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H\μ) SPACES AND BOUNDED POINT EVALUATIONS

TAVAN T. TRENT

Let H2(μ) denote the closure of the polynomials in L2(μ),
where μ is a positive finite compactly supported Borel
measure carried by the closed unit disc D. For λ e D, define
E(λ)=8up{\p(λ)\/\\p\\μ}, where the suprenum is taken over all
polynomials whose L2(μ) norm is not zero. If E(λ)<oo we
say that μ has a bounded point evaluation at λ, abbreviated
b.p.e. at λ. Whenever E(λ)<oo we may fix the value of
feH2(μ) at λ. We determine the set on which all functions
in H2(μ) have (fixed) analytic values in terms of the parts
of the spectrum of a certain operator.

In the case that the support of μ has a hole H bounded by an
exposed arc Γ contained in 3D and E(z) is finite in H, we show
how to recover the absolutely continuous part (with respect to
Lebesgue measure on dD) of dμ\Γ from a knowledge of the E(z)'s
in H. A corollary of this is that for such measures μ the func-
tions in H\μ) behave locally near Γ like those of classical Hardy
space. That is, they have boundary values and their zero sets near
Γ satisfy a Blaschke type growth condition. We apply this corol-
lary to measures of the form dv = GdA + wdσ to study the local
behavior of functions in H\v) near Γ {A denotes planar measure
on D, dσ denotes linear Lebesgue measure on 3D, and G and w are
in an appropriate sense not too small on D and Γ respectively).

1* Bounded evaluations and analytic extensions of functions
in H\μ). Let fί be a finite positive compactly supported Borel
measure carried by the closed unit disc D. We note that for λ a
complex number, the point evaluation functional defined on poly-
nomials by

p

is bounded with respect to the L2(μ) norm if and only if E(X) < oo.
In this latter case, by the Riesz representation theorem there is a
unique element of H2(μ), denoted by kλf satisfying

p(λ) - (p, kλ)

for all polynomials p and ||A |̂| = E(X). We call kλ the bounded
evaluation functional for μ at λ, abbreviated b.e.f. for μ at λ.

If μ has a b.p.e. at λ with b.e.f. kλ and feH\μ), then we fix
the value of / at λ by
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( 1 ) /(λ) - </, kλ) .

We remark that if μ has b.p.e's on a set of positive μ measure
then the values / of / fixed by (1) agree μ-a.e. with any represen-
tative of /. Also the "filling in holes" theorem due to Bram [1],
interpreted in this context, says that if H is a hole of the support
of μ then either

(2) μ has b.p.e.'s at every XeH

or else

(3) μ has no .b.p.e.'s in H .

Whenever (2) occurs the functions in H2(μ) can be extended into
the hole H.

It is well known that if / e H\μ) then / is analytic in any
holes satisfying (2). We specify the largest open set on which all
extensions of functions in H\μ) are analytic.

Let Mμ denote the bounded linear operator multiplication by z
on H2(μ). Λ(Mμ), Γ(Mμ), and Π{Mμ) will designate the spectrum,
the compression spectrum, and the approximate point spectrum of
Mμ, respectively [see 12]. If 0 is an open set on which all exten-
sions of functions in H\μ) are analytic, then we call 0 an analytic
set for μ. If GdC then we denote the interior of G by int G.

THEOREM 1.1. The largest analytic set for μ is int(Γ(Mμ) —
Π{Mμ)).

Proof. If 0 is any analytic set for μ and FaO is compact,
then using the Banach Steinhaus theorem [16] we see that

sup{||^||: XβF} < oo .

Also if 0 is an open set and λ -»11 kλ \ \ is bounded on compact sub-
sets of 0, then using (1) and the Cauchy-Schwartz inequality it
follows that O is an analytic set for μ.

Assume that 0 is an analytic set for μ. It is well known that
OaΓ(Mμ). (This is just the statement that Mftkλ = Xkλ for λeO.)
We show that

(4 ) On Π(Mμ) = 0 .

If (4) fails then there exists a λ in 0 and a sequence of polynomials
pn satisfying

(5) ll(z-λ)^(z)||2<i-
n
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and

(6)
Δ

Let B be the closed disc of radius r centered at λ and contained in
0. Since 0 is an analytic set for μ,

|: zeB} = C < ^ .

For w with w — λ| = r,

So by the maximum modulus principle,

(7) Ip.Mp^JZ

for all u e E . But using (5) and (7),

\pn\
2dμ

r2n nrι

Letting n—>co, we see that (6) is contradicted so (4) holds.
Conversely, assume that 0 is an open set satisfying 0 Π Π(Mμ) — 0

and 0dΓ(Mμ). By our opening remark in the proof, it will be suf-
ficient to show that X—>\\kλ\\ is bounded in a neighborhood of λ.
Fix a e 0. Since a g Π(Mμ) there is a C < oo so that

\\f\\£C\\(z-a)f(z)\\

for all feH\μ). A computation shows that

(8) \\f\\£2CMz-w)f{z)\\

whenever \w — a\ 5ί 1/2C.
Let q(z) = (p(z) — j)(λ))/(a — λ) for p a polynomial and let Ct =

min{l/2C, 1/(4C ||fc.||)}. By (8), for |λ - α| < Ct ^ 1/2C,

Hence

So for | λ — α | < C1(

|λ - α | 2 C p . | | [ | | p | |
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Thus

\\kλ\\^2\\ka\\+l

so we are done.

COROLLARY 1.1. If H is a hole of the support of μ and
H c A(Mμ) then H is an analytic set for μ.

Proof. Λ(Mμ) = Π(Mμ) U Γ(Mμ). If λ e H then l/(z - λ) e L°°{μ)
and hence X£Π{Mμ).

Denote the essential spectrum of Mμ by Ae(Mμ) [9].

COROLLARY 1.2. // Mμ has no point spectrum, then the max-
imal analytic set for μ is Λ(Mμ) — Λe(Mμ).

Proof. If Mμ has no point spectrum then [9] says that
int(Γ(Mμ) - Π(Mμ)) = Λ{Mμ) - Λe{Mμ). Now apply Theorem 1.1.

Let M'μ denote the pure subnormal part of Mμ [7].

COROLLARY 1.3. The maximal analytic set for μ is A(M'μ) —
Λe{M'μ).

Proof. It is easy to see that the maximal analytic sets of Mμ

and M'μ are equal. If M'μ is a pure subnormal operator, then Mμ

has empty point spectrum so Corollary 1.2 applies.

If & denotes the set of b.p.e.'s for μ, the obvious question is
whether int & is the largest analytic set for μ. While we cannot
answer this, we have the following partial result.

THEOREM 1.2. There exists a dense open subset 6^ of £§f so
that £f is an analytic set for μ.

Proof. We show that if &* = {ze«^: there is some neighbor-
hood U of z with Ud^ and sup{||fe||: λ e U) < oo}} then £f is a
dense subset of &. Let V be any open subset of έ%? with
We are done if we show that Vf) £^ Φ 0 . Define

EA = {zeV: \\k,\\ £ N) .
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Clearly,

U Ex = V .

Now

P , ] | =E(z) = sxvp{\p(z)\/\\p\\}

where the suprenum is taken over polynomials p with rational
complex coefficients and \\p\\ Φ 0. Thus z~>\\kz\\ is a lower semi-
continuous function on . ^ , so EN is a closed set. An application
of the Baire category theorem completes the proof.

It may be useful to note that by Corollary 1.3 .9* = {ze D:
z — Mμ is a Fredholm operator and ind(£ — M/t)=— 1}.

2* Recovering a part of the measure μ from E(z). It is a
well known result of Bram [1] that the operator Mμ, multiplication
by z on H2(μ), is a model for a general contractive cyclic subnormal
operator. Some subnormal operators have been shown to have
(nontrivial, closed) invariant subspaces by establishing that if
H\μ) Φ L2(μ) then μ has a bounded point evaluation [2], [3], [4]
This provides a basic motivation for the study of the relationship
of the measure μ to the possible existence of b.p.e.'s.

Let dσ denote normalized Lebesgue measure on 3D. For a
measure v carried by 3D, it is a classical result of Szegδ and Kol-
omogorov [see 13] that H\v) Φ U{v) if and only if loghe Lι(dσ),
where h denotes the absolutely continuous part of v with respect
to σ. Whenever H\v) Φ L2(y), then v has b.p.e.'s in D with b.e.f.'s
kλ for λ e l λ It was observed in [14] that h can be recovered from
\\kλ|| as follows:

(9) Lim (1 - lλ|2)P,|j2 = - i — for σ - a.e. eu>

x^o h(ew)

where X-->eίθ nontangentially. Suppose that μ is a measure carried
by D. Let

dμ = dμ\D + Ά)dσ + dμH\dσ /

where dμs is carried by 3D and is singular to dσ. Just as in the
classical case (v as above) a result of Clary [6] says that μ has a
b.p.e. at λ 6 D if and only if dμ — dμs does. Since dμs is not in-
volved in the existence of b.p.e/s, it is clear that there is no hope
of recovering dμa from a knowledge of the norms of b.e.f.'s for
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dμ (in fact, Eμ(X) = Eμ~μs(^) for all λ).
We are interested in the interplay between μ\D and μ\BD and the

existence of b.p.e.'s in D. By the previous discussion μs has no
bearing on this problem. We investigate a class of measures μ for
which the absolutely continuous part of μ with respect to σ can
be recovered on an arc of dD in an analogous fashion to (9).

DEFINITION. Let K be a compact set. Then K contains an ex-
posed arc J if there exists a simply connected open set Sf such
that 2?[\K — J and J is the range of a smooth Jordan curve.

Let μ be a measure carried by D satisfying:
(A) there is a hole H of the support of μ so that H has an

exposed arc Γ with Γ c dD.
(B) μ has b.p.e.'s in the hole H.

We remark that by a result of Brown, Shields, and Zellar [5], it
is possible to construct a measure μ carried by D whose support
has a hole H for which (B) holds, μ(dD) = 0, and BHzDdD. For
such a measure, it is clear that μ\dD is not involved in the existence
of b.p.e.'s in H. Thus condition (A) is a guarantee that if (B) is
to hold, then μ\Γ and μ\D must interrelate in some way. Hence if
μ satisfies (A) and (B), it is plausible that a knowledge of the
norms of b.e.f.'s in H would lead to a recovery of the absolutely
continuous part of μ with respect to σ restricted to Γ. This is
indeed the case. Before proving this result, we will need a few
lemmas.

Suppose that a is any measure whose support contains a hole
H. Assume, furthermore, that a has b.p.e.'s in H. For λ e if, fc; is
the b.e.f. of a at λ. Denote the orthogonal projections of L\a)
onto H\ά) and H\a)λ by P1 and P2, respectively. We have the
following lemma.

LEMMA 2.1. (i) Let aeH. If ge H\a)L and <l/(z - a), g) ^0

then

(10) fc. =
z — a // \ z — a

where f is any element of H2(a)λ.
(ii) If g = P2(l/(z - a)) then <l/(s - λ), g(z)) = 0 for at most a

countable number of λ's in H.

Proof. Let g(a) denote (l/(z — a), g(z)). If p is a polynomial
then (p(z) — p(a))/(z — a) is a polynomial so

0 = /p(z) - p(α) Λ / Λ J[(2)
\ z — a I \ z — a
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Hence

for all polynomials p. Now l/(z — a) is in L°°(a) since aeH, so
g/(z — a) e L2(α). Thus (10) follows by the uniqueness of the b.e.f.
at a.

Let g = P2(l/(z — α)). Since α has a b.p.e. at a,l/(z — a) £ H2(a).
(Else we would have 1 == <1, ka) = <(z — α)(l/(s — α)), fcα> = (α — α)

- α), &α> = 0.) Thus

" r1 2

z — a I II \z — a

Now we need only notice that λ —> (l/(z — λ), ^(^)> is analytic and
not identically zero in H to complete the proof of (ii).

Suppose that μ is a measure supported on D satisfying (A) and
(B) for a hole H of the support of μ with exposed arc Γ. Let
aeH and denote P2(l/(z — a)) by # and <l/(z — a), g) by #(α).

LEMMA 2.2. </ vanishes on no subset of Γ with positive Lebes-
gue measure.

Proof. Define

dβ = 2(2)
- a)g{a)

Then d/S is a complex representing measure for evaluation at a on
the space of the polynomials with respect to sup norm on the sup-
port of μ [see 10]. It follows from Theorem 2.2 of [10] that there
exists a positive representing measure dv for evaluation at a which
is absolutely continuous with respect to \dβ\. It is easy to see
that v has a b.p.e. at a. Applying Lemma 2 of [17] shows that

[ log ^Ldσ>-oo
JΓ1 dσ

for every closed subarc Γλ of Γ. This completes the proof.

We are now ready for the main result of this section. Assume
that μ is a measure supported on D satisfying (A) and (B) for a
hole H of the support of μ with exposed arc Γ. Let w denote
the Radon-Nikodym derivative of the absolutely continuous part of
μ\dI) with respect to σ. Fix a point aeH and again denote
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P2(l/(s - a)) by g and (l/(z ~ α), <7> by g(a).

THEOREM 2.1.

1
(11)

as X

/or σ-a.e.

nontangentially.

Proof. By a theorem of [14] it is shown that for any measure
β on D,

(12) Lim (1 - |λ|2)(£^(λ))2 ^ lΆ(ei0) for σ-a.e. eiθedD
x-eW I dσ

where λ —> eί0 nontangentially. Thus we need only show that

2 ^ 1(13)
w(eι°)

for <7-a.e. eiθ e Γ

where λ —> ei0 nontangentially. From Lemma 2.1 we see that

(14)
Z — λ

(Note that from Lemma 2.1, g(X) can vanish on at most a countable
set of H. If for some XeH, g(X) — 0, then the right hand side of

(14) is to be interpreted as <>oβ) Denote (1 — |λ | 2)/| l — Xe
P(λ, ei0). Define Ω to be the support of μ minus Γ. Then

(15) ( 1 - | >

-ίθ 12 by

z - X\

1 - λ
IX — z

Now

- X

\Q(z)\2dμ(z) .

λ

λ

since z —> λ/(l — λ#) is analytic in D and βr — P2(l/(z — a)) is in
H2(μ)L. Writing this out, we see that

(16) g{X) = ^ P(λ, eit)

ί / 1 wi λ ' 2 T
Ĵ ? (3 — λ ) ( l — λ

Since it is easy to see that the second integrals of (15)
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and (16) converge to 0 as λ —> eiθ. Hence by a theorem of Fatou

Ήίrtβ'OIW),

(18) Lim g(x) = e~iOg(eiO)w(eiO) for <τ-a.e. eiθ e Γ
i0

[see

(17)

13], we get

Lim (1 — λ|
- λ

*ei0

where λ —> eίθ nontangentially. Recall that by Lemma 2.2, g cannot
vanish on a subset of Γ with positive Lebesgue measure. Thus,
combining (14), (17), and (18), we establish (13) to complete the
proof.

Suppose that μ is a measure on D satisfying (A) and (B) for a
hole H of the support of μ with exposed arc Γ. Assume that dμ\Γ

is absolutely continuous with respect to dσ. In [17] it was shown
that if feH\μ) and / does not vanish identically on Γ then

for Γ1 any closed subarc of Γ. Thus the functions of H\μ) exhibit
one of the properties of Hardy space functions locally on Γ. Thus
if feH\μ) the question is raised as to whether / can be recovered
as the boundary values of / on Γ. J. Thompson and R. Olin have
informed us that the answer to this question is yes. Subsequently,
we have established this result together with a Blaschke type
growth condition based on Theorem 2.1 and a result of Kriete and
Trutt [15].

Let μ satisfy the hypothesis of Theorem 2.1. Also assume that
dμ\Γ is absolutely continuous with respect to Lebesgue measure.
We have the following regularity theorem for extensions of func-
tions in H\μ).

THEOREM 2.2. Let feH\μ).
( i ) Lim^β i 9/(λ) = / ( O for σ-a.e. ei0 e Γ where λ - W non-

tangentially.
(ii) Assume that f is not equal to 0 σ-a.e. on Γ. If Γ1 is

any proper closed subarc of Γ and f vanishes on the set {zn}? which
has no limit points outside of Γι then

Σ(i - Kite* < ~
1

where pn is the multiplicity of zn as a zero of f.
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Proof. The proof will be established by showing that any /
in H\μ) may be viewed as an element of a space H\β). The cor-
responding extensions of / as an element of H2(μ) and H\β) have
the same values at the points which are bounded point evaluations
of both μ and β. Once this is done it will be sufficient to show
that extensions of functions in H\β) satisfy (i) and (ii). This will
follow from a conformal mapping argument.

Let Γ1 be any closed subarc of Γ. Let a and b be elements of
Γ — Γ19 one on each side of Γ19 for which equality holds in (11).
Let M denote the arc connecting a with b and containing Γx. By
hypothesis (B) on the support of μ9 we can find a polar rectangle
R with int RczH, and dR Π dD = M. Let L denote dR Π D.

Define a finite Borel measure, dβ, with support dR by

= (l-\z\2)\dz\

where \dz\ denotes arc length measure.
Let p be a polynomial. Then

p\\l-\z\*)\dz\ \p\*wdσ

ύ\\p\\l\j\kί\\\l-\z\*)\dz\ + \\p\\2

μ.

Now the hypothesis that a and b satisfy the equality in (11) enables
us to find a constant K < co so that

\j-*sj 11 p i \β ~= -*•*- 11 / ' I \μ

Hence by (19), the mapping defined on polynomials by p —> p extends
to a bounded linear map T of iϊ 2(μ) into H2(β).

Notice that

\ \\og w\\dz\ + \ |log(l - | s | 2 ) | | d s | < - .

The first integral is finite by Lemma 2 of [4] since μ has b.p.e.'s
in H and the second integral is finite by a routine computation.
Thus if

W(z) =
w(z) ze M

(l-M1) zeL

then

(20) dβ = TΓ(z)|cZ3| where ( |log W(z)\
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If ψ is a simple conformal mapping of D onto R extended to a
mapping of D onto R then ψ~lf is bounded above by a modification
of Theorem 9.8 of [18]. Using a theorem of Szego [see 13] and a
conformal mapping argument, it is not hard to show that β has
b.p.e.'s in R if and only if \og[(Woψ)\ψ'\] eL\dσ). By Theorem
3.12 of [8] (since ψ is rectifiable), ψ'eH\dσ) so log\ψ'\eLι(dσ).
Combining (20) and the boundedness of ψ~v we see that

{ (log Woφ \dσ = — ( I log W\ \ψ'ι'\ \dz\ < co .

Fix feH2(μ). By the definition of T, a sequence of polynomials
converging to / in H\μ) will converge to Tf in H\β). Also the
existence of b.p.e.'s in the hole R implies by Theorem 1.1 that the
convergence of polynomials is uniform on compact subsets of int R.
Hence f = Tf in R.

To show that extensions of functions in H\β) satisfy (i) and
(ii), we refer to the proof of Theorem 8 in [15]. This completes
the proof.

3* An application* Let dA denote planar Lebesgue measure
on D and let Γ be an open subarc of 3D. We shall apply the re-
sults of §2 to finite positive measures of the form

dv = Gd A + wdσ

satisfying

(21) log G is in L\dA) and \ log wdσ > — co .

THEOREM 3.1. Suppose that dv = GdA + wdσ satisfies (21).
Then

Lim (1 - | λ | 2 ) | | ^ | | 2 = —^r-for σ-a.e. eiθeΓ
I-,™ w(eιθ)

where λ —> eiθ nontangentially.

Proof. Remove the open region S from D which is bounded
by a proper closed subarc Γt of Γ and the chord connecting the
endpoints of /\. Define τ = v\ 3-s Clearly, | | p | | r ^ | | p | | y so by de-
finition

E%z) = \\K\\ ^ E%z) .

Appealing to (12), it is enough to show that



290 TAVAN T. TRENT

(22) Lim (1 - I λ \
w(eιθ)

for σ-a.e. eiθ e /\

where λ —» eiθ nontangentially.
The support of the measure τ satisfies condition (A) with re-

spect to S and Γx by definition. If we show that τ satisfies (B),
then we may apply Theorem 2.1 to establish (22). The remainder
of the proof is a lengthy calculation to show that (B) holds.

First we need some notation. Without loss of generality let us
assume that for some a with — 1 < a < 1, S = {z e D: a < Re z < 1}.
For — 1 < x < a, let Lx denote the chord {zeD: Re z = x}. Choose
— 1 < β < a so that for every x with β <; x <; a Lx intersects
Γ — Γ1 in two points. (Since Γ is an open arc and Γ1 is a proper
closed subarc of Γ this can be done.) For — 1 < x < a, let Sx denote
the open segment of D with chord Lx and containing S. Denote
8SX n 3D by Γx.

Let En = {te[β,a]:[ G(t + iy)\dy\ < ~ and [ \logw/2π\\dz\ +
I log G(t + iy)\ \dy\ <n}. It is clear from the hypotheses on G

and w that for some n < °°, m(EJ > 0, where m is linear Lebesgue
measure. Let E be any set En with m(En) > 0. If teE, define
the measures î  with support dSt by

Let

2π

ht =
w

m{E)G{t + iy)\dy\\Lt .

on Γt

Then

and

2π
m(E)G(t + iy) on

dvt = ht

ί | logΛ t | |dz |
JdSt

<

Notice that vt has b.p.e.'s in St (and hence in S) by an argument
similar to that employed in the proof of Theorem 2.2.

Fix any ae S. For any polynomial p

(23)

where teE. Integrating (23) on E with respect to dm, we obtain
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m(E)\p(a)\2 ^ sup||λ#||f( \ \p\2Gm(E)\dy\dm + m(E)\ \p\2wdσ]
teE \_JEjLt jΓt _!

^ s u p \\Kt\\2m{E)\\p\\l .

We need only show that supί6Je llfcll2 is finite to establish (B). Let
ijrt denote the simple conformal map of D onto St with ψt(a) — a
and φ't(a) > 0. Denote supflψ '̂Os)!"- /S ̂  t g α, ^eSJ by C. Let A
stand for the set of angles measured in radians of the corners of
St with t 6 [β, a]. Referring to the proof of Theorem 9.8 of [18],
we see that C < °o, since 0 < inf A <; sup A < π. (Because these
conformal maps can be given explicitly, this also follows by a
direct computation.) It follows from a conformal mapping and a
theorem of Szego [see 13] that

Γ \dz
CΛ.JJ 1 J . \U/f ψt \ & J J ^ ^ Ό iv\ώ) \ γ t v

2π
I1/Vα M " 2 τ τ ( l - | α |

s o

exp
- \a\

This completes the proof.

We remark that functions in H2(dA) do not in general have
Hardy space properties. However, if dv = GdA + wdσ satisfies (21)
then we have the following theorem.

THEOREM 3.2. Suppose that dv = GdA + wdσ satisfies (21). Let

( i ) Lim^, f(z) = f{eiθ) for σ-a.e. ei0 e Γ.
(ii) Suppose that f is not the zero function. If Γ1 is any

proper closed suharc of Γ and f vanishes on the set {zn}? which
has no limit points not in Γ19 then

where the p% is the multiplicity of zn as a zero of f.
(iii) Suppose f is not the zero function. Let Γ1 be any proper

closed suharc of Γ, then

\ log\f\dσ>-*o .
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Proof. The proof is similar to that given for Theorem 3.1 and
will be omitted.

These results extend a part of the author's dissertation sub-
mitted in partial fulfillment of the requirements for the Ph.D.
degree at the University of Virginia. The author wishes to express
his appreciation for the encouragement and guidance of Professor
Thomas L. Kriete, III.
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