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FUNCTIONS WHICH OPERATE ON THE REAL
PART OF A UNIFORM ALGEBRA

S. J. SIDNEY

Three theorems are proved to the effect that a nonaffine
function h on an interval cannot operate by composition on
the real part of a uniform algebra on X unless the algebra
is C(X). The additional hypotheses necessary are, respec-
tively, that h be continuously differentiate, that h be
"highly" nonaffine in a suitable sense, and that h operate
in a rather weakly bounded manner. These results contain
and extend work of J. Wermer and of A. Bernard.

!• Introduction* Given a space of functions, its symbolic cal-
culus is a standard object of study, particularly if the space is as-
sociated with a Banach algebra. This paper is concerned with the
space ReA = {Re(/): / e A} where A is a uniform algebra on a
compact Hausdorff space X. It is an old conjecture that, unless
A = C(X), the symbolic calculus of ReA is trivial in that the only
functions which operate by composition on ReA are the affine func-
tions t —> at + by which obviously operate.

Precisely, suppose A is a uniformly closed subalgebra of C(X)
which contains the constant functions and separates the points of
X, I is an interval, and h: I —> R is not the restriction of an affine
function. The conjecture is that under these cooditions, if h operates
by composition on ReA in the sense that houeReA whenever
u e ReA has range in /, then it follows that A = C(X). We shall
prove three theorems along these lines.

The history of this problem probably begins with J. Wermer's
paper [6], whose conclusion that ReA cannot be closed under pro-
ducts is equivalent to the conjecture for h{t) = t2 (and, by induction
on degree, implies the conjecture for any polynomial of degree at
least 2) on any interval. Some time later, A. Bernard [2] proved
the conjecture for h(t) = 11 | on / = R. Our first two results, like
Wermer's and Bernard's, place restrictions on h. Either contains
Wermer's theorem, but not Bernard's.

THEOREM 1. Suppose I is an open interval and h: I —> R is not
affine but is continuously differentiate. If h operates by composi-
tion on ReA, then A = C(X).

THEOREM 2. Suppose that h: I —> R and that I contains a non-
degenerate subinterval J such that h is not affine on any nonde-
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generate subίnterval of J. If h operates by composition on ReA,
then A = C(X).

Any antiderivative of the standard Cantor function satisfies the
hypotheses of Theorem 1 but not those of Theorem 2. What sort
of function remains uncovered by any known theorem? The Cantor
function is an example, which is in fact more or less typical. For
suppose h:I—>R is continuous and not affine, but still operates on
ReA. Let P denote the set of all points of I in no neighborhood
of which h is affine. If P has an isolated point interior to I, then
the graph of h has a corner there, hence | ί | operates on ReA, so
A — C(X) by Bernard's theorem. If P contains a nondegenerate
interval, then A = C(X) by Theorem 2. Thus if A Φ C(X), then P,
which is closed (in I), must be nowhere dense but dense-itself, so
(essentially) a Cantor set.

It is also possible to obtain results by placing conditions on the
manner in which h operates on ReA. In Bernard's paper, the con-
jecture is proved if h operates boundedly in a suitable sense. Our
third theorem is of this type, with a very weak boundedness hypo-
thesis. ReA is a Banach space with the usual quotient norm
N(u) = inf{||/||x:/G A, Re(/) = u}.

THEOREM 3. Suppose that I is an open interval and that
h: I —>R is not affine but operates by composition on ReA in such
a fashion that the following boundedness condition holds: When-
ever u e ReA has range in /, there are positive numbers o(u), M(u)
and a dense subset S(u) of ( — σ(u), σ(u)) such that N(ho(u + t))<M(u)
for all t e S(u). Then A = C(X).

Thus we postulate a week local boundedness condition only in
the direction of the constants. This condition holds if, for instance,
the mapping u -^ h © u is either continuous or locally bounded on
its domain in ReA. Theorem 3 contains Bernard's boundedness
results.

A third approach to obtaining results is to place restrictions on
the uniform algebra A. While we shall present no results of this
type here, it is worth noting two instances in the literature. First,
in his cited paper Bernard proves the conjecture if ReA is "regular",
and he shows that the real part of the disc algebra on the circle
is regular. Second, Bernard and A. Dufresnoy [3] prove the con-
jecture when h operates in a suitably bounded manner on certain
restrictions of boundary value algebras for analytic functions.

The remainder of this paper will be devoted to proving the
three theorems, taking considerable advantage of Bernard's ma-
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chinery. Perhaps our methods can be adapted to prove the general
conjecture.

In §2 we shall present the common broad outline of the three
proofs. §3 is devoted to the details of the proof of Theorem 2.
Section 4 provides some preliminary information necessary to prove
Theorems 1 and 3, and §§5 and 6 consist of the proofs of these
theorems.

2Φ Outline of the proofs* If E is a (real or complex) Banach
space of continuous functions on X whose norm N dominates the
supremum norm || | |x, l^iN, E) consists of all sequences (fn)neN where
fneE and ΛΓ((/J) = sup{ΛΓ(/J: neN}<^. Endowed with JV as
norm, l°°(N, E) is a Banach space which embeds continuously in C(X)
where X = β(NxX), the Stone-Cech compactification of NxX; the
embedding, which we will often interpret as an identification, as-
sociates to (fn)el°°(N,E) that unique feC(X) for which f(n,x) =
fn(x) for every (n,x)eNxX. If feC(X),f denotes the element
(ffftff "') of C(X). The point of passing to E, the image of
Γ(N, E) under this embedding, is that it enables one to use Ber-
nard's lemma [2, Proposition 1]: If E consists of real-valued func-
tions and E is uniformly dense in CR(X), then E = CR(X).

This lemma will be applied to E = ReA. Let V denote the
(uniform) closure in CR(X) of (Re AY = Re(A), and let B = {ue
CR(X): UveV Vve (Re AΓ) = {u e CR{X)\ uveWve V}. Clearly B
is a closed subalgebra of GR(X) which contains the constants and
(because V contains the constants) is contained in V. Our objective
will be to verify that B separates the points of X. Then the
Stone-Weierstrass theorem will imply that B = CR{X), hence
V = CR(X), so (ReAΓ will be uniformly dense in CR(X) and by
Bernard's lemma ReA = CR(X), whence A = C{X) by, for instance,
a well-known theorem of K. Hoffman and Wermer [5; cf. also 2].

Suppose now that h: I ~> R operates on ReA. It is well-known
that h must be continuous. If h is not affine, applying a theorem
of K. de Leeuw and Y. Katznelson [4; cf. also 2, appendice] to the
uniform closure of ReA, it follows readily that ReA is uniformly
dense in CR{X), hence [2, Corollaire 3] A and (ReA)" separate
points on X.

It is worth noting that this conclusion—that (ReA)" separates
points—depends on the fact that A is a uniform algebra; no further
portion of the proof that ReA = CR{X) in Theorem 2 involves Re A
being the real part of an algebra of functions. Thus we may con-
clude that E — CR{X) whenever a continuous h as in Theorem 2
operates on E, a Banach space in CR(X) which contains the constant
functions and is "ultraseparating" in that E separates the points
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of X. Similar comments via-a-vis the other theorems will be made
later. Ultraseparating Banach spaces and Banach algebras are dis-
cussed in [2] and [3]; for an "intrinsic" description of when a semi-
simple commutative Banach algebra is ultraseparating, see the paper
of B.T. Batikjan and E.A. Gorin [1].

Continuing with our outline, we use a category argument to
find roughly (precisely, in the case of Theorem 2) a ball in (ReA)"
which is carried by h into V. A device from the proof of the de
Leeuw-Katznelson theorem is then used to replace h by a suitably
nonaffine continuously differentiable function φ; this step is not
needed for Theorem 1. It is then shown that φf carries the ball
into B, that is, that ψ © u e B for each u in the ball. Careful
choices of u yield the point-separating property. In the proofs of
Theorems 1 and 3, there are pairs of points which we cannot
separate in this manner, but for them alternative separating schemes
exist.

3. Proof of Theorem 2* Now assume h is as in Theorem 2.
Choose a < b so that [α, b] c J. Let D = {u e ReA: a <£ u ^ 6}, and
for each neN let Dn = {ueD: N(hou) < n}. D is closed in ReA,
so complete and D = U DnJ so by the Baire category theroem the
closure in ReA of some Dn has nonempty interior in ΰ . Thus there
are u°eD,η> 0, and reN such that Uf)Dr is dense in UnD
where U = {ue ReA: N(u — u°) < 3 }̂. If necessary we may replace
u° by su° + t for appropriate numbers s e (0, 1) and ί, and shrink η
somewhat, to arrange that U czD and that U Π Dr be dense in U.

Let (vn) = ve(ReAT satisfy N(v)<3η. For each (n,k)eNxN
choose unke Uf]Dr such that N(unk — (u° + vn)) < 1/k. For each
JceN let uk = (unk)ne]Vs(ReAy. Because unkeDr, N(h<>unk) < r, so
for each k, h<>uk = (h<>unk)neN-e (ReA)". As k-> °°,houk converges
uniformly on X to ho((u°)~ + v), hence ho((u°)~ + v)eV. Thus if
for each ε > 0 we let Wε denote the open ball in (ReA)^ centered
at (u°)~ with radius ε, we have just shown that h o u e V whenever
u e Wsη.

We shall now to some extent imitate the proof of the de Leeuw-
Katznelson theorem. For 0 < δ < rj let λ̂  be a nonnegative con-
tinuously differentiable function on R supported in ( — δ, δ) and with
integral 1. Let φδ denote the convolution

φδ(x) = [ *h(x - t)Xδ(t)dt - Γ h(t)Xd(x - t)dt .
}-δ Jα

φδ is continuously difFerentiable on a neighborhood of [a + 7), b — η\,
and as δ-»0, φ§ converges to h uniformly on [a + η, b — τf\. If
u e W2η then u — t e T 3̂̂  and so fe © (ffi — ί) e F whenever ί e [ — 5, δ],
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hence φδoΐίe V since φδ<>u = \(ho(u — t))-Xδ(t)dt and V is uniformly

closed; if also v e (Re A)" then for small nonzero t, u + tv e W2Vy hence
(φ9 o (u + tv) — φδ o S)/ί e F and, letting ί -* 0, ($ ° ffi)v e F. Thus
φ'δoueB whenever ue W%η. We shall complete the proof of Theorem
2 by showing that the family of such φ'a<>ΰ separates the points of
X.

Let p, g e l , p Φ q. Choose w e Wη such that w{p) Φ w(q), pos-
sible because (ReAy separates points on X. Choose ε > 0 so that
ε < η\w(p) — w(q)\/(2N(w)) ^ η. Choose numbers tlf t2, t3 in (w(p) — ε,
w(p) + ε) so that the three points (tjf h(t/)) are not collinear, possible
because this interval is contained in J. Then choose a positive
3 < ΎJ small enough so that the points (tif φδ(t/)) are close enough to
the points (tjf h(tό)) to prevent them from being collinear; thus φ\ is
not constant on (w(p) — ε, w(p) + ε). If φ'ό(w(p)) Φ φ'δ(w(q)), let
u — w. If Φ'ό(w(p)) — φ'δ(w(q)), choose s e (w(p) — ε, w(p) + ε) for
which φr

ό(s) Φ φ'o(w(q)) and let u = w + {w~w{q))(s~w{p))l(w(p) — w(q)),
so N(u — w) < 7], u(q) — w(q) and u(p) = s. In either case, 3 6 W9V

and ί̂(ίϊ(ί>)) ̂  ί̂(®(ff))> that is, φ'ό<>u is an element of B which
separates p and q. Theorem 2 is proved.

4* Reduction of other proofs. For each pβX, the functional
% —> iϊ(p) on CR{X) is linear and multiplicative, so there is a unique
xpeX such that w(p) = u(xP) for all ^ 6 CB(X).

For the remainder of the paper, p and g will be fixed distinct
points in X, and we must find an element of B which separates
them. In this section, we show that we may suppose either that
(1) xp Φ xq, or that (2) xp = xq and there is w e (ReAy which vani-
shes on Nx{xp} and at q, but is 1 at p.

Indeed, suppose that (1) fails, so xp = xq. Suppose further that
f(p) = f(q) whenever feA vanishes identically on Nx{xp}. Then
there is a linear functional L on l°° such that f{p) — f(q) =
L((f(n,xp))) for all feΆ; L is not identically zero because A
separates p and q. Choose a real sequence (cj e i°° for which
L((cJ) ^ 0. The function ίϊ e CB(X) which is identically equal to cn

on W x l belongs to ΆdCB(X) and so to B, and u(p) — u(q) =
L((cn)) Φ 0, so u separates p and q.

Thus we may suppose that there is feA which vanishes on
Nx{xp} but for which f(p)Φf(q). If /(p) = 0, interchange p and g.
Then, by replacing / by αf + βf2 with α = ~f(q)/[f(p)(f(p)- f(q))]
and /3 = l/[/(p)(/(ί>) — /(ί))] if necessary, we may arrange that
f(p) = 1 and /(#) = 0. Now tδ = Re/ will do in case (2).

This is the last point in the proof of Theorem 3 at which the
algebraic structure of A is used. Thus Theorem 3 remains true if
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A is any ultraseparating Banach algebra in C{X) which contains
the constant functions, and h is assumed to be continuous.

5* Proof of Theorem JL Now assume h is as in Theorem 1,
and let p, q be distinct points of X. We may assume either case
(1) or case (2) of §4 is in effect.

First suppose case (1) holds, so xp Φ xq. Choose numbers a <b<
c < d so that [a, d]al and h'([a, b]) Π h'([c, d]) = 0 , possible by the
hypothesis on h. Let D = {u e ReA: a ^ u <S d, a ^ M ^ ) ^ 6,
c <̂  %(aff) <; d}, and for each w e N let ΰ ^ f u e D : N(h°u) < %}. D
is nonempty (since ReA is dense in CB(X)) and closed in ReA, so
complete, and D = UDr, so the closure in ReA of some Dn has non-
empty interior in D. Thus there are u° e D, η > 0, and r e N such
that Uf] Dr is dense in Uf] D where ί7 = {u e ReA: JV(% - u°) < ^}.
We may choose w e ReA so that α < ^ < d, a < ^(ίcp) < b, c < w(#g)<ci;
replacing w° by (1 — t)uQ + ίw for small t > 0 and shrinking 57, we
may arrange that UaD and that Uf]Dr be dense in 27. Arguing
as in §3, houeV and then h'oueB whenever ue Wv, the open ball
in (ReA)" centered at (u°)~ with radius η. In particular,
v = h'o(u0)- e B. But ff(p) = h'(u°(xp)) e h'([a, b]) and v(q) = h\u\xq)) e
h\[c, d])f so v separates p and g.

Now suppose case (2) holds, so xp = a;g and there is 'u; 6 (ReA)^
which vanishes on Nx{xp} and at q but is 1 at p. Choose sel such
that h is affine—equivalently, hr is constant—on no neighborhood of
s. Choose numbers α, b so that α < s < 6 and [α, 6 ] c J , let D —
{u e ReA: a ^ u ^b? u(xp) — s}, and for each neN let I ) , = {M e
D: N(hou) < w}. As usual there are u° e D, η > 0, and r e JV such
that Uf]Dr is dense in [/flΰ where U = {ueΈLeA: u(xp) = s and
N(u — u°) < rj), and on replacing u° by (1 — ί)u° + ts we may ar-
range that UdD and that UΠ Dr be dense in U. Arguing as in
§3, we find that houeV whenever ue Wη, where Wη = {^6 (ReA):
u(n, xp) — s V neN and N(u — (u°)~) < ^}. We wish now to show
that hf°ueB whenever ueWη.

Let T={ve(ReAy: v(n, xp) = 0 V^GiV}, a closed subspace of
(ReA)", so Wη is the open 77-ball in T translated by (u°)~. Arguing
again with quotients (h°(u + tv) — hojί)/tt we find that (hf °u)v e V
whenever ueWv and veT. Since (ReA)" is spanned by T and the
functions which are constant on each {n}xX, we need only show
that if ue Wη, if (cj is any real sequence in Γ, and if veCB(X) is
identically equal to cn on {n}xX, then (h'°u)ve V. Replacing h by
t —• fe(ί) — h\s)t if necessary, we may suppose that h\s) — 0, hence
h'on vanishes on Nx{xp}. Given ε > 0, choose positive numbers α
and β so that P'°u| |x IKOII^ α < e and /3 !!(cJ||^ e < ε. For each
71 e JV let if% = {x e X: \{hf o ί£)(w, cc)| ^ /9} and choose gne A such that
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ΈLe(gu) < 1, gn(xp) = 0, and Re(gn) < log a on Kn. Let fn = 1 - eg* e 4 ,
so |/ n - 1| < e,fn(xp) = 0, and |/Λ - 1| < α on # „ . The sequence
(βn/n) belongs to Z°°(iV, A), so the sequence (c»Re(/n)) defines an
element 2 of Γ. Thus (hΌu)ze V, and it is easy to verify that
\(h'ou)z — (hf ou)v\ <; ε on NxX, so on X. Since ε is arbitrary and
V is uniformly closed, it follows that (hf ° u)v e V. Thus hΌjieB,
as we wished to show. This argument is the last place in which
the function algebras context is used.

Choose t Φ 0 so that h\s + t) Φ h'(s), and so that \t\N(w) < η.
Set u = (u°)~~ + tw e Wv. Then hΌtieB by what we have just
proven, and {hr o ί?)(p) — fe'(s + ί) =£ fe'(s) = (hf ° iϊ)(g). This completes
the proof of Theorem 1.

6* Proof of Theorem 3* Now assume the hypotheses of
Theorem 3, and let p, q be distinct points of X. We may again
assume that either case (1) or case (2) of § 4 holds. Choose s e ί so
that h is not affine on any neighborhood of s.

Suppose case (1) holds, so xp Φ xq. Take numbers a < b < c < d
such that a < s < d, [α, d] c /, and s £ [6, c]. Let D — {ue ReA:
a ^u <^ d, u(xp) — s, b ^ w(ccff) ^ c}, and for each neN let JDΛ =
{% 6 D: σ{u) > 2/n, M(u) < n). Then there are u° e D, τ > 0 and r e N
such that U Γ\ Dr is dense in [/ Π JD where U ~ {ueReA: u(xp) — s,
N(u — 16°) < 4τ}. By choosing w e ί ) so that a < w < d and
6 < w(xq) < c, shrinking r, and replacing %° by (1 — £)w° + ίw for
small t > 0, we may ensure that C/cΰ and that UdDr be dense in
U. Let 57 = min{τ, 1/r}. Suppose v 6 ReA and N(v) < 2η. Then
uΌ + v — v(xp) e U. Given ε > 0, take ue Uf] Dr so that N(u —
(u° + v - v(xp))) < ε/2 and then take t e S(u) so that 11 - v(xp)\ < ε/2,
possible because | v{xp)\ ^N(v)< 2TJ ̂  2/r < φ ) . Then N(ho(u + ί))<
M(u) < r while ΛΓ((u + ί) - (u° + t;)) ^ N(u - (u° + v - v(xp))) +
\t — v(xp)\ < ε. In other words, the open ball in ReA centered at
u° with radius 2η has a dense subset consisting of functions u with
the property that N(hou) < r. As usual, it follows that houeV
whenever u e W2V, where for each ε > 0, We denotes the open ball
in (ReA)^ centered at (u°)~ with radius ε.

For 0 < d < η, construct φδ as in §3, so φ'δ°ueB whenever
u e Wη. If 0 < ε < η \s - n\xq) \/(2N(u0)) ^ η then, as in § 3, for
small enough d, φ'δ will not be constant on (s — ε, s + ε); choose o
this small. If φ'δ(s) Φ φ'd{u\xq)) take u = (u°y, if φ'*(*) = Φa(uo(xq)) let
u = (u°)~ + ((u°)~ - u\xq))(t - s)/(s - u\xq)) for some t e (s - ε, s + ε)
such that φr

δ(t) Φ φδ(u\xq)). In either event, ueWv and φ'δou is an
element of B which separates p and q. This completes the argu-
ment when case (1) holds.
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Finally, suppose that case (2) holds, so xp = xq and there is
w 6 (ReAy which vanishes on Nx {xp} and at g, but w(p) = 1. Choose
numbers a, b with a<s<b and [α, δ ] c /. Let D — {u e ReA: a <Lu <Lb,
u(xp) — s), and let w°, τ, r, £7, 77 and Wβ be as in the above argument
for case (1). Exactly as in that argument, h°ueV whenever
ue W2V; construct the φδ again, and choose δ small enough so that
φ'δ is not constant on (s — ε, s + ε), where ε is chosen as in case (1).
Choose t, 0 < 111 < ε, small enough that 111 N(w) < rj, and so that
φ'δ(s + t)Φ φ'6(β). Then u = (u°)~ + tw e WV9 so φ'δo u e B, and (Φ'δ°u)(p) =

Φ'δiβ + t) Φ φ§(s) = (Φδ°u)(q). Thus φ'δou is an element of B which

separates p and q. This completes the argument for case (2), as
well as the proof of Theorem 3.
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