that B is locally quasi-
additive (lqa) with respect to {q3-}.

(b2) A related question is: when is ΣB(AS) < oo given B(A)< co?
The surprising thing is that R is qa with respect to q, = Xj,

for all λ > 1 (and lqa for q3- — Xj, λ < 1), but not qa for any alge-
braically increasing sequence {q5}. However, B is qa with respect
to q3- = j. Nevertheless, it is still true that with q3 = j, ΣRatP(Aj)<
00 ΊfiΣBa,p(Aό) < oo iff Rat9(A) < oo.

Now if ga denotes the usual Bessel kernel of order a, α>0, i.e.,

the nonnegative L1 function on Rn whose Fourier transform is

(1 + If ITα/2, and ha(x) = \x\a~n, 0 < a < n, is the Riesz kernel, then

9a(x) ^Qha(x), for all xeRn. And for AaRn, Ba,p{A) = inf [fpdx,

1 < P < °°, where the infimum is over all / e Lp

+(Rn) such that ga*
fix) ^ 1 on i . For Ra>p(A), we just replace ga by ha. The reader
is referred to [10], [2], [3], and [1] for a detailed account of these
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capacities and various of their properties that we will use freely
throughout this article.

The letter Q will be used to denote various constants, and the
symbol ~ ("is comparable to") to mean that the ratio of two func-
tions is bounded above and below by finite positive constants
independent of the variables in question.

1* Sets of finite capacity* We begin by showing that (1) and
(2) hold.

THEOREM 1. (a) For ap<n, l<p<oo9 <χ>0, there is a constant
Q — Q{a, p, n) such that (1) holds for all A c Rn.

(b) There is no a priori inequality of the form

( 3 ) R

for any ap < n when t > 1 and Q independent of A.

It should be noted that (1) is asymptoticly sharp in the sense
that for large balls J5Λ(0) = [\x\<R], Ba,p(BR(0)) ~ Rn, as Λ - * oo,
whereas Ra,p(BR{ϋ)) ~ Rn~ap for all R > 0.

The proof of (a) is a modification of the basic argument given
in [4] which we now outline. It depends on several preliminary
lemmas.

Let IJ be the operator (defined initially on smooth functions
/) corresponding to the Fourier multiplier |f|~Λ <%eR, and Jaf the
operator corresponding to the Fourier multiplier (1 + | ξ |2)-"/2, aeR.
We then set \\u\\a,p = ||J-aiι\\p = ΊJ norm over Rn of J_au. Ds

denotes differentiation of order \s\ = sx + s2 + + sn, in the usual
way. Sfa>v denotes {u = JJ: f e Lp(Rn)}, with norm || ||«,,.

LEMMA 1. (a) For a> 0, l < p < o o , and u e £fa'p,

II^IU.p ~ \\u\\p + \\I-au\\p,

(b) \\I_au\\p — Σ]sl=a\\D8u\\p, for a = positive integer.

This lemma follows in a standard way from the theory of
Fourier multipliers, see in particular [12] p. 96.

LEMMA 2. // φ — Iaf, f eLp

+, ap < n, then

where a = ax + ct2, alf a2 > 0.

Lemma 2 is an immediate consequence of the pointwise estimates
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for Riesz potentials in terms of the Hardy-Littlewood maximal
function due to Hedberg [6], see in particular Theorem 3 there.

Finally, we need the fractional differentiation operators of
Strichartz and Polking; see [13] and [11] for the next two lemmas.
For 0 < <7 < 1, 1 ^ ? < oo, set

!* M*
 + py)

LEMMA 3. (a) \\3fq\IJ)\\P £ Q\\f\\p, for 0 < σ < 1, l ^ g < o o ,
m&x(l,nq/(n + σq)) < p < - , (b) \\^σ(Iσf)\\v ~ | | / | | p , 0 < σ < 1,
1 < p < °°.

LEMMA 4. For 0 < μ, X < 1,

Now let jff(ί) be a C°°-function on the line for which H(t) = 0,
^ 1/2 and Jϊ(ί) = sgn(ί), |«| ^ 1.

LEMMA 5. If φ = Iaf, f e Lp, then

where p* = %p/(w — αp), αp <

Proof. \H{φ)\*dx ^ \ dx ^ 2^\ \φ\**dx ̂  <

by the Sobolev inequality.

The claim now is that Lemmas 1-5 imply that there is a constant
Q independent of feL\ such that

and that (4) in turn implies (1). The latter fact follows by taking
/ to be the iϊ^-capacitary distribution for A (i.e., the L\ function
that minimizes in the definition) and recalling that its Riesz poten-
tial of order a is bounded on Rn, [10] and [2]. The first fact is
obtained by mimicing the procedure in [4]. Of course, when a —
positive integer, we need only Lemmas 1, 2, and 5. We content
ourselves with an outline of the proof in a representative case for
fractional a9 namely 2 < a < 3. Writing a = 2 + σ, 0 < σ < 1, we
clearly need only concentrate on estimating \\<%r'(D2H((p))\\p, where
D2 now represents any second order derivative and φ = Iaf. But
that quantity is dominated by
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Dφ) \\p

where now D denotes a first order derivative in Z>2. In the first
term, we write D*φ = Iσ(D2I2f) and use Lemma 3 together with
the Calderόn-Zygmund estimates for singular integrals. Thus 1st
term <; QII/UJ,. The second term is dominated by Q|| Jff/||P(i+<,/2>'
\\-^ίiσ((p)\\p(i+2/o) and we just use Lemmas 2 and 3. The result is:
2nd term <£ Q\\f \\p\\φIU. The fourth term is handled in a similar
way leading to: 4th term ^ Q\\f\\p\\φ\\l. Finally, for the third
term, we use Lemma 4 (the choice λ = μ = 1/2 works here), and
then an application of Lemmas 2 and 3 finishes off the proof by
giving: 3rd term ^ QH/IUML.

We defer the proof of Theorem l(b) to § 2.

THEOREM 2. For a, β > 0, 1 < p, q < <*>, and ap, βq > n, there
is a constant Q — Q(a, β, p, q, n) such that (2) holds for all AdRn.

Note that from [2]: if βq < ap or if βq = ap and β < a, then
there is a Q such that Bβ,q(A) ^ QBa,p(A), for all A. For Theorem
2, however, we need only the following lemma from [2] - see the
proof of Theorem 2.1 there.

LEMMA 6. Suppose βq <ap, then for all Ύ such that βq<2Ύ<
ap, there is a Q such that

^ Br>2(A) ^ QBa,p(A)

for all A.

LEMMA 7. Let n < 2a < 2/9, then there is a Q such that

Q-'BUA) ^ Bβ>2(A) £ QBaΛU)

for all A.

Proof of Lemma 7. The first inequality follows from Lemma 6.
For the second, we note that g2a(x) ~ 1 for | # ] < ^ 1 , and g2a(x) ~
I ^ - C - D / ^ - I . I f o r \χ\-£if See [10]. Hence g2a(x) ^ Qg2β(x) and then
for any Borel measure μ (supported in K, a compact set), g2a*μ(x)^
QflW(aO. Thus b2βΛ{K) ^ Qb2aΛ{K) or BβΛ(K) £ QBa>2{K). The
general inequality follows by capacitability - again see [10] and [2].

To prove Theorem 2, we may assume without loss of generality
that βq <̂  ap. Choose 7 and d so that n < 27 < βq ^ ap < 2d.
Then by Lemmas 6 and 7
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Bβ,q(A) ^ QBUA) ^ QBr,2(A) ^ QBa>p{A)

Ba,p(A) £ QBδf2(Λ) ^ QBΐ>2(A) S QBβ>q(A) .

2. Quasi-additivity• For our next result we will need the
following lemmas. They are contained in Theorems 3.3 and, 3.4 and
Corollary 4.1 of [3].

LEMMA 8. Given M > 1, let

Ra>p(A; M) = inΐ ||μlL

where the infimum is over all Borel measures μ on Rn {of finite
total variation \\μ\\x) such that Uμ(x) ̂  1 on A and \Jμ(x) ^ M on
Rn. Here Uμ(x) = Aα*(/^α*^)1/{2>~1)(x). Then there is a constant MQ =
M0(a, p, n) such that

Ra>P(A; Mo) ̂  RΛt9(A) ^ M0.Ra,p(A; Mo) ,

1 < V < °°> °^V < ^

LEMMA 9. For all x e Rn,

( i ) U μ(x) ^ Q \ [rap-*μ(Br(x))]inp-1)dr/r, p > 2 - a/n, ap < n;
Jo

(i i) the exponent l/(p — 1) in (i) may be taken to be (n — a)/
(n — ap) when 1 < p < 2 — a/n, and [(n — a)/(n — ap)] — ε, ε > 0,
when p = 2 — a/n.

Now suppose that q3- is sequence which tends to infinity with j
and that RaιP(A) < oo, Furthermore, let μ be such that U^ ̂  1 on
Ay U ^ i l ί o on Rn, and WμW, < Ra>p(A; Mo) + ε, some ε > 0. Next
set Vi - μ\{\z\ ^ g i + 1 ] , λ, = μ\\\z\ < qs_t]f and μs = μ~vό-\5. Then

Uμ* ^ 1 - Q[ U *t + U ^] ,

and (for p > 2 — α/w) taking x 6 A(gj),

U ^ ^ [ [μ{{))Y
J r

Similarly,

Thus we have

THEOREM 3. Suppose q^ — q^o), σ > 0, αtid that qj+ί — qά ->
as <7—> oo uniformly in j , then for any set A with Ra,p(A) <
there is a σ = σ(w, p, a, JBΛ>J,(il))
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(5) Σ.R.ΛAiqtf^Q'R.ΛA),
ά

for Q independent of A.

The same basic argument also gives

COROLLARY 1. If qj+1 — qά —» oo as i—• °°, then ΣRatP(A(qs)) < °o
provided Ra,p(A) < <*>.

COROLLARY 2. If qά = j°, σ>l, then

Q independent of A.

REMARKS. ( i ) Corollaries 1 and 2 extend a previous result of
Landkof's in this direction for the case p = 2, 0 < a < n; see [8]
p. 304.

(ii) With minor modifications in Lemmas 8 and 9, we could
also prove Theorem 3 and its corollaries for Bap, 1 < p < oo, a > 0.
This then easily gives

(6 ) BayP(A) < co, ap > n implies A is bounded.

Indeed Ba,p(A) :> | | ^ α | | ^ provided A Φ 0 ; see [10]. Also, (6) can be
more directly deduced by an approximation argument since (6) is
equivalent to / e Lp, ap > n implies ga*f(x) —> 0 as | x | —> oo. When
p = 2, this is just the Riemann-Lebesgue lemma.

(iii) In [1], we showed that for qd = X3\ λ > 0, then

(7) Σ R«t,(A(\t))£Q-Ra,,(A)

with Q independent of A and λ, ap < n, and a = positive integer
G (0, n). The proof relied on the capacitary strong type inequality
developed there. (7) is now known to be valid for all ae(Q,n),
ap < n, due to the capacitary strong type estimates recently obtain-
ed by Dahlberg [5]. For an earlier result of this type (a = 1) see
[7]. Note that (7) not only gives a quasi-additivity result at
infinity, but a local such result as well.

Proof of Theorem l(b). Set EN = UfACa?,-), a disjoint union of
balls centered at xό chosen so that B^Xj) c A{j°), for some suffici-
ently large σ. Then by Theorem 3, Ra>p(EN) — N and likewise
Ba,p(EN)~ N, as ΛΓ->oo#

For the Bessel capacities, we can do somewhat better than (7).
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THEOREM 4. For α > 0,1 < p < oo, there is a constant Q =
Q(n, a, p) such that

(8) Σ*Ba,p(A(j))^Q Ba>p(A)

for all AcRn.

Proof. This is basicly nothing more than a restatement of the
"uniform localization theorem" of Strichartz [12] p. 1041. Just
choose φ(t) e C?(R) satisfying: 0 ^ φ ^ 1, φ(t) = 1 for 1 ̂  t ^ 2,
and <p(t) = 0 for ί <: 0 and t ^ 3. Then setting ^(x) = 9>(|a&| — j),
we have

by a simple modification of Strichartz's proof. This completes the
argument since Ba,p(A) = ini \\u\\l,P, where uec2fa>p such that u^l
on A quasi-every where.

For a related result see [9].

REMARKS, (iv) Theorems 1 and 4 imply that Corollary 1 holds
for q3- = j and furthermore,

(v) We have seen that (5) holds for qό — j° provided σ is
chosen sufficiently large (depending on A). But in fact it is impos-
sible to choose a σ > 0 to be independent of A. Furthermore, (8)
does not hold with A(j) replaced by A(jσ) for any σ e (0,1). To
see these claims, we need only note that (at least in the case ap>l)
Ba,p(Aab) ~ (α + b)^1 and Ra,p(Aab) - (a + b)%-ap, where Aab = [a ^

| # | < 6 ] , a > 1. (For these estimates, see Theorem 5.2 of [2].
Similar estimates hold for the cases ap <; 1.) Now just take A =
BNσ(0) and let iV-> oo.
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