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TRANSVERSE WHITEHEAD TRIANGULATIONS

MARTIN SCHARLEMANN

Suppose M and N are PL manifolds and f: M > N is a
proper PL map. Triangulate M and N so that f is simplical
and let X be the dual complex in N. Then for each open
simplex ¢ in X, f o) is a PL submanifold of M, so the
stratification of N by the open simplices of X pulls back
to a stratification of M. In other words, any such PL map
can be regarded as a map of combinatorially stratified sets
in which each un-stratum of therange is a disjoint union
of copies of R». Here we prove the analogous theorem
for a smooth map f: M — N between smooth manifolds.

An essentially similar (but simplified, since 1.1 is obvious) ver-
sion of our proof would also apply to PL maps between PL mani-
folds, so our main theorem applies in the PL category as well. The
theorem will be used elsewhere [2] to show that Cohen’s notion of
transverse cellularity [1] may be applied in the smooth category as
well.

Let N be a smooth n-manifold imbedded in some high-dimen-
sional Euclidean space RY. An imbedding %: X — N of a simplical
complex X into N is called a smooth imbedding if 2 7'(oN) is a sub-
complex and, for every k-simplex ¢ of X, there is a neighborhood
U of k(o) in RY and a diffeomorphism g¢g: U — R*X R * such that
gh: ¢ — R*x {0} is the linear map of o onto the standard k-simplex
A*C R*. (The use of R” is solely to avoid a special discussion of dN.)
If X is a combinatorial manifold and % is a homeomorphism, then
h is called a smooth triangulation of N. Combinatorial triangula-
tions of smooth manifolds always exist (see e.g., [4]).

If /1 M — N is a smooth map of manifolds, a smoothly imbedd-
ed complex h: X — N is said to be transverse to f over a closed
k-simplex ¢ in X if the composition p,gf: M — R¥* has no critical
points near f~'(h(c)). In particular, f~'(h(d)) is a smooth submani-
fold of M. The definition is independent of the choice of U, g, or
the imbedding of N in RY. Our goal is the proof of

THEOREM 0.1. Let f: M — N be a proper smooth map of smooth
manifolds, X C N a smoothly imbedded simplicial complex, K X
a subcomplex of X transverse to f.

If XNoONCK or ON 1is transverse to f then there is an ambient
diffeotopy h,: N — N, fized near K, from the identity h, to & map
h, such that h(X) is transverse to f. Moreover, the diffeotopy h,
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may be made arbitrarily small in any Riemannian metric on N.

In particular, if f: M — N is any smooth map between closed
smooth manifolds, then N has a smooth triangulation transverse to
f> and so f may be regarded as a strata preserving map of smooth
stratified spaces in which each stratum of the range is a disjoint
union of copies of R".

Our result is in fact somewhat stronger: if o is a closed simplex,
fh(o) will be a topological manifold with smooth interior and
boundary f'h(do) (see Remark 1.2).

Some notation. Let r: R* — R be the map r(x,, ---, ) = (Xx))7,
aB* = r7'0, a], for « > 0. If M is a manifold, M denotes interior
of M. Let al* =aB'x---xaB* (k-times). For any X, the identity
map X — X is denoted idy.

1. Collaring smooth maps near 04*. Let 4* be a k-simplex in
R* with barycenter at the origin. Suppose f: V — R¥*xXR" is a pro-
per smooth map of smooth manifolds and suppose the complex d4*
is transverse to f.

PROPOSITION 1.1. For some 0 < a <1 and & > 0 there exist
(1) a smooth m —n — 1 manifold L

(2) a diffeomorphism c: B* — A*
(8) a diffeomorphism

¢: Lx (@, 1)X eB" — f[e(B* — aB*)xe¢B"]

such that
Lx(a, 1) x eB* L REx R
lpz l(rc'l) Xidpn
(¢,1)xeB* <=— RXR"
commutes.

Proof. Case 1: n = 0.

Proof of case 1: Let w: R*— 7z+ be the smooth vector field
grad(r). The trajectories of w are the rays from the origin, so,
since 4* is convex, there is a unique trajectory through each point
of a4,

For each j-simplex o of 04* let hl: R — R* be a linear imbedd-
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ing such that ccCimage h’. By Picard’s theorem, there is a unique
smooth map h,: R*X R — R* such that h,|R'xX0 = h{ and dh, carries
the vector field grad(p,: RF xR — R) to w. If 7 is a (k — 1)-simplex
then %, is an imbedding onto a neighborhood of 7 in R*.

Order the (k — 1)-simplices (faces) <z, ---,7, of 04*. Any
J-simplex o of 94" is contained in k& — j faces z;, -+, 7;_;, 9 < Ti44e
Define the map g, from a neighborhood of 7z, to R by ¢, = y N
and on a neighborhood U, of ¢ define ¢,: U,— R* by (q,); = ¢y
Observe:

(1) Since f is transverse to d4* we may choose U, so small
that q,f: V — R*7 has no critical values near 0 in R*J,

(2) dq,(w) = grad(p,+---+p,_;) where p,;: R* 7 — R is projec-
tion on the 4th factor.

(38) If oca’, then ¢, |U, is just ¢, followed by a projection.

Clatm. There is a smooth vector field v on V near [ '(04%)
such that for every j-simplex ¢ of 04", and y sufficiently close to

f7(0), d(q. )W) = d(g)(w(f(¥)))-

Proof of claim. Use induction over simplices. Suppose v has
been defined near f~((j — 1)-skeleton),0 <7<k —1. Let o be a
j-simplex. Then, by (2) and (8) above, d(q.f)(») = dg,(w) = grad
(p,+++++p,_;) near fd0). By (1) there is a vector field v, defined
on f7(U,) such that d(q,f)(v,) = grad(p,+ -+ +p,-5). Let o: f7(U,)—
[0,1] be a smooth map with support where v is defined and such
that ¢ = 1 near f*(do). Then v + (1 — @)v, is an appropriate ex-
tension of v near o, completing the inductive step and so verifying
the claim.

Now choose v >0 so small that for any j-simplex ¢ of d4%
q; ' (vI*9) is contained in U, ¢q,: U, — R*7 is nonsingular over vI*J
and v is defined on (g¢,f) *(vI* ). Without loss of generality, let
U, = ¢;*(vI*79), so d(q./)(v(y)) = d(g.)(w(f(y))) throughout f~(U,).

Let p: R —[—1,1] be a smooth map such that p(x) = —z/|z|
for |x| = v/2, p(x)=—x for x near 0, and p(—7/2,v/2) — (—1,1) is a
diffeomorphism. Define p,_;iR¥* >R by 04 i@+, ps)=

k=3 p(x,). For each j-simplex o of 94* define o, = 0,_;q,: U, — R.
Notice that if occo’, then p, coincides with p,. except perhaps where
lg., (@) < 7/2, some 0<1i<k—j. In particular o, coincides with
0, except well within U,. We may therefore consistently define a
smooth p: R* — [0, 1] as follows. Let U = U,U,, 0 in d4*, and let
o(x) denote the lowest dimensional simplex of d4* for which U,
contains z.

(i) If zis in 4* — U, let p(x) =1

(ii) If 2 is in R* — (4* U U), let p(x)=—1
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(iii) If z is in U, p(x) = 0, -

Clearly 07*(0) = 04* and p|4* > 0. Define new vector fields w’
and ¢ over R* and f'(U) by w'(x) = pl@)w(x), v'(y) = o(f())v(y)
for x in R* and v in f%U). Just as for w and v we have, for
any j-simplex ¢ of 04* and y in fX(U), d(g./)(V'(¥)) = dg.(w'(f(¥)))-
In other words, suppose we define the vector field u, in R*7 by
%, = 04_; grad(p,+---+p;_;). Then, in fact, we have d(q,/)(¥'(¥))=
dg,(w'(f (%)) = u.(q,5(¥)).

Choose ¢>0 so small that any point s in p7'(¢) satisfies ¢.(s) > —7/2
for some face 7 of d4*. Then for ¢ = o(s),

00 (0, () = O1-o(a,(s)) - 5, De=s

= dw,
=oes (LD ) [Ta,) = (5 £4% ot ;<0

14q,,)

since f4(q,,) >0 in 2!", 2(q,,) =0 and for at least one term (where
9, = 0-), #(¢,;) <0.  Then, for f(y)=s,d(of)v'(y) = (dp)w'(s)=
A(0s- i9,)w(s) = d(0:_5)U,(g.(s)) <0, so p and pof are transverse to e.
Define S and L to be the smooth suqmanifolds o7!(¢) and f(S) of
4*¥ and V respectively. Since (do)w’ <0 at all s in S = p7'(¢), each
trajectory of w’ intersects S precisely once. Similarly, each trajec-
tory of ¢’ intersects L precisely once.

Picard’s theorem then provides smooth imbeddings ¢,: Sx[0, o0)—
4* and Co: LX[0, o) — f‘l(ﬁk) whose trajectories ¢,(sx[0, «)) and
Co(Ix[0, =)) have tangent vectors w’ and o' respectively.

=op(g,,)

Claim 2. Diagram A below commutes.

co_lféo

— 5x[0, )

LxJ0, <)

N\ /
Pz\ /pz
[0, =)

DiaGrAM A

Proof of Claim 2. Unfortunately, f.(v)# w’, so the proof is
not immediate. For (I,¢,) in LX[0, ), ¢ any j-simplex in 44, let
*, denote the following condition:

! has a neighborhood L in L such that for some codimension 1
manifold 7 in R* 7 transverse to wu,_j, ¢(L X &) (g,f) " (M).

Then notice:

(a) If 0 =o(f(@,(,t))), so d(q,f)v' = u,, then the unit flow of
L xt, in Lx[0, «) is mapped by ¢,f¢, to the flow of I along w,_;,
so *, will continue to hold for ¢ = ¢, as long as o = o(f(¢,(, t))).
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(b) If o is a simplex in 0’Cd4*, then x, holds wherever p, = p,,,
i.e., except well within U,. Indeed, ¢, is just ¢, composed with a
projection p. Let M = p~'(JM’), where M’ is the manifold of condi-
tionN*‘,/. Since we assume p,. = 0,, dp(u,) = U, S0 u, is transverse
to M.

() If o0 =a(fc(l,0)), then *, holds for (I, 0). Indeed, take I
to be p;';(c); we showed above that w, is transverse to M and de-
fined L so that it coincides with (q,f) (/) near &(l, 0).

(d) Since the trajectories of u, never increase their distance
from 0e R* 7 it follows that if o = o(fé,(, &), then o(fec,(l,t) o
for all ¢ = ¢,.

Combining a — d, it follows that condition *, holds for any (I, t)
when o = a(fe,(l, t)).

Now, by definition, A commutes over 0&[0, ). The set of
values t€[0, o) over which 4 commutes is clearly closed; we show
that is also open. Let ¢, be a point such that ¢;'fé,(Lxt,) = Sxt,.
Choose any !l in L and let ¢ = o(f¢,(l, t,)) be a j-simplex.

Then there is a neighborhood I of I and a codimension one
manifold I of R,_; transverse to u, such that &,(L xt,)C(g.f) ().
Then f~*(If) contains a neighborhood S of f&(l,¢) in Sx&, but
since dg,(w') = u,, the unit upward flow of S in Sx[0, ) is map-
ped by g¢.c, to the unit upward flow of M under u,. By condition
(a) above, the unit upward flow of L in Lx[0, ) then is mapped
by ¢;'f¢, to the unit upward flow of ¢;'fc,(L) in Sx[0, ). Hence
A commutes near (I, t,). Since f is proper, L is compact. Thus a
repetition of our argument near a finite number of points I, shows
A commutes over a neighborhood of #,. Hence A commutes every-
where, verifying Claim 2.

It remains only to show that ¢ extends to an imbedding of B*
in 4*. Each trajectory of w’ intersects both Sx0 and the boundary
of a small ball about 0 in 4* exactly once. It is then a classical
result that the ball can be smoothly deformed so that the interior
of a collar of its boundary coincides with S x (0, «), giving an ex-
tension of ¢ over the rest of 4%

Case 2. n>0.

Proof of Case 2. Since f is transverse to 04* the map p,f: V—
R™ is transverse to 0 near 04*. Then there is a neighborhood U of d4*
in R* such that f~*(U) is a smooth submanifold of V, and f|f«(U)—U
is transverse to d4%. Apply Case 1 to get ¢: Lx(0,1)— fY(U),
¢: Sx(0,1) — U such that ¢'f¢ commutes with projection to (0, 1).
Extend ¢ to an imbedding ¢: Sx (0, 1) x R* — U X R" by crossing with
idg~.
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Since ¢™'f is transverse to Sx (0, 1), it follows from classical
tubular neighborhood theory that ¢ extends to a map ¢: Lx (0, 1)x
gB” — V such that ¢'f¢ commutes with projection to (0, 1)xeB™.

REMARK 1.2. Since each trajectory of w’ (resp. ¢') lies in a
trajectory of w (resp. v) and each point of 64* (resp. f7'(04%) lies
in a unique trajectory of w (resp. v), each point of 64* (resp. f(04"))
is the limit point of a unique trajectory of w’ (resp. #’). Therefore
the smooth imbeddings ¢: Sx|[0,1) — 4%, ¢: L x[0,1) — f7*(4*) given
by ¢(s,t) = ¢i(s, t/L — 1), ¢(l, t) = c,(l, t/1 —t) extend to topological
collars ¢: Sx[0,1] — 4% and ¢: L x[0, 1] — f7(4*) of d4* and f~'(a4%)
respectively.

2. Proof of the theorem. First consider the following special
case.

LEMMA 2.1. Let f: M — R*XR" be a proper smooth map trans-
verse to 04" = 04*x 0C R*x 0 and let 6: R*X R™ — (0, =) be continuous.
Then there is an ambient diffeotopy h,: R*x R* — R*X R", fixed outside
a compact set in 4% x R*, from the identity h, to a map h, such
that h(4%) is transverse to f. Furthermore d(h,(x),x) <d(x),
0=t

Proof. Sinoe h, will be fixed outside a compactum, we may
assume 0 is constant.

Let ¢, L,c,¢, be as in 1.1. With no loss of generality, let
¢ = 0. Since critial values of p,f: M — R™ are meager, by Sard’s
theorem, there is a regular value w, in ¢B". Let P, 0=t <1 be a
diffeotopy of id R* with support in eB” carrying 0 to #,. Let
p:R—1[0,1] be a smooth map such that pg(x) =1 for « near
(—oo, a], t(x) = 0 for = near [1, ). Define

hy: ¢(BF) X R™ — ¢(B*) X R"

by h.(e(x), y) = (@), Yng=n(¥)). Extend &, by the identity to the
rest of Rt*xR".

We claim h,(4%) is transverse to f. Certainly h,c(@B*) is trans-
verse to f, for h,c(@B*) = aB,x4,(y) = aB,xy,. Since p(lz]) =0
for |«| near 1, h is fixed near d4*, so, by hypothesis, h,(4*) is trans-
verse to f near oa4*.

Define h:é&(Lx(a, 1)xeB™) — ¢(Lx(a, 1)xeB™ by hE(,r, ¥)=
&, 7, Yun(¥). Then hifh = f, which is transverse to ¢(B* — aB¥),
by 1.1. Since h is a diffeomorphism, A;'f is also transverse to
c(fB" — aB"), so f is transverse to he(B* — aB"), completing the proof.
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Proof of 0.1.
Case 1: XNoNCK.

The proof is a straightforward induction over simplices of
X — K; suppose h, has been constructed so that f is now transverse
to the (k — 1)-skeleton. Apply 2.1 to a neighborhood of each
k-simplex, the neighborhoods chosen so that f is already transverse
to the k-simplices wherever neighborhoods overlap. This completes
the inductive step, hence the proof in this case.

Case 2. 0N is transverse to f.

Apply Case 1 first to f|f*(0N) isotoping 0N until the subcomplex
XNoN is transverse to f|f'(0N). Extend to an isotopy of N.
Since f is transverse to oN, after the isotopy f will be transverse
to XNOoN. This reduces the problem to the previous case.
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