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DERIVATIONS AND COMMUTATIVITY OF RINGS

LUNG 0. CHUNG, JIANG LUH AND ANTHONY N. RICHOUX

Let R be a ring with center C and Jacobson radical J.
Let ^ be the additive group of all inner derivations of R
and & be an additive group of derivations of R satisfying:

( i ) For any demand δe^f [d,d]e&;
(ii) For any xeR, dx = 0 for all de & iff xe C;
(iii) For any prime ideal P in R and any xeR, dxeP

for all d e & iff dx e P for all δ e <S.
Suppose, for each xeR and de&, there is a peR which

depends upon x and d such that dx = (dx)2p. Then the nil-
potent elements in R are central and form an ideal N in
R, R/N is a subdirect sum of division rings and commuta-
tive rings, and R/J is a subdirect sum of division "rings.
Suppose further that, for each xeR and de&, such a p is
a polynomial of dx with integral coefficients. Then R is
necessarily commutative.

1* Introduction, A well known theorem of Wedderburn states
that all finite division rings are fields. There are various generaliza-
tions of this theorem. Jacobson [4] proves that if, for each x in a
ring R, there is an integer n(x) > 1 such that xMx) = x then R is
commutative. Among others, Herstein [2] weakens Jaeobson's con-
dition by assuming xn{x) — x for only every commutator x in R. In
other directions of research, Putcha, Wilson and Yaqub [8] show
that if, for each commutator x in a ring R, there exists an integer
n(x) > 1 and a central element z(x) e R such that x = xn(9)z(x) then
R/J is a subdirect sum of division rings where J denotes the Jacob-
son radical of R. Suppose further that such n{x) = 2 for each com-
mutator xeR. Then R is commutative. Recently, Ligh [6] proves
that if, for each commutator a; in a ring R, there exists p(χ) e R
such that x = x2p(x) then R/N is a subdirect sum of commutative
rings and division rings where N denotes the lower nil radical of R.
In view of the fact that a commutator is simply in the image of an
inner derivation, we introduce in this paper the notion of primary
classes of derivations of a ring R. A primary class 3f of deriva-
tions of a ring R is very much like the group ^ of all inner
derivations of R but it could be much smaller than κJ\

In §2, we give some basic properties of primary classes of
derivations.

In §3, we consider a ring R having a primary class 3f of
derivations and satisfying the following conditions:
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(A) For each xeR and 3 e2$, there is a p = p{x, d)eR such
that dx = (dxfp.

It is shown that the nilpotent elements in R are central and hence
form an ideal iV in R. Moreover, R/N is a subdirect sum of division
rings and commutative rings and R/J is a subdirect sum of division
rings. Thus Putcha, Wilson and Yaqub's and Ligh's results follow
immediately.

In §4, we study a ring R having a primary class <2f of deriva-
tions and satisfying the following condition:

(B) For each xe R and 3e£^*, there is a polynomial p(t) of t
with integral coefficients such that dx = (dx)2p(dx).

We prove that R is necessarily commutative. This generalizes the
celebrated result of Herstein cited in the first paragraph.

In § 5, some remarks are given and open problems are proposed.
Throughout this paper, R denotes an associative ring, ^ the

ring of integers, and <£? the rational field. For x, y e R, [x, y] =
xy — yx, and δx denotes the inner derivation: r —> [x, r] for all r eR.
We recall that a mapping 3: iί —> R is called a derivation of R if
d(xy) = dxy + xdy and d(x + y) = dx + dy for all x, y eR.

2. Basic properties. Let R be a ring, C be its center and ^
be the additive group of all inner derivations of R. An additive
group & of derivations of R is said to be a primary class of deriva-
tions of R if

( i ) For any 3 6 3ί and δ e ^ [3, δ] e &\
(ii) For any x e R, dx = 0 for all d e & if and only if x e C;
(iii) For any prime ideal P in R and any x e R, dxeP for all

d e & if and only if dx 6 P for all δ e ^
It is clear that ^ itself is a primary class of derivations of R,

(iii) => (ii) for any prime ring R, and (i) is equivalent to that, for
and de& and xeR, δdae3f.

It is also easy to see that dxeN, the lower nil radical of R,
for all de& if and only if dxeN for all δe^

For convenience, we denote by &(R) the set of all elements dx
where d e £<$ and x e R.

EXAMPLE 1. Let F = GF(2n) where n >̂ 2 and w be a generator
of the multiplicative group of F. Let R be the ring of 2 by 2
matrices over F and & be the set of inner derivations δx where x

is of the form a ( Qj + β ί ^ 0 ) , a, β e F. It is easy to see that

[3, 3'] = 0 for all 3, 3' e Sf and 3ί forms a primary class of deriva-



DERIVATIONS AND COMMUTATIVITY OF RINGS 79

tions of R which is properly contained in ^ the group of all inner
derivations of R.

EXAMPLE 2. Let F be a field and R = F[x, y] be the free
algebra generated by x and y over F. Let & be the Lie ideal of
^ generated by δx and δy. Then & is a primary class of deriva-
tions of R. £& Φ ^ since δx2, dxy, δy2, δxz, , are not in &.

The authors, however, do not know whether a primary class of
derivations of a ring R is necessarily contained in the group of all
inner derivations of R.

PROPOSITION 2.1. Let R be a ring and i2* be a prime ring
which is a homomorphic image of R under a homomorphism φ.
Suppose & is a primary class of derivations of R. For each de£2f,
define 3*:i2*->12* by d*(φ{xj) = φ{dx) for all xeR. Then the set
3ϊ* of all 3*, where de&, forms a primary class of derivations
of B*.

Proof. For de£&, 3* is well defined since φ(x) = φ(y) =>x — ye
Ker φ => δ(x - y) e Ker φ for all δ e ^ => d(x - y) e Ker φ for all 3 e
& =* φ(dx) = φ(dy). Here we use the fact that Ker φ is a prime
ideal in R. It is readily to verify that i^* forms an additive
group of derivations of R* and that ϋ^* satisfies the condition
(i).

We observe that for φ(c)eR*, φ(c) is central in R* « Φ(c)φ(x) ~
φ(x)Φ(c) for all x e R <=> [c, x] e Ker φ for all x e R <=> dc e Ker φ for all
3 e & <=> d*(φ(c)) = 0 for all 3 * e ^ * . Thus the condition (ii) holds
for ^ * .

To see (iii), let P* be a prime ideal in R*. Set P =
{xeB\φ(x)eP*}. P is then a prime ideal in R. For #ei2,
3*(0(aO)eP* for all 3* e ^ * <=> φ(dx) e P* for all 3 e ^ ~ 3ΛJ6P for
all 3 e & «=> <5x e P for all δ 6 /<=> φ(δx) e P* for all δ e J? <=>δ*(φ(x)) e P*
for all inner derivations δ* of i2*. Thus (iii) holds for ^ * .

COROLLARY 2.2. Let R be a ring and P be a prime ideal in R.
Suppose & is a primary class of derivations of R. For each
3 e ^ , define 3*: R/P-> R/P by 3*(α + P) = dx + P for all xeR.
Then the set 3ί* of all 3*, where 3e£^, forms a primary class of
derivations of R/P.

COROLLARY 2.3. In Corollary 2.2, if P is replaced by the lower
nil radical N of R, the statement remains true.
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Proof. Use the fact that N is the intersection of all prime
ideals in R.

COROLLARY 2.4. In Corollary 2.2, if P is replaced by the
Jacobson radical J of R the statement remains true.

Proof. Using the fact that J is the intersection of all prime
ideals in R containing J, one can show that for each 9 e £^, 3* is
well defined and that the conditions (i)-(iii) follow immediately for

3. Primary class satisfying (A). Throughout this sections, we
assume that R is a ring having a primary class & of derivations
of R. Furthermore, we assume that 2ϊ satisfies the condition (A)
stated in the introduction.

Under condition (A), it is clear that zero is the only nilpotent
element in &(R). We shall show first tthat all nilpotent elements
in R are central. We begin with

LEMMA 3.1. Let xeR and d e&. If x2 — 0, then xdx + dxx = 0
and [dx, x] = 0.

Proof, dx2 = 0 implies xdx + dxx — 0, consequently, [dx, x]2 =
(dxx — xdx)2 = dxxdxx — x(dx)2x + xdxxdx = 0. Since [dx, x] e £&(R) by
condition (i), in the definition of a primary class of derivations,
[dx, x] = 0.

LEMMA 3.2. Let x, zeR and de&. Ifx2 = 0 and [dz, x] = 0,
then [dz, xy] = 0 for all y eR.

Proof. Since [dz, xyx] = dzxyx — xyxdz = x[dz, y]x e £&(R) and
its square is zero, we have x[dz, y]x = 0. Thus, [dz, xy] =
dzxy — xydz = x[dz, y] is a nilpotent element in 3f{JR) and hence
[dz, xy] = 0.

Let us recall that the characteristic of an element x e R, char x,
is the order of x in the additive group of R.

LEMMA 3.3. Let xeR and de&. Ifx2 = 0 and if char (xdx) Φ 2,
then dx = 0.

Proof. By Lemma 3.1, 2xdx = 0 and hence xdx = dxx = 0. By
expanding d(xdx) = 0, we obtain (dx)2 + xd2x = 0. Pre-multiplying
by dx yields (dec)3 = 0. Thus dx = 0.
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LEMMA 3.4. Let xeR and de&. Ifx2 = 0 and char (xdx) = 2,
then 2dx = 0 and dx e C.

Proof. Similar to the proof of Lemma 3.3, we obtain 2dx = 0.
Since [dx, x] = 0, by Lemma 3.2, x[dx, y] = [dx, xy] = 0 for all 2/ e ϋJ.
It follows that

0 = d(x[dxf y]) = 3a?[3a;, #] + x[d2xf y] .

But 0 = d([dx, x\) = (3a:)2 + #32a; + 32xx + (3a;)2 = xd2x + 32^α; = [d2x, x]
and hence by Lemma 3.2, x[d2x, y] = [32#, a??/] = 0 for all y e R.
Therefore, dx[dxf y] = 0 and it follows that [dx, y]2 = 3cc?/[3ίc, ?/] =
dxy(dxy + ydx) = (9a?)V + (3α)V = 0. Thus, [9a?, y] = 0 for all # e i2
and 3a? e C

LEMMA 3.5. Let x,yeR and de&. If x2 = 0 cmd [3]/, a?] = 0,
then dxxdy e C /or all dx e ^ .

Proof. By Lemma 3.2, #[3^/, 2;] = [dy, xz] — 0 for all zeR and
hence 0 = d^x[dy, z]) = 91x[3τ/, ^ ] + x^Si/, «]. Since dx[dy, x] = 0,
[dβy, x] = 0 by Lemmas 3.3 and 3.4 and [9^2/, a;̂ ] = a?^?/, a;] = 0
for all zeR by Lemma 3.2. Thus, 0 = d,x[dy, z] = [5^3?/, z] for all
« e R and δiίcδi/ 6 C

LEMMA 3.6. Let xeR. If x2 = 0 ίfce^ 3 ^ 3 7 / e C /or αW
3, d19 d2e & and y eR.

Proof. Noting that dxeC for all 3 e 3F, we have [dy, x] =
δdy(x) 6 G which implies [dβy, x] = dx[dy, x] = 0. Thus, by Lemma
3.5,

L E M M A 3.7. Let xeR. Ifx2 = 0 then dxxd2y = 0 / o r all d,dxe^
and y eR.

Proof. dxxxd2y = djxd2(xy) eC by Lemmas 3.3, 3.4, and 3.6.
Hence 0 = d^d^xd^y) = (91a?)2922/. By the condition (A), 91a?32?/ = 0.

LEMMA 3.8. Let x, yeR and degf. If dxeC and (dx)9-yeC
then dxyeC.

Proof. Suppose 3a; = (3a;)2p where peR. Then, for any zeR,
0 = p[(dx)2y, z] = p(dx)2[y, z] = (dx)[y, z] = [dxyf z].

LEMMA 3.9. Let xeR. Ifx2 = 0 then d%x(dtxdy + dxdxy) eC for
all 3, dlf 32 e 3f and yeR.
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Proof. Let u = d^d^dy + dxd^). By Lemma 3.6, d&dj)(xy) e C,
i.e., w + d2xxdty e C. Since d2x, d2xdtdy e C, we have \β2xxd1dy9 x] = 0
and hence O, α] = 0. For any z e R, [u, z] = (δg^^,,, + ddl{dxdxy))(z) e
&(R) and hence [u, xzx] = x[u, z]x e &(R). Since x[u, z]x is nilpotent,
x[u, z]x = 0 and #[t6, 2] is nilpotent. But x[u, z] = [w, #2] e £&(R). So
x[u, 2] = 0. Noting that d2u = d2x{dxxd^y + dxd2dxy) e C by Lemma
3.6, we obtain 0 = 92(a?[%, 2]) = 32x[u, 2] = [32xu, 2]. So d2xu e C. By
Lemma 3.8, ueC.

LEMMA 3.10. Let xeR. Ifx2~0 then d^xdjβy = 0 for all
9, d1 e & and yeR.

Proof. Let de 2$. Suppose dx = 0. Then according to Lemma
3.9, d2xdxxdy 6 C for all 3X, 32 6 Sf and 2/ e R. Particularly, (d&fdy e C
and by Lemma 3.8, d2xdy e C. Thus, 0 = d^dj

Now, suppose dx Φ 0. Then by Lemma 3.9, d^d2xdγxy + d2xdydxy) = 0
or dixdixdfl = 0 for all 3^ 92 6 ̂  and 7/ 6 i2. Particularly, (d^xfdβy — 0.
Using the condition (A) again djxdjiy — 0.

LEMMA 3.11. Lβί α eie. Ifχ2 = 0 then dxdyeC for all de&
and yeR.

Proof. By Lemma 3.10, dxdd^yx) = 0 or 0 = dx(ddίyx + d^ydx +
dydxx) — dx{d1ydxJrdyd1x). Consequently, dι{dxd{yx)) = dx(d1dyx+d1ydxJ

r

dydxx) = dxdβyx 6 £2f(R) while its square is zero by Lemma 3.6.
Since zero is the only nilpotent element in &(R) dxdβyx = 0, and
since dxdβy e C and dxeC, 0 = d(dxdxdyx) = (dxd1dy)dx = (βxfdβy.
Applying the condition (A), we get dxdβy = 0, i.e., d^dxdy) = 0.
Since d1 is arbitrary in ^ 3x3τ/ e C as we desired.

Now we are in the position to prove the following

PROPOSITION 3.12. All nilpotent elements in R are central and
hence form an ideal in R.

Proof. Suppose xeR and xn = 0. We proceed by induction on
n. Suppose n = 2. By Lemma 3.11, dxd{xy) e C for all 9 6 £& and
yeR. Prom \βxd(xy), x] = 0, we arrive [(3#)22/ + dxxdy, x] = 0. This
implies that [(3α;)22/, sc] = 0 by Lemma 3.11, i.e., [y, (dxfx] — 0 and
(dx)2x e C. Thus, 0 = d((dx)2x) = (3cc)3 and consequently, 9x = 0. This
is true for all de3f, so xeC.

Now we assume xn+1 = 0, where n > 1. Since (x2)n = (α;3)7" = 0,
x2 and #3 are central by the induction hypothesis. Let 3 e &.
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0 = dx2 — xdx + dxx and 0 = dx3 = x2dx yield [dx, x]2 = 0. Since
[dx, x] e &(R), [dx, x] = 0. Noting that 0 = x{dx2) — xdxx we obtain
(xdx)2 — x[dx, x]dx = 0. Thus, by the induction hypothesis, xdx e C
and, consequently, 0 = d(xdx) = (dx)2 + x32x. Pre-multiplaying by x
and (3x)2 respectively and by noting that 0 = d(x2dx) — dx2dx + x2d2x =
#232#, we obtain x(dx)2 = 0 and hence (3x)4 = 0. Thus dx = 0 for all
3 e ^ and x e C. This completes the proof.

COROLLARY 3.13. Let Abe a ring. Suppose for each commuta-
tor x e A, there exists a p(x) 6 A such that x = x2p(x). Then all nil-
potent elements in A are central and form an ideal in A.

REMARK. The proof of Proposition 3.12 can be simplified slightly
by transfinite method. Let φt be epimorphisms of R onto prime
rings Ri with Π* Ker ^ = N. First show that each Rt has no non-
zero nilpotent elements. Then for each nilpotent element x e R,
Φi(x) — 0 and consequently φi(dx) — 0 for all i. This means that
dx e N and so dx = 0 for all 3 6 2f.

PROPOSITION 3.14. Suppose R is a prime ring. Then R is
either a commutative ring or a division ring.

Proof. We should note that R has no zero divisors. For xy = 0
implies (yRx)2 — 0. Since R has nonzero nilpotent elements accord-
ing to Proposition 3.12, yRx = 0 and whence x = 0 or y — 0.

Suppose now to the contrary that R is neither a commutative
ring nor a division ring. Then 3f(JR) Φ (0). Let 0 Φ dx e £&(R) and
dx — (dx)2pf where peR. Then, for any y e R, dx(y — dxpy) — 0
yields y — dxpy, so dxp is a left identity in R. By Proposition 3.12,
all nilpotent elements in R are central so all idempotent elements
in R are also central and, particularly, dxp e C. Therefore, dxp is
a two-sided identity element in R which will be denoted by 1. This
shows that, for dx e 2ϊ(R), either dx = 0 or dx is invertible.

Since we also assume that R is not a division ring, there exists
0 Φ a e R which is not invertible. Suppose aeC. Then, for any
3 e £&y d(ax) = dax + adx = adx Φ 0 for some x e R. Thus d(ax) is
invertible so is α, a contradiction. Therefore a & C. Let 0 Φ d e £&
and let b e R, db Φ 0. Observe d(a2b) = da2b + a2db. Suppose da2 is
not invertible. Then da2 = 0 and 3(α2δ) = <z23δ Φ 0. Hence d(a2b) is
invertible, so is a, again contradicting the choice of a. Thus, 3α2

must be invertible for each nonzero 3 e £%r. Likewise daz is invertible
for each nonzero 3 e ϋ?. Let u and v be respectively the inverses
of da2 and da3. Then d(a2u — a?v) — da2u + α23% — da3v — a3dv —

a\du — adv) which is not invertible since a is not. Hence
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d(a2u — a?v) — 0. However, a2u — a*v = a\u — av) Φ 0 since a Φ 0
and a is not a unit. I t follows that d((a2u — a3v)b) — d{a2u — α3/y)6 +
(a2u — α3v)36 = (a*u — azv)db Φ 0. Consequently, d((a2u — a*v)b) and
hence a2u — aBv are invertible. This is clearly impossible since a is
not invertible. This completes the proof.

THEOREM 3.15. Let R be a ring with lower nil radical N.
Then R/N is a subdirect sum of division rings and commutative
rings.

Proof. From Corollary 2.3, R/N is a ring having a primary
class of derivations ϋ^* satisfying the condition (A). It is known
by Proposition 3.12 that JV is the set of all nilpotent elements in
R, R/N has no nilpotent elements Φ 0, and R/N is a subdirect sum
of prime rings Rt. By Proposition 2.1, each Rt possesses a primary
class of derivations which satisfies the condition (A). Each Rt is
either a division ring or a commutative ring by Proposition 3.14.

COROLLARY 3.16 (Ligh). Suppose, for each commutator xe A,
there exists p(x) e A such that x = x2p. Then A/N is a subdirect
sum of division rings and commutative rings, where N is the lower
nil radical of A.

THEOREM 3.17. Let R be a ring with Jacobson radical J. Then
R/J is a subdirect sum of division rings.

Proof. R/J is a subdirect sum of primitive rings. Each sub-
direct summand is a division ring by Proposition 3.14 and the fact
that commutative primitive rings are fields.

COROLLARY 3.18 (Putcha, Wilson, Yaqub). Let A be a ring.
Suppose, for each commutator xeA, there are a central element
zeA and an integer n > 1 such that x = xnz. Then A/J is a sub-
direct sum of division rings, where J denotes the Jacobson radical
of A.

In the balance of this section, we shall consider those rings R
having a primary class 3f of derivations and satisfying a rather
stronger condition than the condition (A), namely,

(C) For each xeR and de3f, there exists an element zeC
such that dx = (dxfz.

THEOREM 3.19. Let R be a ring having a primary class & of
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derivations and satisfying the condition (C). Then R is commuta-
tive.

Proof. By Theorem 3.15, R/N is a subdirect sum of rings Rίf

where each Rt is either a commutative ring or a division ring.
Suppose Rt is a division ring. Let 3Γξ be the primary class of
derivations of Ri induced from £gr. For xeRt and 9* 6STU d*x =
(d*#)2£ where z lies in the center of Rt. If d*x Φ 0, then d*x has
inverse z which is central. Thus d*x is central for all 3* e S2Γ$ and
zei?,. If the characteristic of Ri is 2 then, for 9* e ̂ ? , 9*(#2) =
2#9*# = 0. Thus x2 is central for all x e ϋ?*. By a well known
result of Kaplansky (see [4], p. 219), Ri is commutative. Now
suppose the characteristic of Rt is not 2. Then, for 0 Φ x e Rίf let
y be the inverse of x. We have, for 9* 6 S&t, 0 = d*(xy) = 9*ίπ/ +
#9*̂ / and 0 = d*2(xy) = 2d*xd*y which yield that 0 — d*x(d*xy + α?3*#) =
(9*x)2^/. Thus, 3*x = 0 for all 3* 6 ̂ ? and x 6 J?,. iί, is therefore
commutative.

R/N being a subdirect sum of commutative rings is commuta-
tive. To see that R is commutative, let x, y eR. Then xy — yx e N
yields dxeN and hence dx = 0 for all 9 e !2f and α? e ϋί. Thus R is
commutative.

COROLLARY 3.20 (Putcha, Wilson, Yaqub). Let R he a ring.
Suppose, for each commutator xe R, there exists a central element
z which depends upon x, such that x = x2z. Then R is commutative.

4* Primary class satisfying (B)* Let us first list a useful result
which will be used in the sequel of this section.

LEMMA 4.1. Let F be a division ring of characteristic p Φ 0
and C be the center of F. Suppose a e F\C and av% = a for some
integer n Ξ> 1. Then there exists an xe F such that xax~ι = a* Φ a
for some integer i.

Proof. (See [3], p. 70.)

LEMMA 4.2. Let R be a division ring and J3? be a primary
class of derivations of R. Suppose, for each ae R and 9 e 3ί, there
exists an integer n > 1 which depends upon a and 9 such that
da — (da)n. Then R is a field.

Proof. Suppose to the contrary that R is not a field. Let
a G R\C, where C denotes the center of R. Then there exists 9 e Sir



86 LUNG 0. CHUNG, JIANG LUH AND ANTHONY N. RICHOUX

such that da Φ 0, and (da)m — da. Let P be the prime field of R.
Since 23 e &, 2da = (2da)n = 2n(da)n for some integer n > 1. Let
q = (m ~ l)(^ — 1) -f 1. One can see easily that {2da)q = 23α and
(dα)9 — 9α. Hence 2Q = 2 and i? is of nonzero characteristic p say.

We shall show now that, for each 0 Φ 3 e 3r, there is an aeR
such that 3α£ C suppose not. Then [dx, y] = 0 for all x, y eR and
S^O) = 0 for all xeR, dte&. If p φ 2, we have 0 = 3(3cc2) =
d(2xdx) = 2(dx)2 and consequently dx = 0 for all xe f i , a contradic-
tion. Thus we may assume now p = 2. Since, for each # 6 iϋ,
3(&2) = 2xdx = 0, we have, for all x, y eR, 0 = [3(α;x2), ?/] = 3x[x2, #].
If dx Φ 0 then [x2, 2/] = 0 for all 2/ e iί and α;2 e C. If δx == 0, then
since, for all y, zeR, 0 = [3($s), 1/] = 3̂ [cc, y], [x, y] = 0 for all 2/ e i£
and hence a? e C. Thus in either case, x2 e C. Using again the result
of Kaplansky cited in the proof of Theorem 3.19, we obtain the
commutativity of R, a contradiction. This proves the assertion
that, for each 0 Φ d e ϋ^, an element aeR exists with da $ C For
this da, (da)m — da for some integer m > 1 and hence da is algebraic
over P and hence (da)pk = da for some integer k > 0. By Lemma

4.1, there is an xeR such that xdax~ι — {da)1 Φ da, i.e., xda—
{da)lx Φ dax. Thus, [da, x] Φ 0 and [da, x]da = daxda — x(daf —
(daY(dax — xda) — (daY[da, x]. However, by the hypothesis, [da, x]h —
[da, x] for some integer h > 1. Thus the ring S = {Σα^ (daY[da, x]j\
ai3' e P) is a finite division ring. By the Wedderburn theorem for
finite division rings, S is a field. Consequently da[da, x] — [da, x]da,
a contradiction.

In the balance of this section, we assume R is a ring having a
primary class & of derivations. Also we assume £& satisfies the
condition (B) stated in the introduction.

Perhaps we should note that the condition (B) implies the condi-
tion (A) and hence we can use the results in § 3 freely in the sequel
of this section.

LEMMA 4.3. If R is a division ring then R is a field.

Proof. Suppose the characteristic of R is not zero, and P is
the (finite) prime field of R. Since each da e 2${R) is algebraic over
P, there exists an integer m > 1 such that {da)m — da. By Lemma
4.2, R is commutative. Suppose the characteristic of R is zero.
Suppose to the contrary that R is not commutative and aeR is not
central. Then there is d e 3f with da Φ 0. For each prime number
pe%r, there exists fp(t) e %T[t~\ such that (pda)2fp(pda) = pda. Thus
pdafp(pda) — 1 = 0. Let gp(t) e ^[t] be a polynomial with least
degree such that pdagp(da) — 1 = 0. We claim that ptgp{t) — 1 is
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irreducible over %? and hence it is also irreducible over & by the
Gauss lemma. Suppose ptgp(t) — 1 = h(t)k(t), where h(t), k(t)eβf[t],
h{da) — 0 and k(t) Φ ± 1 . By comparing the constant terms of
ptgp(t) — 1 and h(t)k(t), one can see that k(t) is not a constant and
the degree of k(t) is n say. Let a, β, 7 be respectively the leading
coefficients of fc(t), h(t), and gp(t). Then aβ = pγ. Since h(t)k(t) =
— l(moάp), k(t) is a constant polynomial modulo p and p | # . Thus
deg^OO — apΉ^hit^Kάeg gp(t) and since pdagp(da) = l and Λ(3α) = 0,
pda(gp(da) — ap'^aY'^hfβa)) — 1 = 0. This contradicts the choice
of gp(t). Therefore, for each prime number p, ptgp(t) — 1 is
irreducible over & and has da as a root. All these polynomials
therefore must be divisible by each other over £?. This clearly is
impossible, and the lemma is proved.

From Proposition 3.14 and Lemma 4.3, we immediately have the
following

LEMMA 4.4. If R is a prime ring then R is commutative.

Now we are in the position to prove our main result of this
section.

THEOREM 4.5. Let R be a ring having a primary class JSP of
derivations which satisfies the condition (B). Then R is commuta-
tive.

Proof. By Corollary 2.4, Sf induces a primary class ^ * of
derivations of R/J, where J denotes the Jacobson radical of R. Being
semisimple, R/J is a subdirect sum of primitive rings. According
to Lemma 4.4, each subdirect summand is commutative. Hence R/J
is commutative. Note that J is the intersection of all prime ideals
of R which contain J. Since for all x e R and δ e <J^, the group of
all inner derivations of R, δx e J, we have dxeJ for all de&. From
the condition (B), dx = (dx)2p(dx) for some p{t) e %\t\. Let e = dxp(dx).
Clearly, eeJ and dx = dxe. Let / be the quasi-invere of e. Then
0 = dxe{e + / - ef) = dxe = dx. Thus, dx = 0 for all x e R and d e 3f
and R is commutative.

The following corollary which generalizes the celebrated result
of Herstein cited in the introduction is an immediate consequence of
Theorem 4.5.

COROLLARY 4.6. Let A be a ring. If, for each commutator
x e A, there exists a polynomial p{t) e %?\t\ such that x = x2p(x), then
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A is commutative.

5* Some remarks and open problems* We have seen that, in
many imposed conditions which imply the commutativity or "near"
commutativity of rings R, general elements in R may often be
replaced by the elements in &(R), where & is a primary class of
derivations of R. In view of this, we would raise the question as
to what extent can we replace elements of R or commutators by
elements of ££f(R) and still yield the same or similar results? Thus
a wide field of questions on commutativity is open. For example,
one problem immediately comes to our minds: By the results given
by Herstein, Martindale, Utumi and many others ([1], [3], [7], [9],
etc.), we would like to propose the following open problems:

Let S be a primary class of derivations of a ring R and C be
the center of R.

(1) Suppose, for each dx e &(R), there exists a p e R which
depends upon dx, such that dx — {dxfp e C. Do the nilpotent elements
in R form an ideal NΊ If so, is R/N a subdirect sum of commuta-
tive rings and division rings?

(2) Suppose, for each dx e £&(R), there exists a polynomial
pit) e %*[t] which depends upon dx, such that dx — (dx)2pidx) e C. Does

Ligh has recently extended many commutativity theorems for
rings including the one by Putcha, Wilson and Yaqub to near rings
or d.g. near rings. For this reason we would like to know:

( 3) Can the results in the present paper also be extended to
d.g. near rings?

Once again, we propose the following:
(4) Does every member in a primary class of derivations have

to be an inner derivation?

REFERENCES

1. I. N. Herstein, The structure of a certain class of rings, Amer. J. Math., 75 (1953),
864-871.
2. , A condition for the commutativity of rings, Canad. J. Math., 9 (1957),
583-586.
3. , Noncommutative rings, John Wiley, N. Y., 1968.
4. N. Jacobson, Structure theory for algebras of bounded degree, Ann. of Math., 46
(1945), 695-707.
5. , Structure of rings, Amer. Math. Soc. Colloquium Publ. 37, rev. ed.,
Providence, 1964.
6. S. Ligh, The structure of certain classes of rings and near rings, J. London Math.
Soc, (2), 12 (1975), 27-31.
7. Wallace S. Martindale, III, The co7nmutativity of a special class of rings, Canad.
J. Math., 12 (1960), 263-268.
8. M. S. Putcha, R. S. Wilson and A. Yaqub, Structure of rings satisfying certain



DERIVATIONS AND COMMUTATIVITY OF RINGS 89

identities on commutators, Proc. Amer. Math., 32 (1972), 57-62.
9. Yuzo Utumi, On ξ-rings, Proc. Japan Acad., 33 (1957), 63-66.

Received February 21, 1978 and in revised form June 16, 1978.

NORTH CAROLINA STATE UNIVERSITY AT RALEIGH

RALEIGH, NC 27607






