
PACIFIC JOURNAL OF MATHEMATICS
Vol. 80, No. 1, 1979

ON THE GENERALIZED CALKIN ALGEBRA

J. J. BUONI AND A. KLEIN

A bounded linear operation T: X-^Y between Banach
spaces is said to be weakly compact if it takes bounded
sequences onto sequences which have a weakly convergent
subsequence. Let W[X, Y] denote the weakly compact
operators from X to Y, B[X, Y], the bounded operators and
K[X, Y]9 the compact operators. Now W[X, Y] forms a
closed subalgebra of B[X, Y] and for JSΓ= Y, W[X, X] is a
closed (in the uniform topology) two-sided ideal of B[X,X],
The purpose of this note is to construct a faithful repre-
sentation of the Generalized Calkin Algebra B[X, X]/K[X,
X], which parallels a similar representation of B[X,X]I
K[X, X] in Buoni, Harte and Wickstead, " Upper and lower
Fredholm spectra".

This construction in obtained is § 1 and some consequences in
§ 2 with regards to operators T e B[X, Y] with a reflexive null
space, N(T), and closed range, R(T). Operators of this type have
been studied by Yang. Throughout this note, the weak closure of
a set S i n I will be denoted by Sw.

1* If X is a complex Banach space then let l^X) denote the
Banach space obtained from the space of all bounded sequences
x = (χn) in X by imposing term-by-term linear combinations and the
supremum norm ||#||oo = supΛ | |ίcΛ | |.

DEFINITION 1. If X is a Banach space then denote m(X) =
{(x») e L(X) I (xn)

w is weak-compact in X}.

LEMMA 1. If X is a Banach space then the following hold.
(1) m(X) is a subspace of l^X).
(2) a sequence x ~ (xn) is in m(X) iff every subsequence of

(xn) has a weak convergent subsequence.

Proof. (1) is clear and (2) is an immediate application of the
Eberlein—Smulian theorem [2, p. 430] which states that for a
subset A of X then Aw is weak-compact iff every sequence in A
has a weakly convergent subsequence.

Let m(X) denote the norm closure of m(X) in L(X).

LEMMA 2. Every subsequence of an element in m{X) (m(X)) is
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also in m(X) (ra(X)).

Proof. This follows immediately from Lemma 1 part 2.

THEOREM 3. If X is a Banach space then m{X) is a closed
subspace of IJ^X).

Proof. Let x = ( x j e m ( l ) , i.e., the closure of ra(X) in L(X).
It shall first be shown that (xn) has a weak-Cauchy subsequence
and then that this sequence converges to an element in X. Thus
there exists yί = (yltn) 6 m(X) and (xun), a subsequence of x such

w

that yι,n-^yι (converges weakly to yx) and \\(x1>n) — (2OIU < 1.
Now assume for 1 ̂  i <̂  i — 1, that we have {xUn) and (#IfW) which
satisfy the following:

(1) (xι,n) is a subsequence of (xι-1>n),

(1.1) (2) l/^-^l/,,
(3)

Then since (x^i,n) e m(X), there exists a subsequence (&,-,«) of (»,-_!,»)
————— r\J0

and there exists (yjtn) e m(X) such that i/iιn -> i/i and ||(aJi>Λ)~(2/i,n)||0O<
IIj. So by induction, for all j , there exist sequences satisfying
(1.1). Now fix j a n d / e X * (the conjugate of X). We claim that
there exists M such that for all n and m^> M that

(1.2) l/(*/..)

To see this, recall that yj>n —> ^ , then there exists ikf such that

(1.3) |/(» i f0 - f{y,)\ £ ll/ll/i for all n > M.

Now for all n,m^M,

(1.4) l / f e j - /(%,J | ^ I/(a?,-, J - f(yitn)\ + l/d/y.O - f(ys)\

Now by applying (1.1) and (1.3) to (1.4) yields (1.2). We shall now
show that (xifi) is a weak-Cauchy sequence. Given /εX* and ε>0,
select j such that 4 | | / | | / i < ε . Then by (1.2) there exists MQ such
that for all m and n ̂  Mo

(1.5) (/fe,J-/(^,JI^4||/||/i.

Set Λf = max (i, Λf0). For m and w ̂  Λf, because (ajn,fc) and (a?m>fc)
are subsequences of (xjtk)f then |/(«W |J - f(xm>m)\ ^ 4| |/ | |/i < ε.

It remains to show that any weakly-Cauchy subsequence of
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(xn) 6 m(X) converges weakly. To this end, let (xn) e m(X) be a
weakly-Cauchy sequence.

D e f i n e F: X*-> C b y F(f) - l i m ^ f{xn). S i n c e \F(f)\^\\f\\
supΛ | |ajn | |, then f e l * * . Now l e t ε > 0 , it shall be shown that
there exists yeX such that \\F — y**\\ < e where T/** is the cano-
nical image of y in X**. To see this, select (yj em(X) such that
11 GO — (2/*) 11 < s/3 and select a subsequence (#WJfc) of (?/J such that
ynk—>y- Select f eX* such that | | / | | £Ξ 1. For k sufficiently large,
\/(y,k) - ΛV)\ < ε/3 and \f(xUk) - F(/) | < e/3. Thus, for k suffici-
ently large,

- y**(J) I ̂  ! F(f) - f(xnk) \ + I f(x,k) -

) - f(y)\^4 + ll/ll i!^, - VnΛ\ + 4 < e

Thus, J?7 is in the norm closure of the canonical image of X in X**.
This image is norm closed; therefore, there exists x e X such that
F is the canonical image of x. Thus, m(X) = m(X) which proves
our theorem.

2. Now for TeB[X, Y] we have

LEMMA 4. (1) If TeB[X, Y], then T sends m(X) to m(Y).
(2) T is weakly-compact iff T maps IJX) into m{Y).

Proof. Clear.

Now for TeB[X, Y], letP(Γ) be the induced operator from
lcc(X)/m(X)^l0O(Y)/m(Y). Denote by &>{X) the quotient L(X)/
m(X). Then We W[X, Y] iff P(W) - 0. Therefore we have the
following theorem.

THEOREM 5. B[.^:\X)f .ζ?\X)\ contains a faithful representation
of B[X,X]fW[X,X].

THEOREM 6. Let TeB[X, Y].
(1) If N(T) is a reflexive subspace and is complemented in

X and if R(T) is closed then P(T) is one-to-one.
(2) If P(T) is one-to-one, then N(T) is a reflexive subspace

of X.

Proof. To see (1) let N(T) be a complemented reflexive sub-
space, then there exists a closed subspace M such that X = N(T)ξξ)
M. Since R(T) is closed, then T\M(T restricted to M) is an isomor-
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phism. Now let us assume that there exists a sequence (xn) in
IJtX) such that P{T){xn + m(X)) = (Txn) + m(Y) =. m(Y).

Let xn = k% + zn where xneN(T) and zneM. Since there exist
bounded projections onto N(T) and M then (kn) and (2Λ) are in
ΪOO(-3L). NOW (Γa?w) has a weakly-convergent subsequence, say (Txnj).
Thus (Tfeny) converges weakly and since R(T) = T(M) is closed then

w

Tznj -> Tz for some ^ e l . Since T is invertible when restricted
to ikf, thus, zw i-*z. Since N(T) is a reflexive subspace, some sub-
sequence of (knj) converges weakly; (xn) has a weakly convergent
subsequence and (xn) e m(X).

To see (2), we assume that N(T) is not reflexive, then there
exists a bounded sequence (xn) in N(T) with no convergent sub-
sequence. Hence, (xn)ίm(X) while (Txn)em(Y); contradicting that
P{T) is one-to-one.
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