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WHEN IS A POINT BOREL ?

P. W. HARLEY, III AND G. F. MCNULTY

Let X be a topological space. We investigate the ques-
tion: When is a point (of X) Borel? In relation to this,
we establish the equivalence of (a) Each point (singleton) is
Borel, (b) Each point is the intersection of closed set and a
Gs, (c) The derived set of each point is Borel, (d) The derived
set of each point is an JV, (e) The derived set of each subset
is Borel, and (f) The derived set of each subset is an Fσ.
Conditions (a), (b), (c), and (d) are also equivalent for a fixed
point. As a separation axiom (a) is shown to lie strictly
between Tx and To. A number of examples are given and
the work of other authors discussed.

0. Introduction* Consideration of the question posed in the
title for a particular case led to the development of the theorem
below.

THEOREM 0.1. The following are equivalent conditions for a
topological space X.

(a) Each point (singleton) of X is a Borel set.
(b) Each point of X is the intersection of a closed set and a

Gδ set.
(c) The derived set of each point of X is a Borel set.
(d) The derived set of each point of X is an Fσ set.
(e) The derived set of each subset of X is a Borel set.
(f) The derived set of each subset of X is an Fσ set.

The initial discovery was the implication (a) => (b). Using it,
one can show directly1 that the To separation axiom is satisfied
if each point is Borel, with the latter condition certain for 2\
spaces.

In [1], C. E. Aull and W. J. Thron introduce and study a number
of separation axioms between TQ and Tlf each of which is classified
by some property of derived sets. In Theorem 3.1 of [1], they prove
that {p}' is closed (which is taken as a separation axiom, TD) if and
only if there is a closed set F and an open set U such that {p} —
F Γ\U, for all peX. With this as a catalyst, the equivalence of (b)
and (d) is established and "each point is Borel" is fit into the clas-
sification scheme of Aull and Thron as follows:

We shall do it differently.
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a space X is
2\ if and only if {p}' is empty, for each p e X.
TD if and only if {p}' is closed, for each peX.
Each point of X is Borel if and only if {p}' is an Fσ set, for
each p e l .
To if and only if {p}' is a union of closed sets, for each p e X.2

The implication (b) => (f) was suggested to us by the mention
in [1] of an observation of C. T. Yang (see [2, p. 56]) to the effect
that the derived set of every subset of X is closed if and only if
the derived set of every point in X is closed.

The equivalence of (c) and (d) or (e) and (f) might be interpreted
as saying that the attempt to classify separation axioms by the
Borel complexity of derived sets collapses to just three cases: T19 TD,
and "each point is Borel".

Section one is devoted to a proof of Theorem 0.1.
In Section two we assemble some other results concerning the

property "each point is Borel". First, we show it is necessarily
observed in each first countable To space. Next, an example is given
of a TQ space in which no point is Borel3. Finally, the property
(thus each of (a)-(f)) is shown to be countably (but not generally)
productive, hereditary, and not preserved by quotient (even closed)
maps. In all of these arguments it is the equivalence (a) <=> (b) that
is used.

For purposes of application, we remark that properties (a), (b),
(c), and (d) at a fixed point p are equivalent.

1* A proof of Theorem OJL Fix a space X. As is well known
the Borel sets in X can be specified by the following recursion.

^ o is the collection of all sets which are either closed or open.
^α+1 consists of the unions and intersections of countable collec-
tions of members of &α, whenever α is an ordinal with α < ω19

^ι = U«<; &α for each limit ordinal λ ^ ωx.

The Borel subsets of X are just the members of &ωy.
Denote by <& the collection of those subsets of X that can be

obtained as the intersection of a closed set and a Gδ set. It is easy
to see that ^ is closed under countable intersections and that

The following is the main lemma.
2 Aull and Thron state this last equivalence as Theorem 2.3 (e) in [1]. They

entertain a number of other separation axioms as well.
3 In connection with this, we remark that of the fourteen examples in [3] of To

spaces that are not TΊ, all of them enjoy the above property and twelve are even TD.
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LEMMA 1.0. For every ordinal a < ω1 and every Se^a if peS
then there exists Ce^ such that peCaS.

Proof. We proceed by transfinite induction on a. When a = 0
we can let C = S. Our induction hypothesis is

For every ordinal β < a and every T e &β if p e T then there
exists C e ^ with peCaT.

Now let S € ^ α with peS. There are two cases.

Case (i). For each ΐ e ω, there is an ordinal τ(i) < α and sets
i?* e ̂ { < ) such that S = U*eω #*. We may assume p 6 2?0 According
to our induction hypothesis there is C e ^ 7 with peCczB0(Z

Case (ii). For each ieω, there is an ordinal τ(i) < α and sets
Bte&nt) such that S = Πίe^-B*. By our induction hypothesis for
each ieω pick 0 * 6 ^ with peCidBi. Put C = n<β«f7<. Then
C e ^ and p e C c f l ^ S i = S.

In either case the induction is complete and the lemma is
established.

Proof of Theorem 0.1. We shall establish the implications

(a) ==> (b) — (d) — (f) — (e) — (c) — (a) .

(a) => (b): If {p} is a Borel set, then for some a < ωlf {p}
By Lemma 1.0 there is C e ^ such that peCa{p} and so {p} =

(b) ==> (d): Choose a closed set F and a countable collection
{t/^ieα)} of open sets such that {p} = Ff] (Γiτeω Ut). We may
assume that F — {p}. Moreover, we have {p}' = {p} ~ {p}. Clearly,
{p}' = \Jieω[(X ~ Ut) Π {p}], whereupon {p}' is an Fσ set.

(d) => (f): Let A be a nonempty subset of X. We must prove
that A' is an Fσ set. For each point p e A ~ A' we choose an open
neighborhood Up of p satisfying

( i ) uPnA = {p}.

Using (i), it is easy to see that the relation

(ii) UpnA'a{pY

holds for each p e A ~ A'. Next we assert that
(iii) If p Φ qf then Up Π Uq Π A is empty, for all p, q e A ~ A'.
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To see this, assume r 6 Up n A. If r = p, then r $ Uq by (i). Other-
wise re UpΓ)Af, by (i). Accordingly, re{p}f by (ii). But Uq is an
open set with p $ Uq. Consequently r ί Uq.

Now let U = U {Up: p e A ~ A'}. For each peA~A', choose a
sequence (FPti: i e ώ) of closed sets such that {p}r — \Jiea>FP}i. Let
Bι — U {Up Π FpΛ\ peA~ A'}. On the basis of the foregoing, it is
not difficult to see that both

(iv) Af n U = U B,

and

(v ) (A - A;) n ( U Bt) is empty.
\i e ω /

We now demonstrate the validity of (vi) below.

(vi) Bi=BiΠU.

Since Bt a U by definition, it is clear that Bt c J5; (Ί Z7. Suppose that
x G 5f Π Ϊ7. Choose peA~A' such that xe Up. If g G A — A; with
q Φ pf then UpnUqΠ FqΛ (zUpf]Uqn A. But J7P Π ̂  Π A is empty
according to (iii). Since xeBi and Up is a neighborhood of x, it
must be that xeUpΓ\ FP;i, whereupon x e FPyi. So xe Upf] FPΛ c Bf

and (vi) is established.
Since A ~ A! c Ϊ7, in view of (vi) we can extend (v) to

(vii) ( i -4 ' )n Uft is empty.
\i e w /

Since A' ~ U = A ̂  ?7, we have the equations

A' - (A' Π U) U (A' - J7)

- (A' n ϋ-) U (A - Z7)

and then

(viii) A'= U
\ieω

But using the relation ΐ ^ c A , (vi), and (viii) we have

(ix) A'

and therefore A! is an Fσ set.
(f) => (e) and (e) ==> (c) are obvious.

(c) => (a): This follows from the equation {p} = {p} — {p}'. This
completes the proof of theorem 0.1.
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2* Other results* First we make the observation below.

THEOREM 2.0. Every point of a first countable Γo space is Borel.

Proof. Let X be a first countable TQ space and p e X with an
(open) neighborhood base (Uϊ.ίeω}. Put G = Πieω Ut. For each
x G G ~ {p} pick an open neighborhood Vx of # with p £ Vx. Let
F = X~\J{ViB:xeG~ {p}}. Notice that { p J ^ f n G and accordingly
{p} is a Borel set.

EXAMPLE 2.1.4 A To space in which no point is Borel.

We construct a set X and a strict dense linear ordering R on
X without endpoints such that

(*) If 7 is a countable subset of X and p eX such that yRp for
all y e Y, then there is q e X with qRp and ΐ/i?g for y e Y.

Once such a set X and ordering i? have been constructed we define
a topology by calling ! 7 c l a basic open set if and only if there
is p e l with U — {q: pRq and q e X}.

X and R are obtained as direct limits on the basis of the follow-
ing recursion over the ordinals a.

Xo = {0} RQ is empty
Xa+ί = Xa x { —1, 0, 1} Ra+1 is the lexicographic ordering of Xa

induced by Ra and the usual ordering
- l < 0 < 1 on {-1,0,1}.

Note. Xa can be identified with Xa x {0}, in which case Ra is
identified with Ra+1 restricted to Xa x {0}.

If λ is a limit ordinal, then let

Xλ — \J Xa Rλ ~ \J
λ λ

J

We let X = Xωi and R = Rωι.
Evidently R is a dense linear ordering of X without endpoints.

<X, R) fulfills (*) since Y[J {p}e Xa for some a < ωλ and by taking
q =z (pf — 1) e Xα+1 we obtain

(y, 0 ) R a + 1 q R a + 1 ( p , 0 ) f o r a l l y e Y .

4 A simpler example of a TO space in which some point is not Borel is α>! 4-1
endowed with the right ray topology. The space constructed here has cardinality Ki
Example 2.3 below also provides a To space in which no point is Borel, but it is of
cardinality 2^i.
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Since (y, 0) is identified with y and (p, 0) is identified with p (in X)
(*) is verified.5

Now let p 6 X. In the (right ray) topology described above
{p} = {<Γ QRp or q = p}. Let {Ut:ieω} be any countable system
of basic open neighborhoods of p. Accordingly for each ieω pick
r, e X with £7* = {£: t e X and τγβ£}. In particular rjlp for all ieω.
Consequently, by (*) there exists xeX such that xRp and rtRx for
all i e α ) . Therefore xe{p} f] Πieω Ut. Since x ^ p, we conclude
that {p} Φ {p} n Π<eα> Z7* and so that {p} is not the intersection of any
closed set and any Gδ set. Thus, by Theorem 0.1 ((a) ̂ => (b)) no
point of X is Borel. X is clearly To.

THEOREM 2.2. The property "each point is Borel" is hereditary
and countably productive.

Proof. The first statement is an easy consequence of Theorem
0.1 ((a) <=> (b)) which we leave to the reader.

As for the second, again we use Theorem 0.1 ((a) <=> (b)). Let
(Xi'. ieω) be a sequence of spaces in which each point is Borel and
let p = (pi:ieω) be a point in the product space X = J[ieωXim

For each ieω represent {pj = Ft Γi (Γ\3 eω Uui) where Ft is closed in
Xi and Uij is open in Xi} for each i, j e ω. It follows that

ieω L \jeω / J

whereupon every point in X is Borel. The case of finite products
is similar.

EXAMPLE 2.3. A space X in which each point is Borel and never-
theless every finite indiscrete space is a closed image of X and Xκ

has no Borel points provided tc > ̂ 0 .

We take X to be the set of real numbers6 endowed with the
right ray topology. As X is a first countable To space, we know
that each point of X is Borel.

Let Y = {yQ,y19 •• ,2/«-i} be a finite indiscrete space. Partition
5 All of the ambiguities of this construction can be avoided at the expense of in-

volving the relatively complicated construction of the limit of a system of relations
directed by a system of embeddings. Heuristically, the argument is: "start with a point
and a sharp knife. Chop each point into left, middle, and right pieces. Do this £>i
times."

6 We could use the rationale as easily; even the Sierpinski space S = {0,1}, whose
open sets are {0,1}, {1}, and the empty set, has the property that S**i has no Borel
points.



WHEN IS A POINT BOREL? 157

t h e negat ive integers into n infinite sets Xo, Xu •••, Xn^ and define

otherwise .

Then every closed set of X (a closed left ray) maps onto Y. Thus
/ is closed. Since Y is indiscrete / is continuous.

As for the second assertion about X, let ic > fc$0 and p e Xκ.
Note that p is a function with domain K and range included in X.
It is easy to see that {p} — {q: qeXκ and qa <; pa for all a e Λ:}. If
{Ui'.ieω} is a countable sequence of basic open sets in X% it is
easy to see that {p} Π Πίeω Ut Φ {p}. Thus, any pepresentation of
{p} as the intersection of a closed set and a Gδ set is impossible.
An application of Theorem 0.1 now finishes the argument.
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