THE IWASAWA INVARIANT μ FOR QUADRATIC FIELDS

FRANK GERTH III

We let k_0 be a quadratic extension field of the rational numbers, and we let 1 be a rational prime number. In this paper we show that there exists a constant c (depending on k_0 and 1) such that the Iwasawa invariant $\mu(K/k_0) \leq c$ for all Z_1 -extensions K of k_0 . In certain cases we give explicit values for c.

1. Introduction. We let Q denote the field of rational numbers, and we let I denote a rational prime number. We let k_0 be a finite extension field of Q, and we let K be a Z_i -extension of k_0 (that is, K/k_0 is a Galois extension whose Galois group is isomorphic to the additive group of the I-adic integers Z'). We denote the intermediate fields by $k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset K$, where Gal (k_n/k_0) is a cyclic group of order Iⁿ. We let A_n denote the I-class group of k_n (that is, the Sylow I-subgroup of the ideal class group of k_n). In [5, §4.2], Iwasawa proves that $|A_n| = I^{e_n}$, where

(1)
$$e_n = \mu \mathfrak{l}^n + \lambda n + \boldsymbol{\nu}$$

for *n* sufficiently large, and μ , λ , ν are rational integers (called the Iwasawa invariants of K/k_0) which are independent of *n*. Also $\mu \ge 0$ and $\lambda \ge 0$.

Next we let W be the set of all Z_i -extensions of k_0 . If $K \in W$, we define

$$W(K, n) = \{K' \in W | [K \cap K': k_0] \ge l^n\}.$$

Thus W(K, n) consists of all $\mathbb{Z}_{\mathfrak{l}}$ -extensions of k_0 that contain k_n , where k_n is the unique subfield of K such that $[k_n:k_0] = \mathfrak{l}^n$. We topologize W by letting $\{W(K, n) \text{ for } n = 1, 2, \cdots\}$ be a neighborhood basis for each $K \in W$. It can be proved that W is compact with this topology (see [4, §3]). Next we let W' be the set of $\mathbb{Z}_{\mathfrak{l}}$ -extensions of k_0 with only finitely many primes lying over \mathfrak{l} . In [4, Proposition 3 and Theorem 4], Greenberg proves that W' is an open dense subset of W and that the Iwasawa invariant μ is locally bounded on W'. So if $K \in W'$, there exists an integer n_0 and a constant c depending only on K such that $\mu(K'/k_0) < c$ for all $\mathbb{Z}_{\mathfrak{l}}$ -extensions K' of k_0 with $[K \cap K': k_0] \geq \mathfrak{l}^{n_0}$. Greenberg suggests that perhaps μ is bounded on W; that is, perhaps there exists a constant c such that $\mu(K'/k_0) < c$ for every $K' \in W$. If there is only one prime of k_0 above \mathfrak{l} , then Greenberg does prove in [4, Theorem 6] that μ is bounded on W.

In this paper we shall prove that μ is bounded on W if k_0 is a

FRANK GERTH III

quadratic extension of Q. We state this result as follows.

THEOREM 1. Let k_0 be a quadratic extension of Q, and let I be a rational prime number. Then there exists a constant c (depending on k_0 and I) such that $\mu(K/k_0) \leq c$ for all Z_1 -extensions K of k_0

2. Proof of Theorem 1. We let the notation be the same as in the previous section. We let M be the composite of all Z_i -extensions of k_0 , where k_0 is a finite extension field of Q. It is known (see [5, Theorem 3]) that $\operatorname{Gal}(M/k_0) \approx Z_i^d$, where $r_2 + 1 \leq d \leq [k_0; Q]$ and r_2 is the number of complex archimedean primes of k_0 . We note that when $k_0 = Q$, there is exactly one Z_i -extension F of Q, and it is contained in the field obtained by adjoining to Q all I^n th roots of unity for all n. Then for arbitrary k_0 , the composite field Fk_0 is one of the Z_i -extensions of k_0 . (It is called the cyclotomic Z_i -extension of k_0 .)

We now specialize to the case where k_0 is a quadratic extension of Q. Then $1 \leq d \leq 2$. If k_0 is a real quadratic extension of Q, it is known that d = 1 (see [5, §2.3]). So there is a unique Z_t -extension K of k_0 , and hence the Iwasawa invariant μ is bounded on $W = \{K\}$. Next we suppose k_0 is an imaginary quadratic extension of Q. Then d = 2, and hence there are infinitely many Z_t -extensions of k_0 , since there are infinitely many quotient groups of Z_t^2 isomorphic to Z_t . So W is infinite, and we must show that μ is bounded on W. If there is only one prime of k_0 above I, then we know from [4, Theorem 6] that μ is bounded on W. Thus it remains to consider the case where k_0 is imaginary quadratic, and I decomposes in k_0 .

We let $(l) = \mathfrak{p}_1 \mathfrak{p}_2$, where \mathfrak{p}_1 and \mathfrak{p}_2 are primes of k_0 . We recall from the theory of Z_i -extensions (see [5, Theorem 1]) that no primes other than \mathfrak{p}_1 and \mathfrak{p}_2 can ramify in a \mathbb{Z}_1 -extension of k_0 . We let $L = Fk_0$, the cyclotomic Z_{l} -extension of k_0 . Since I ramifies totally in F/Q and decomposes in k_0/Q , then \mathfrak{p}_1 and \mathfrak{p}_2 ramify totally in L/k_0 . We let $I_1(\text{resp.}, I_2)$ be the inertia group for $\mathfrak{p}_1(\text{resp.}, \mathfrak{p}_2)$ for the extension M/k_0 . (We note that we get the same inertia group for \mathfrak{p}_1 no matter what prime above \mathfrak{p}_1 in M that we use because M/k_0 has abelian Galois group. A similar result holds for \mathfrak{p}_{2} .) Next we claim that $I_1 \approx Z_i$ and $I_2 \approx Z_i$. Since \mathfrak{p}_1 and \mathfrak{p}_2 are totally ramified in L/k_0 , then I_1 and I_2 have quotient groups which are isomorphic to Gal $(L/k_0) \approx Z_1$. Also the completions of k_0 at \mathfrak{p}_1 and at \mathfrak{p}_2 are isomorphic to Q_1 , and by local class field theory, the inertia group for the maximal abelian I-extension of Q_i is isomorphic to the subgroup $U = \{1 + \alpha I \mid \alpha \in Z_i\}$ of the group of units of ${m Q}_{{\scriptscriptstyle \rm I}}$. Since $U pprox {m Z}_{{\scriptscriptstyle \rm I}}$ when ${\scriptscriptstyle \rm I}
eq 2$, then I_1 and I_2 are isomorphic to quotient groups of Z_1 when $l \neq 2$. Combining the above results, we conclude that I_1 and I_2 are isomorphic to Z_1 when $l \neq 2$. When l = 2, $U \approx Z_2 \times (Z_2/2Z_2)$, and we still get $I_1 \approx Z_2$ and $I_2 \approx Z_2$ since I_1 and I_2 are subgroups of Gal $(M/k_0) \approx Z_2^2$.

Now since Gal $(M/k_0) \approx Z_i^2$, $I_1 \approx Z_i$, $I_2 \approx Z_i$, and \mathfrak{p}_1 and \mathfrak{p}_2 are totally ramified in L/k_0 , then $\operatorname{Gal}(M/k_0)/I_1 \approx Z_1$ and $\operatorname{Gal}(M/k_0)/I_2 \approx Z_1$. Thus there exists exactly one Z_i -extension K_1/k_0 (resp., K_2/k_0) in which $\mathfrak{p}_1(\text{resp.}, \mathfrak{p}_2)$ is unramified. So if K is any \mathbb{Z}_1 -extension of k_0 other than K_1 and K_2 , then both \mathfrak{p}_1 and \mathfrak{p}_2 are ramified in K/k_0 (although not necessarily totally ramified). Then there are only finitely many primes of K above I, and hence by the results of Greenberg in [3], there is a neighborhood of K in W on which μ is bounded. Suppose we could show that K_1 and K_2 have neighborhoods on which μ is Then all $K \in W$ would have neighborhoods on which μ is bounded. bounded. Since W is compact, W is covered by a finite number of these neighborhoods, and hence μ would be bounded on W. So to complete the proof of Theorem 1, it suffices to show that μ is bounded on some neighborhood of K_1 and on some neighborhood of K_2 .

We consider K_1/k_0 with intermediate fields $k_0 \subset k_1 \subset k_2 \subset \cdots \subset$ $k_n \subset \cdots \subset K_1$. Since \mathfrak{p}_1 is unramified in K_1/K_0 , then \mathfrak{p}_2 must ramify in K_1 since by class field theory the maximal unramified abelian extension of k_0 is of finite degree over k_0 . So there are only finitely many primes of K_1 above \mathfrak{p}_2 . Let t denote that finite number. Next we recall that $W(K_1, n) = \{K' \in W | [K_1 \cap K': k_0] \ge l^n\}$, and these sets $W(K_1, n)$ for $n = 1, 2, \dots$, form a neighborhood basis for K_1 in W. Since Gal $(M/k_0) \approx Z_i^2$ and F and K_1 are disjoint Z_i -extensions of k_0 , then it is clear that $M = FK_1$. If f_1 is the subfield of F such that $[f_1: k_0] = I$, then every $K' \in W(K_1, n)$ has a subfield k'_{n+1} such that $[k'_{n+1}:k_n] = 1$ and $k'_{n+1} \subset f_1 k_{n+1}$. We take *n* large enough so that $l^n > t$. Unless $k'_{n+1} = k_{n+1}$, there are at most $l^n(\text{resp.}, t)$ primes of k'_{n+1} above $\mathfrak{p}_1(\text{resp.}, \mathfrak{p}_2)$. Then if $k'_{n+1} \neq k_{n+1}$, there are at most $l^n(\text{resp.}, t)$ primes of K' above $\mathfrak{p}_1(\text{resp.}, \mathfrak{p}_2)$. If we let s denote the number of primes of K' that are ramified over k_0 , then $s \leq l^n + t$. From [3, Theorem 1], we see that

$$\mu(K'/k_{\scriptscriptstyle 0}) \leqq e'_{n+1}/(\mathfrak{l}^{n+1}-s+1) \leqq e'_{n+1}/(\mathfrak{l}^{n+1}-\mathfrak{l}^n-t+1)$$
 ,

where $l^{\epsilon'_{n+1}}$ is the order of the l-class group of k'_{n+1} . Since $[f_1k_{n+1}:k'_{n+1}] = l$, then by class field theory $e'_{n+1} \leq \varepsilon_{n+1} + 1$, where $l^{\epsilon_{n+1}}$ is the order of the l-class group of f_1k_{n+1} . So if $K' \in W(K_1, n)$ and $k'_{n+1} \neq k_{n+1}$, then

$$\mu(K'/k_{\scriptscriptstyle 0}) \leq (arepsilon_{n+1}+1)/(\mathfrak{l}^{n+1}-\mathfrak{l}^n-t+1)$$
 .

Now f_1K_1 is a Z_1 -extension of f_1 . From Equation 1, $\varepsilon_n = \mu_1 l^n + \lambda_1 n + \nu_1$ for n sufficiently large, where $\mu_1 = \mu(f_1K_1/f_1), \lambda_1 = \lambda(f_1K_1/f_1), \nu_1 = \nu(f_1K_1/f_1)$. So for n sufficiently large,

$$\varepsilon_{n+1} + 1 = \mu_1 l^{n+1} + \lambda_1 (n+1) + \nu_1 + 1$$

and

$$\mu(K'/k_0) \leq (\varepsilon_{n+1}+1)/(\mathfrak{l}^{n+1}-\mathfrak{l}^n-t+1) = \frac{\mu_1\mathfrak{l}^{n+1}+\lambda_1(n+1)+\boldsymbol{\nu}_1+1}{\mathfrak{l}^{n+1}-\mathfrak{l}^n-t+1}$$

Since

$$\lim_{n o \infty} rac{\mu_1 \mathfrak{l}^{n+1} + \lambda_1 (n+1) + oldsymbol{
u}_1 + 1}{\mathfrak{l}^{n+1} - \mathfrak{l}^n - t + 1} = rac{\mu_1}{1 - \mathfrak{l}^{-1}} < 3\mu_1$$
 ,

we see that for *n* sufficiently large, $\mu(K'/k_0) < 3\mu_1$ for all $K' \in W(K_1, n)$. So μ is bounded on some neighborhood of K_1 . Similarly μ is bounded on some neighborhood of K_2 . Hence our proof of Theorem 1 is complete.

3. Explicit upper bounds for μ in certain cases. We first consider a real quadratic extension k_0/Q . Then there is only one Z_t -extension K of k_0 , namely the cyclotomic Z_t -extension of k_0 . It is known that $\mu(K/k_0) = 0$ in this case (see [2]).

Now we consider an imaginary quadratic extension k_0/Q . We first suppose that I ramifies or remains prime in k_0 . We let H denote the maximal unramified abelian I-extension of k_0 , and we let I^{α} be the exponent of Gal (H/k_0) . If K is any Z_1 -extension of k_0 with intermediate fields $k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset K$, then the primes above I in k_{α} ramify totally in K/k_{α} , and there are at most I^{α} such primes. Then from [3, Theorem 1], we see that $\mu(K/k_0) \leq e_{\alpha}$, where $I^{e_{\alpha}} = |A_{\alpha}|$. So in Theorem 1, we may take c to be the maximum of the e_{α} obtained from the extensions k_{α} of k_0 such that k_{α} is contained in a Z_1 -extension of k_0 and $[k_{\alpha}: k_0] = I^{\alpha}$. Frequently we can obtain a better upper bound for μ . For example, if M is the composite of all Z_1 -extensions of k_0 and if $M \cap H = k_0$, then the prime of k_0 above I is totally ramified in each Z_1 -extension of k_0 , and hence from [3, Corollary 1], $\mu(K/k_0) \leq e_0$ for each Z_1 -extension K of k_0 .

Finally we suppose that k_0 is an imaginary quadratic extension of Q and that I decomposes in k_0 . In this case we shall give an explicit upper bound for μ only under certain conditions. We let Mbe the composite of all Z_1 -extensions of k_0 , and we let M_1 be the maximal extension of k_0 contained in M such that $\operatorname{Gal}(M_1/k_0)$ has exponent I. We note that $\operatorname{Gal}(M_1/k_0) \approx (Z_1/!Z_1)^2$ since $\operatorname{Gal}(M/k_0) \approx Z_1^2$, and hence M_1 contains I + 1 subfields of degree I over k_0 . We let $(I) = \mathfrak{p}_1$ and \mathfrak{p}_2 are primes in k_0 . We shall assume that there is exactly one prime of M_1 above \mathfrak{p}_1 and exactly one prime of M_1 above \mathfrak{p}_2 . (Note: From our discussion in §2 and our definition of M_1 , we see that there is exactly one prime of M_1 above \mathfrak{p}_1 precisely when \mathfrak{p}_1 remains prime in one of the extensions of k_0 of degree I and

134

ramifies in the other l extensions of degree l over k_0 . A similar result applies to \mathfrak{p}_2 .) Then there is exactly one prime of M above \mathfrak{p}_1 and exactly one prime of M above \mathfrak{p}_2 . It then follows from [3, Corollary 2] that we may take c in Theorem 1 to be the maximum of the numbers $e_1/(l-1)$ obtained from the fields k_1 contained in M_1 with $[k_1:k_0] = l$. As usual, l^{e_1} is the order of the l-class group of k_1 .

In some of these situations where I decomposes in k_0 , we can actually find μ , λ , ν exactly for every Z_1 -extension of k_0 . We assume that I does not divide the class number of k_0 . We let M_i be the maximal extension of k_0 contained in M such that Gal (M_i/k_0) has exponent lⁱ. (We note that Gal $(M_i/k_0) \approx (Z_i/l^i Z_i)^2$.) We also assume that there is exactly one prime of M_1 above \mathfrak{p}_1 and exactly one prime of M_1 above \mathfrak{p}_2 . Then there is only one prime of M_i above \mathfrak{p}_1 for each i, and only one prime of M_i above \mathfrak{p}_2 for each i. We recall from §2 that there is a unique Z_i -extension K_i (resp., K_2) of k_0 in which $\mathfrak{p}_1(\text{resp.}, \mathfrak{p}_2)$ is unramified. Since I does not divide the class number of k_0 , then $\mathfrak{p}_2(\text{resp.}, \mathfrak{p}_1)$ is totally ramified in $K_1(\text{resp.}, K_2)$. So $K_1(\text{resp.}, K_2)$ is a Z_1 -extension of k_0 in which exactly one prime is ramified, and that prime is totally ramified. Since I does not divide the class number of k_0 , then I does not divide the class number of every subfield of $K_1(\text{resp.}, K_2)$. (See [6].) So $\mu(K_1/k_0) = \lambda(K_1/k_0) = \lambda(K_1/k_0)$ $u(K_1/k_0) = 0 \text{ and } \mu(K_2/k_0) = \lambda(K_2/k_0) = \nu(K_2/k_0) = 0. \text{ If } K_1 \text{ has subfields}$ $k_0 \subset k'_1 \subset k'_2 \subset \cdots \subset k'_n \subset \cdots \subset K_1$, we note that $\operatorname{Gal}(M_i/k'_i)$ is a cyclic group of order l^i for each *i*. Since I does not divide the class number of k'_i , and since there is only one prime of M_i (namely the prime of M_i above \mathfrak{p}_{1}) that is ramified over k'_{i} , we see that I does not divide the class number of M_i for each *i*. Now we let K be any Z_i -extension of k_0 with intermediate fields $k_0 \subset k_1 \subset k_2 \subset \cdots \subset k_n \subset \cdots \subset K$, and we suppose K_2 has intermediate fields $k_0 \subset k_1'' \subset k_2'' \subset \cdots \subset k_n'' \subset \cdots \subset K_2$. If $K \cap K_1 = k_0$ and $K \cap K_2 = k_0$, then \mathfrak{p}_1 and \mathfrak{p}_2 are totally ramified in k_n/k_0 , and then M_n/k_n is an unramified cyclic extension of degree l^n . Since I does not divide the class number of M_n , then M_n must be the Hilbert I-class field of k_n , and hence by class field theory the I-class group of k_n is a cyclic group of order l^n for all n. So $\mu(K/k_0) = 0$, $\lambda(K/k_0) = 1$, $\nu(K/k_0) = 0$. Now suppose $K \cap K_1 = k'_2$. By arguments similar to those above, it can be proved that the I-class group of k_n is trivial if $n \leq j$ and a cyclic group of order l^{n-j} if n > j. So $\mu(K/k_0) = 0, \ \lambda(K/k_0) = 1, \ \nu(K/k_0) = -j.$ Similarly if $K \cap K_2 = k''_j$, then $\mu(K/k_0) = 0, \ \lambda(K/k_0) = 1, \ \nu(K/k_0) = -j.$

We conclude with an example to which the results of the previous paragraph apply. We let $k_0 = Q(\sqrt{-11})$ and l = 3. We note that 3 does not divide the class number of k_0 , and 3 decomposes in k_0 (in face, $3 = \alpha_1 \alpha_2$ with $\alpha_1 = (1 + \sqrt{-11})/2$ and $\alpha_2 = (1 - \sqrt{-11})/2$). If M_1 is the maximal extension of k_0 of exponent l contained in the composite of all Z_i -extensions of k_0 , we must show that there is only one prime ideal of M_1 above (α_1) and only one prime ideal of M_1 above (α_2) . Then the results of the previous paragraph will apply to k_0 . Now we let $E = Q(\sqrt{-11}, \zeta)$, where $\zeta = (-1 + \sqrt{-3})/2$ (a primitive cube root of unity). Then [E: Q] = 4, and the three quadratic subfields are k_0 , $Q(\sqrt{33})$, $Q(\sqrt{-3})$. We note that there is exactly one prime of E above (α_1) and exactly one prime of E above (α_2) . Since 3 does not divide the class numbers of the quadratic subfields of E, then it is easy to see that 3 does not divide the class number of E. It then follows from Kummer theory that the maximal abelian extension of E of exponent 3 in which only primes above 3 are ramified is $E(\alpha_1^{1/3}, \alpha_2^{1/3}, \zeta^{1/3}, \varepsilon^{1/3})$, where $\varepsilon = 23 + 4\sqrt{33}$ is the fundamental unit of $Q(\sqrt{33})$. It is not difficult to see that $M_1E = E(\zeta^{1/3}, \varepsilon^{1/3})$ (cf. [1, Example 3]). Again using Kummer theory, a calculation shows that the prime of E above (α_1) remains prime in one of the cubic extensions of E contained in M_1E and ramifies in the other three cubic extensions of E contained in M_1E . A similar result is valid for the prime of E above (α_2) . It follows that there can be only one prime of M_1 above (α_1) and only one prime of M_1 above (α_2) . Hence the results of the previous paragraph apply to $k_{\scriptscriptstyle 0} = {m Q}({m V}-11).$

Note. We have learned that the Russian mathematician V. A. Babaicev has obtained by other methods a proof of Theorem 1 (see Math. USSR Izvestija, 10 (1976), 675-685).

References

- 1. J. Carroll and H. Kisilevsky, Initial layers of Z_1 -extensions of complex quadratic fields, Compositio Mathematica, **32** (1976). 157–168.
- 2. B. Ferrero and L. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, to appear.
- 3. F. Gerth, Upper bounds for μ in Z_1 -extensions, to appear.
- 4. R. Greenberg, The Iwasawa invariants of Γ -extensions of a fixed number field, Amer. J. Math., **95** (1973), 204-214.
- 5. K. Iwasawa, On Z_1 -extensions of algebraic number fields, Ann. Math., **98** (1973), 246-326.
- 6. ____, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg, **20** (1956), 257-258.

Received April 4, 1978. Partly supported by NSF Grant MCS 78-01459.

THE UNIVERSITY OF TEXAS AUSTIN, TX 78712