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SOME PROPERTIES OF THE CHEBYSHEV METHOD

MATTHEW LIU AND B. E. RHOADES

Several properties of the Chebyshev method of summa-
bility, defined by G. G. Bilodeau, are investigated. Specifi-
cally, it is shown that the Chebyshev method is translative
and is a Gronwall method. It is shown that the de Vallee
Poussin method is stronger than the Chebyshev method,
and that the Chebyshev method is not stronger than the
(C, 1) method. The final result shows that the Chebyshev
method exhibits the Gibbs phenomenon.

Let Σ( — iyut be an alternating series with partial sums sn =
ΣΓ=o( —l)*w< Define a sequence of polynomials {PJt)} by PJt) =
Σ*=o«•***, P*(l) = 1, n = 0, 1, 2, •••. The series £(-1)%, will be
called summable (PJ to the value s if lim σ(Pn) = 8, where σ(Pn) —
ΣLo #«&£*• Bilodeau [1] considered the following question. What are
sufficient conditions on Pn for σ(Pn) to speed up the rate of conver-
gence of a convergent sequence {sn}Ί For sequences {un} which are
moment sequences, i.e., un has the representation un = \tnda(t),

Jo

where a(t)eBV[0fϊ\, he obtains the es t imate \σ(Pn) — s\/\rn\ ^

(μj\rn\)\t(l+ t)-1\da(t)\, where s = ΣΓ=o(-l)X, rw = sn - s, and
Jo

jMn = maXo^ί^lP^ —t)\. Adopting μn as a measure of the value of
the method σ(Pn), the most desirable sequence of polynomials will
be those for which μn is a minimum, subject to the constraint
PΛ(1) = 1 for each n. The Chebyshev polynomials, defined by
Tn(x) = cosnx, n = 0, 1, 2, ••-,& = cos/9, form the best approxima-
tion to the zero function over the interval [—1, 1]. When translated
to [0, 1] they give Pn(t) = TJX + 2t)/TJS) as the best polynomials
to minimize μn, where

(1) TJx) = [(x + Vx2 - l)n + (x - Vx2 - 1)1/2 ,

and

TJS) = (an + a~n)/2, a = 3 + τ/"8"^ 5.828 .

The infinite matrix A = (ank), associated with these polynomials,
has entries

( 2 ) (3)

2 2 *"T ln + k\ fn + k-1

0, k> n .
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Bilodeau calls the associated summability method the Chebyshev or
(7-method.

We begin by establishing some properties of the maximal entry
in each row of σ.

LEMMA 1. For each positive integer n > 2, there exists an
integer p such that

anjc < an,k+1 for 0 ^k < p

nk =: VL>n,k-\-l JV' ir ^= " / \ '^

Proof. For 0 < k ^ n we may write

( 3 ) ank = Ί _, .
n~k

so that ank/an,k+1 = (k + l)(2k + l)/2(n2 — k2). Treating k as a continuous
variable and differentiating with respect to k, it follows that ank/
an)k+1 is increasing in k. The proof is completed by noting that
anQ < dm < α*2 and αn,%_1 > ann for each n > 2.

LEMMA 2. For each n, p = [x0] where x0 = ( — 3 + (32w2 — 7)1/2)/8.

Proof. Since αwl < an2 and an>n-x > ann, there exists a real posi-
tive number x0 such that anXQ = an,XQ+1 which implies 2x2

0 + 3x0 + 1 =
2n2 - 2x0

2. Since x0 is positive, &0 = ( - 3 + (32w2 - 7)1/2)/8.

LEMMA 3. i^or eαcΛ w > 6, p = [x0] > n/2.

It is sufficient to show that x0 — 1 ^ w/2; i.e., 8(2n2 — lln —16) ^
0, for n > 6. With # ( » - 2w2 - llw - 16 we have g\n) > 0 for
n > 11/4, hence g is increasing for n > 11/4, and # is positive for
n > 6 and % an integer.

LEMMA 4. Wiίfe p αnώ anp as defined in Lemmas 2 and 3,
α^p = 0.

From (3), and Stirling's formula,

n22p~ιΓ(n + p)
a =

n22p~\n + p- l)n+

pan(n -py-ve-
{n-p)(2π(n-p))1/2(2p-1)^-

(p-±)1/2

1 V 2/ n Ίn + p-ί\n-p I n + p-1 Vp

l)(n-pψΛa(n-p)/ [y-fp_l\J
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Both ((n + p - ΐ)/a(n - p)n~p) and ((n + p - ΐ)/V Έ(p - l/2)2p) are
bounded above. Therefore limnanp = 0.

Cooke [3, p. 119] shows that a necessary and sufficient condition
for a regular matrix to be absolutely translative for all bounded
sequences {zn} is that the matrix A satisfies lim^ Σ?=o I α%fc —α% ) A ; + 1 | = 0.

THEOREM 1. The σ-method is absolutely translative for all
bounded sequences.

Proof. Bilodeau [1, p. 296] has shown that the σ-method is
regular. From Lemma 1,

V a — a I

p-1 n

\^n,k + l &nk) ~Γ 2-1 \βnk U"n,,k + l)

= 2αnp — αw0.

The regularity of A implies that \imnan0 = 0, and the result follows
from Lemma 4.

For unbounded sequences, we consider the class of sequences
{zn} satisfying \zk\<,Θk (θk real, positive, and increasing), where
ΣϊUαnA+i> Σ*=oαn>JH.A+i> and ρn = Σ?=o| (αnjb - an,k+1)θk+1\ exist for
each n. Cooke [3, p. 119] shows that a necessary and sufficient
condition for a regular matrix to be absolutely translative for all
(unbounded) {zn} satisfying | zk \ <̂  θk together with conditions stated
above, is that lim% pn .= 0.

THEOREM 2. The σ-method is absolutely translative for all

(unbounded) sequences {zn} such that zk = o ( i / k ) . This result is

best possible.

With \z%\ = θn, and using Lemma 1,

p—1 n

fc=0 ' k=p

^ θn(anp - an0 + anp - 0) = 0(τ/^)(2αΛ P - an0) .

It will be sufficient to show that \imn2v/nanp is finite. But
this follows immediately from (4), since limΛ (n(p - l/2))1/2/p = 21/4,
and the remaining limits have already been shown to be finite.

To show that the result is best possible we shall replace o(τ/F)
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by λ/k and verify that ρn does not tend to zero.
From (5), pn ^ τ/p Σ*=P («n* — α»,*+i) = Vpanpt which does not

tend to zero.
Direct calculations verify that σ is not a weighted mean,

Nδrlund, Hausdorff, or generalized Hausdorff method.
Gronwall [4, p. 102] defined a general class of summability

methods, each member of which involves a pair of analytic func-
tions / and g. Specifically, the (/, #)-transform of a given series
Σ*=<>wΛ is the sequence {Un} defined implicitly by the formal power
series identity

( 6 ) g(w) Σ nn[f{w)Y = £ K Unw
n ,

where / and g satisfy the following properties. Let A = {w | | w | <
1}. The function z = fiw) is analytic in Δ— {1}, continuous and
1 - 1 in 1, with /(0) = 0, /(I) = 1, and \f(w)\ < 1 for w e A. More-
over, w = f~\z) has the representation w — 1 — (1 — z)λ[a + αx(l —
z) + •••], where λ ^ 1, a > 0, and the quantity in brackets is a
power series in 1 — z with a positive radius of convergence. The
function g satisfies g(w) Φ 0 for w e A and has the form g(w) —
(1 — w)~δ + y(w) for some <5 > 0, where j(w) is analytic in Δ. Also
#(w) = ΣSU δ^^71, with 6% ^ 0 for each n. The series Σ?=o uk is said
to be (/, #)-summable to s if lim Un — s.

Examples of (/, (j)-methods are the Cesaro methods of order
k,(C,k), for k real and greater than — 1; (E, β) (Euler-Knopp) for
0 < β <Ξ 1; de la Vallee Poussin summability (F); a generalized (F)-
summability (Vk), introduced by Gronwall; and a method of sum-
mation of Obrechkoff. We will now show that the Chebyshev
method is also a Gronwall method.

Writing sn = Σϊ=o ^*, the (/, g)-methoά can be expressed as a
sequence to sequence method by rewriting (6) in the form

- f{w)λ Σ sn[f(w)]n = Σ
0

Σ
n—0

Using (7), (/, g) can be expressed as a triangular matrix trans-
formation of the form Un = Σ*=o αnA> with ank = Ύnk/bn, where 7nk

is defined by

( 8 ) [1 - /(

(See, for example, the discussion on page 40 of [2], where the
roles of ynk and ank have been interchanged.) From (8) it follows
that
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( 9 ) ann = [f'(O)]»/bn , n ^ 0 .

THEOREM 3. The Chebyshev method is a Gronwall method with

f(w) — w(a — I)21 {a — w)2, g(w) = (1 — w)~x + 7(w), and y(w) — wj
{a2 — w), where a = 3 + l/87

Proof. If (6) is a Gronwall method, then, from (8) with k = 0
and (2),

[1 - f(w)]g(w) = Σ δ αnOw - Σ Kw*/T%(β) .

Thus

1 - [g(w)Γ Σ Kw*/TnQ) ,

(10)

)}±bnw«ITn(2,) - [giw^Σ.nb^-1/^ (3)

and /'(0) = [fif'(0)/si2(0)](60/r0(3)) - bJgWTtf) = 2bJSb0, since Γ0(3) = 1
and Γx(3) = 3.

From (9) and (3),

(11) K = (261/360)
KTK(3)/22«-1 - (bjβb0) (or + a~«) .

In particular, bλ = bjbo, which implies £>„ = 1, since each b% Φ 0.
One can also deduce that 60 = 1 from (9), since am = 1.

Thus

g{w) = 1 + Σ bnw
n

= 1 + Σ [(M

— 1 _L ^ i ^ ^ ,

6 — fe

6
6 — δ^w 6a: — bxw

For r̂ to have the required form choose bx = 6/α.
From (10), and (11), with bx = 6/α,

— w

i
α: — w (a2 — w2)

1 — (1 — w)(a2 — w) _ w(a — I)
(a — w)2 (a — w)2
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We now show that / is a 1 — 1 selfmapping of Δ. If f(w^) =
f(w2), i.e.,

wx{a - I)2

 = w2(a - 2)2

(a - Wι)
2 (a - w2)

2 '

then {w1 — w2){a2 — wtw2) = 0. Since wlf vj2eA, wxw2^a2

f so w1 = w2.
By the Maximum Modules Theorem, it is sufficient to show that
I f(w) I ̂  1 for w = ei0. \ f(eiΘ) | = (α - l)2(α2 - 2 cos θ + 1) £ 1.

We now verify that w = f~\z) is regular on Δ — Δ, except
possibly at z = 1, and that Oezί. / - 1 is regular except at z = 0, so
now we must show

min \f(eiθ)\ ^ δ > 0 .
0^ί*<2

\f(ei0)\ = (α - I)2/ΓW, where Γ(β) = (α + I)2 - 4αcos26>/2. A direct
calculation certifies that the maximum of T(θ) occurs at θ = π, and
T(π) = [(a - l)/(α + I)]2 > 0.

It remains to show that at z = 1, 1 — w = (1 — ^^[α + αx(l — 2)
H ], λ ^ 1, α > 0. « = /(w) = (a - ΐ)2w/(a - w)\ From the
equation z = f(w) we obtain 1 — z = (1 — w)(a2 — w)/(a — tί;)2, which
when solved for 1 — w yields

w ~

Now divide the numerator and the denominator by —2 and write
z in the denominator as 1 — (1 — z).

1),

8 (α + I)4

Using the negative branch,

( i 2 )
8 2

+ •••}.{1 + (1 - z) + (l-zY +•••}.

= (1 - z)\(a - 1) - ^ J l i ) + Σ 6 t ( i - Z)Λ

Theorefore 1 — w = (1 — ^ [ α + αx(l — 2) + •] where λ = 1 and
α = (α - l)/(α + 1) > 0.

Theorem 3, along with Theorems 1 and 2 of [2] show that the
Chebyshev method is neither an [F, dn] nor a Sonnenschein method.
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One of the important properties of (/, #)-summability is the
following [5, p. 267]:

Let (/, g), (f19 gλ) be two Gronwall means which map regions
D, Όx and with exponents λ, λlβ If λ > \, and D is" interior to Du

then (/, g) is stronger than (flf gj; i.e., (/, g) z> (f19 gj.
The de la Vallee Poussin method (V) [4, p. 103] is a Gronwall

method with δ = 2~\ f(w) = (1 - Vl - w)/(l - l/ l - w), g(w) =
(1 - w)-ί/2 and λ = 2.

THEOREM 4. (V) z> (α).

Proof. Since λ(F, = 2, λ(σ) = 1, it is enough to show that D(V)
is interior to D(σ), that is,

(a - Vfw
(a — w)2

1 + V I - *

It suffices to consider \w\ = 1; thus we need to show

(12) \{ι+vi-w>Γ \<fi-»Y\

Writing 1 — w = peiφ, where — π < φ < π, (12) becomes

I a - 1 + ^ I2

i.e.,

- 1) cos φ cos

Since cos 0/2 > 0, it is sufficient to show that 2(a — 1) cos φ + p^Aa,
which is readily verified.

THEOREM 5. σ g (C, 1).

We shall make use of the well-known result that if A and B
are regular summability methods, and B is a triangle, then (A) 2
(JB) if and only if AB~ι is regular.

Consider D = AC"1, where A is the Chebyshev method and C
is (C, 1). C"1 has entries

' — n, k = n — 1

Cnί = • n + 1, A: = n

, 0, elsewhere .

Then
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(k + ΐ)ank - (k + ΐ)an,k+ί, k <n

(n + ΐ)ann, k = n

0, elsewhere .

We shall show that D has infinite norm.

p — 1

Σ
p

Σ \dnh\ = Σ (k + l )(α« l f c + 1 - ank) + Σ Φ + l)(αw j f e - αΛ>Jfe+1)
fc0 & /

Now,

(k

= Σ Wno -

A;=0

k=0
Σ ank

k=Q

v,

k=0

n — l

ί)(ank - antk+1) = Σ fett^ + Σ (ink ~ Σ
Λ Jfc fc

= Σ &α»*
n — 1 n

k—p j=p-i-i

n — l

Σ
k=p

Therefore,

Σ I dnk [ = panv -
n1

^P ~ ^ ™ + Σ α»fc
k

Since the Chebyshev method has row sums equal to 1,

Thus

Σ
k=p

Σ <ί̂  = 2panv - 2 Σ β . t + l
A;=0 A;=0

But Σϊ=o«nfc ̂  1> s o it is sufficient to show panp—> °o. This follows
immediately from (2), since limi/?Γ= °° and the remaining limits
have already been shown to be finite and nonzero.

The Fourier series

Σ sin kt/k = (π - ί)/2, 0 < t ^ TΓ ,

converges for all t, and the function has a jump at t — 0. Hence
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the convergence is nonuniform at t — 0; that is, the sequence
{s»(*»)}f where {tn} is a positive null sequence and

(13) 8Λ(ί) = Σ sin kt/k , s0 = 0 ,
fc = l

has several limit points, depending on the manner in which tn

approaches 0.

If lim ntn = τ ^ 0, then lim s^(£j = \ (sin t/f)dt, and the maximal
Jo

limit is attained when τ — π, in which case

(14) lim sn(tn) = ΓiHLldt = -£ x 1.17897- . .
Jo t 2

On the other hand, (π — ί)/2 —• τr/2 as ί j 0. Thus the limit points
of {sn(tn)} cover an interval which extends beyond /(0 + ) if f(O + )Φθ.
This situation is called the Gibbs phenomenon relative to the par-
tial sums.

We shall now show that the corresponding phenomenon occurs
for the Chebyshev means.

THEOREM 6. The Chebyshev means of (13) satisfy

—dy as ntn • τ and nt\ • 0 ,

o y

and

o t

The lim sup inequality is an immediate consequence of (14)
and the well-known fact that, for any totally regular matrix Af

and any sequence x = {xn}, lim sup An(x) <; lim sup xn.

The proof of the theorem is similar to that of [6]. One may
write sn(t) in the form

sn(t) == -ί/2 + \ *"A v* "*" ' ^ dx .
2 sin (x/2)

Since sin (k + l/2)» = ,J^(exp (i(k + l/2)a?)),

σn(t) = -t/2 + ̂ Γ Γ . \ Σ anke
ikx

LJo2sin(ίB/2) =̂o

F r o m [1, p. 297], Σϊ=o <^nke
ikx = Tn(l + 2eix)/Tn(Z), where ΓΛ(a?) is

defined by (1).

Define
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peίβ = 1 + 2eίx + [(1 + 2eix)2-l]1/2

= 1 + 2eix + 2eix/2eίx/\2 cos x/2)1/2 .

Let a = (2 cos x/2)1/2. Then p cos β = 1 + 2 (cos x + α cos (3α/4)),

(16) (O sin β = 2 (sin x + a sin (3x/4)) ,

and

(17) ρ2 = 5 + 4 (cos x + α cos (3a/4)) + 8 (cos (x/2) + α cos (α/4)) .

Therefore 1 + 2eίx - [(1 + 2eίx)2 - 1]1/2 = p^e"**, and assume 0 < a ^
ί ^ ττ/2.

.(ί) + t/2 - * [ , \ [pn sin (nβ + x/2)
2Γ%(3) Jo 2 sm (cc/2)

- jO"w s in (w/9-

/ow cos nβdx H

c o t sin

\ /
Jo

cot (x/2) sin ρ~n cos

From (17), p is monotone decreasing in x for 0 < x <i π/2.
Therefore for 0 < x g π/2, <o < α. Thus

* j V cos ^/Scte I < -JV/α)write < t ,

so that there exists an η satisfying \η\ < 1 such that

1 fέ1 pn cos ^ θ 1 ^ = vt .

Now assume that t = ίw, wίΛ —> τ, 0 <J τ ^ oo, and wί̂  —> 0.

Since, from (17), p ^ τ/5,

p n cos ti/

(18)
4Γ.(3) 3-

4TW(3)

-\ ρ~n cot (x/2) sin
2(αi/5)% Jo

cot (x/2)dx .

We wish to show that β < x. For 0 < x <; τr/2, from (16),
psinβ < 2(1 + α) sin x. From (17), if cos (3cc/4) + 2 cos (a/4) ^ 2,
then (o > 2(α + 1). In the interval [0, ττ/2],

cos (3 /̂4) + 2 cos (x/4) ^ cos (3ττ/8) + cos (π/8)

= cos(τr/8)(4cos2(^/8)-l) .

Since cos (π/8) = ^2 + l/2/2, it is sufficient to show that
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which is easily verified. Therefore 0 < sin < β(p/2(l + a)) sin β <
sin x, and β < x.

For 0 < x ^ π/2, 2 ^ x/sin (x/2) g ττ/i/2. Substituting in (18)
we have

1—Γ p-» cot (a/2) sin nβdx < n [* cos (x/2) - dx
»(3)Jor 2(απ/5)*Jo sin (a/2)42^(3) Jo

4i/2(αl/5)%

and

σw(ί) + (1 - )7)ί/2 = ^p» cot (a/2) sin w/3o

Using (17), and the values of α and α,

1 - (p/a)2 = [17 + 12l/2~- 5 - 4 (cos x + α cos (3x/4))

- 8 (cos (x/2) + a cos (x/4))]/α:2

- -^-[1 - cos x + 2(1 - cos (a/2)) + l/2(l - cos (3a/4)τ/cos(a/2))

+ 2l/2(ϊ - cos (a?/4)i/cos (x/2))] .

Since 0 < cos (a/2) < 1,

1 — cos (a/4)τ/cos (a/2) ^ 1 — cos (a/4) cos (a/2)

= 1 - (cos (3a/4) + cos (a/4))/2 .

Similarly, 1 - cos (3x/4)τ/cos (x/2) ^ 1 - (cos (5a/4) + cos (a/4))/2.
Therefore,

1 - (p/a)2 ^ -i-[2 sin2 (x/2) + 4 sin2 (a/4) + τ/2f2 sin2

a2

+ 2 sin 2(x/8))/2 + τ / ϊ ( 2 sin2 (3a?/8) + 2 sin2 (a>/8))]

^ — [2(x/2)2 + 4(a/4)2 + V Y((5x/8)2 + (a/8)2)
α2

+ 2λ/2((Sx/Sy + (a/8)2)]

( 3 /4 + ) χ < .
a2 V 64 / 4

Since 0 < p/α < 1, 1 - p/a g 1 - (p/α:)2, so that 1 - p/a < x2/4. 0 <
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1 - (fi/ά)n = (1 - p/a) Σ U (fi/a)k < n(l - p/a) < nx2/A. Therefore 1 -
(p/a)n = Xnx2 for some λ satisfying 0 < λ < 1/4, so that we may-
write

ί— ί V cot (α/2) sin
w ( o ; Jo

Xx2 cot (cc/2) sin

X n \\ Xx2 cot (αj/2) sin nβdx
I Jo

cot (a/2) sin

< n \ x2 cot (x/2)dx
J

ntf =

since lim %# = 0. Note that lim α"/2ΓΛ(3) = 1.
Using (17),

a
- sin /S) - ^(x - sin a,)

- 2l/2 / jg_
α V 4

so that

\pβja — rx\ ^ -ί—I /3 — sin
a

— sin
a

2l/2 — - sin (3ίc/4)τ/cos (x/2)

where r - 2(1 + 3i/2/4)/α = (4 + 3τ/2)/2α = (4 + 3l/2)(3 - 2i/2)/2 =
1/1/2Γ

But 0 ^ 3x/4 - sin (3x/4)'i/ cos (α/2) ^ 3x/4 - sin (3x/4) cos (x/2),
sin (3a?/4) ^ 3ίc/4 - (3x/4)3/3!, and cos (x/2) ̂  1 - x2/4, so that

3x/4-sin(3x/4)τ/cos(α;/2)|
= 33^/128 .

Since 0 < x — sin x < x3 and β < x,

\ρβ/a - x/V2\ ^

Also, I β - ^/α/2j £ I ft£/α - ^/τ/2T + (1 - p/a)β < 2x3 + x* = α;3, so
that /3 = a?/i/2"+ /̂ x3, where | μ | < 3.

The remainder of the proof of (15) is the same as that of [6],
beginning with formula (2.7), and will therefore be omitted.
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