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THE GROUP-VALUED LEBESGUE DECOMPOSITION

TIM TRAYNOR

An 8-bounded additive map on a topological Boolean
algebra to a topological group can be decomposed into a
continuous and a singular part. This can be done in a canoni-
cal way as a limit thoerem in spaces of oprators. As a conse-
quence, if ^/ is a Boolean algebra of continuous projections
on a (complete) topological group X and ^ is a "Frέchet-
Nikodym" topology on J^9 then every x in X, viewed as an
additive map A -> Ax on J^9 can be decomposed uniquely as
the sum of a ^-continuous and a ^-singular part. If ^f is
equicontinuous, the operators which decompose x are con-
tinuous. The result applies to the space of all s-bounded
additive functions on an algebra of sets to a complete
separated topological group.

In 1963, R. B. Darst [4] published a proof of a Lebesgue-type
decomposition theorem for complete normed abelian groups. The
result extended C. E. Rickart's theorem [12] on decomposition of
Banach-space valued set functions. It also turned out to contain
subsequent results of J. J. Uhl [14] and of J. K. Brooks [2]. This
was shown in detail by T. P. Dence [6]. About the same time, Darst
[5] indicated how his work carried over to lattices of projection
operators, and hence to modular functions defined on a lattice of sets.
The purpose of this note is to show how the results and methods
of [13] extend and shed light on this and related work. In particular,
we find that the topology on the group need not be metrizable and
that the same goes for the notion of convergence on the algebra
(it is metrizable in Darst's work). (In passing, we see that a hy-
pothesis of Darst's result can be removed so that it applies to join
semilattices.) The results may be formulated as limit theorems in
spaces of operators, so as to apply to all "decomposable" elements
simultaneously.

Let X be a commutative separated topological group and .S4? a
Boolean algebra (with operations noted by the corresponding set
theoretic symbols). Put a topology ST on j ^ such that KB = A Π 5
is continuous in A uniformly for B in ^9/ and that A Δ B is jointly
continuous in A and B (an FN-topology in the sense of Drewnowski
[8]). A map m on <s>/ to X is called ^"-continuous if it is continuous
in the topology 2^ and is called ^-singular if for each neighborhood
U of 0 in X and each ^-neighborhood G of 0 in jtf, there exists
A in G with m((Ac)) = {m(AeE): E e jzf) aU. m is called sideways
continuous [l]( = s-bounded, ^exhaustive), provided mAi—>0, whenever
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(Ai) is a disjoint sequence in S/. An additive sideways continuous
map is strongly additive [7], and we shall use this terminology.

In the special case that ,.5)f is a Boolean algebra of projections
(that is, idempotent endomorphisms) on X [3], to each x in X cor-
responds an additive map on s<f by evaluation m : 4 ^ Ax. In this
situation, x is called gf-continuous or gf-singuiar or sideways con-
tinuous provided m is. [Meet here is composition; the unit is I (the
identity map); AC = I—A (pointwise difference); A U B — A + B—ABJ\

Here is the generalization of Darst's theorem:

THEOREM. Let .9/ be a Boolean algebra of continuous projection
operators on the commutative separated topological group X and let
%? be an FN-topology on s/. Then any sideways continuous x in
X with S</x in a complete subset of X may be uniquely written as
the sum of a ^-continuous and a ^-singular member of X {both
sideways continuous).

(The proof will be given presently.)
To make it clear how Darst's result follows from this, for each

real t, let ^//t be a nonvoid subset of ._s>f such that As e t /C and
4 6 . 4 imply As\jAte,/fs+t (condition (5) of Darst [5] or (2) of [4]).
We may define an î iV-topology by taking for basic neighborhoods of
0 the families %78 = {Ae S/\ A is contained in a member of t..-/ζ}.
(Neighborhoods of the other members of S/ are obtained by trans-
lation under symmetric difference.) Since this topology has a countable
local base, it is metrizable, so the present hypothesis — not requiring
metrizability — is the more general.

An JPW-topology can be generated by a family Q of submeasures
(monotone, subadditive, real-valued functions q with q(0) = 0), in that
the families {A e .s>/: q(A) < ε}{q e Q, ε > 0) form basic neighborhoods
of 0: see, for example, [8, 12.7] or [13]. The use of the families
,^/έs amounts to using one submeasure (q(A) = inf {s: A e Z?s}) to define
the topology.

The condition (4) of Darst [5] (or (1) of [4]) is not used. As a
matter of fact, Darst himself is not really using it—or rather it is
implicit in the other conditions—in that his condition on the norm
(A<^ B=> \\Ax\\ <,\\Bx\\) allows one to replace ,.y/s by gfβ without
affecting sup^e ,,J|Ag||. Thus the lattice ^£ of Darst [5] is not
needed; the hypothesis is only on the join semilattice \JS t /fs. (See
however remark (4) below.)

Proof of theorem. By Theorem 1.2' of [13] (or rather by the
Boolean algebra analogue thereof) m: A >̂ Ax may be decomposed
uniquely as a sum Cm + Sm where Cm is ^-continuous and Sm is



THE GROUP-VALUED LEBESGUE DECOMPOSITION 275

^-singular; morover, Cm and Sm are given by

(Cm)A = Km* mAE'i and (Sm)A = lim{ mAEt ,

where (Et) is a certain (triple iterated limit) net in Ĵ C These limits
are uniform in A. Since each member of *$/ is assumed continuous,
we see that Cm and Sm are induced by elements of X. Indeed,
Cm A = limέ mAE\ — limέ AE\x — A(limί£

r x); and Smyl(limί Etx). Thus
a? — lim^ E\x + lim^a; is the required decomposition. Notice that
these components belong to closure( J^a?), which is why no more
completeness is required.

We see from the proof that we can say a little more:
(1) If s«/X is precomplete then the nets (El) and (Et) converge

pointwise on the subgroup XQ of sideways continuous elements to
disjoint projections C and S whose ranges form a direct decomposition
of Xo into its ^"-continuous and ^-singular elements.

(2) If j y is equicontinuous and X is complete, then the sub-
group Xo of sideways continuous elements of X is closed, hence also
complete. Replacing X by XQ we can assume all members of X are
sideways continuous. Now, we could call the topology of pointwise
convergence on the group B(X) of all continuous endomorphisms of
X the "strong operator topology", in analogy with Banach space
theory. The closure sίf of j y in this topology is obviously complete
because of the equicontinuity. In particular, the operators C and S
which decompose X are continuous. Notice also that *s/ is also
complete as a Boolean algebra and that each additive map A\-+Ax
is automatically extended to jtfl

Darst's work was inspired by spaces of measures, and perhaps
a better feel for the significance of these remarks would be obtained
by looking at such spaces. We are thinking along the lines referred
to in Darst [4] and [5] and more explicitly set out in [3] and in Huff
[11]. (The paper by Huff is partly responsible for our taking the
operator point of view here.) We work, however, with group-valued
set functions rather than scalar or Banach-space valued ones.

Let Y be a complete commutative separated topological group,
and let j y be a Boolean algebra of sets. Let X be the group of
strongly additive (= s-bounded additive) functions on ,sf to Y under
the topology of uniform convergence on j^C Then X is complete.
Each member A of j y induces a projection operator A* on X by
restriction: A'x(E) = xAE — x(AE). The Boolean algebra jy* of all
such projections is isomorphic to ..jy modulo those members N of
S/ which are null for all x in X (in the sense that x(NE) = 0,
for all E in s/ and all a; in J ) . The usual indirect argument shows
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that each x remains sideways continuous with respect to the algebra
Sf. Moreover, X has a base for its neighborhoods of 0 consisting
of closed symmetric sets invariant under j>/̂  , in particular ,sf' is
equicontinuous. Thus the preceding results apply to this situation:

COROLLARY. Let X be the group of strongly additive functions
on an algebra *.s>/ of sets to a commutative complete separated
topological group, under the topology of uniform convergence on ,.s>f.
Then for each FN-topology 27 on *_S>f there exist continuous projec-
tions C and S providing a direct decomposition of X into its subgroups
of ^-continuous and ^-singular members. The operators C and S
belong to the strong operator closure of the algebra of projections
induced on X by Sf.

( 3 ) In the setting of the corollary, each element x of X induces
an additive x* of ,S>/' by x'(A') = x(A). The members of ,3/' are
of course dense in the complete Boolean algebra ,.$/' obtained by
closing the former in the "strong operator topology". Since the maps
x' are uniformly continuous in this topology, they may be extended
by continuity to all of s/\ We thus have a more specific version
of the type of extension sketched by Drewnowski at the end of [10].

( 4 ) More needs to be said about the extent to which the results
apply to lattices. If one starts with a modular set function on a
lattice (containing, for simplicity, the whole space), it extends to
an additive set function on the generated algebra. The result of
Darst [5] and our extension herein apply only if the sideways con-
tinuity is assumed on the whole algebra. This condition does not
carry over to the algebra from the lattice. The question therefore,
is "What conditions on the function on the lattice are sufficient to
obtain a similar decomposition?7'. In [13] (upon which this note is
based) we actually used sideways continuity in the form of a monotone
convergence condition: for each monotone sequence (At) in j ^ m(AiE)
is Cauchy, uniformly for E in ,J>/Γ While this paper was being
written, Isidore Fleischer informed me that the construction of [13]
actually can be carried out under such a condition for modular
functions on any distributive lattice.
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