ON THE GENERALIZED CALKIN ALGEBRA

J. J. BUONI AND A. KLEIN

A bounded linear operation $T: X \rightarrow Y$ between Banach spaces is said to be weakly compact if it takes bounded sequences onto sequences which have a weakly convergent subsequence. Let W[X,Y] denote the weakly compact operators from X to Y, B[X,Y], the bounded operators and K[X,Y], the compact operators. Now W[X,Y] forms a closed subalgebra of B[X,Y] and for X=Y, W[X,X] is a closed (in the uniform topology) two-sided ideal of B[X,X]. The purpose of this note is to construct a faithful representation of the Generalized Calkin Algebra B[X,X]/K[X,X], which parallels a similar representation of B[X,X]/K[X,X], which parallels a similar representation of B[X,X]/K[X,X] in Buoni, Harte and Wickstead, "Upper and lower Fredholm spectra".

This construction in obtained is §1 and some consequences in §2 with regards to operators $T \in B[X,Y]$ with a reflexive null space, N(T), and closed range, R(T). Operators of this type have been studied by Yang. Throughout this note, the weak closure of a set S in X will be denoted by \bar{S}^w .

1. If X is a complex Banach space then let $l_{\infty}(X)$ denote the Banach space obtained from the space of all bounded sequences $x=(x_n)$ in X by imposing term-by-term linear combinations and the supremum norm $||x||_{\infty}=\sup_n ||x_n||$.

DEFINITION 1. If X is a Banach space then denote $m(X) = \{(x_n) \in l_{\infty}(X) | (\overline{x}_n)^w \text{ is weak-compact in } X\}.$

LEMMA 1. If X is a Banach space then the following hold.

- (1) m(X) is a subspace of $l_{\infty}(X)$.
- (2) a sequence $x = (x_n)$ is in m(X) iff every subsequence of (x_n) has a weak convergent subsequence.

Proof. (1) is clear and (2) is an immediate application of the Eberlein—Smulian theorem [2, p. 430] which states that for a subset A of X then \bar{A}^w is weak-compact iff every sequence in A has a weakly convergent subsequence.

Let $\overline{m(X)}$ denote the norm closure of m(X) in $l_{\infty}(X)$.

LEMMA 2. Every subsequence of an element in m(X) $(\overline{m(X)})$ is

also in m(X) $(\overline{m(X)})$.

Proof. This follows immediately from Lemma 1 part 2.

Theorem 3. If X is a Banach space then m(X) is a closed subspace of $l_{\infty}(X)$.

Proof. Let $x = (x_n) \in \overline{m(X)}$, i.e., the closure of m(X) in $l_{\infty}(X)$. It shall first be shown that (x_n) has a weak-Cauchy subsequence and then that this sequence converges to an element in X. Thus there exists $y_1 = (y_{1,n}) \in m(X)$ and $(x_{1,n})$, a subsequence of x such that $y_{1,n} \stackrel{w}{\to} y_1$ (converges weakly to y_1) and $||(x_{1,n}) - (y_{1,n})||_{\infty} < 1$. Now assume for $1 \le l \le j-1$, that we have $(x_{l,n})$ and $(y_{l,n})$ which satisfy the following:

$$(1)$$
 $(x_{l,n})$ is a subsequence of $(x_{l-1,n})$,

Then since $(x_{j-1,n}) \in m(X)$, there exists a subsequence $(x_{j,n})$ of $(x_{j-1,n})$ and there exists $(y_{j,n}) \in \overline{m(X)}$ such that $y_{j,n} \stackrel{w}{\to} y_j$ and $||(x_{j,n}) - (y_{j,n})||_{\infty} < \infty$ 1/j. So by induction, for all j, there exist sequences satisfying (1.1). Now fix j and $f \in X^*$ (the conjugate of X). We claim that there exists M such that for all n and $m \ge M$ that

$$|f(x_{j,n}) - f(x_{j,n})| \leq 4||f||/j.$$

To see this, recall that $y_{j,n} \xrightarrow{w} y_j$, then there exists M such that

$$|f(y_{j,n}) - f(y_j)| \le ||f||/j \text{ for all } n > M.$$

Now for all $n, m \geq M$,

$$(1.4) ||f(x_{j,n}) - f(x_{j,m})|| \le ||f(x_{j,n}) - f(y_{j,n})|| + ||f(y_{j,n}) - f(y_{j})|| + ||f(y_{j,m}) - f(y_{j,m})|| + ||f(y_{j,m}) - f(x_{j,m})||.$$

Now by applying (1.1) and (1.3) to (1.4) yields (1.2). We shall now show that $(x_{i,i})$ is a weak-Cauchy sequence. Given $f \in X^*$ and $\epsilon > 0$, select j such that $4||f||/j < \varepsilon$. Then by (1.2) there exists M_0 such that for all m and $n \ge M_0$

$$|f(x_{j,n}) - f(x_{j,m})| \leq 4||f||/j.$$

Set $M = \max(j, M_0)$. For m and $n \ge M$, because $(x_{n,k})$ and $(x_{m,k})$ are subsequences of $(x_{j,k})$, then $|f(x_{n,n}) - f(x_{m,m})| \leq 4||f||/j < \varepsilon$.

It remains to show that any weakly-Cauchy subsequence of

 $(x_n) \in \overline{m(X)}$ converges weakly. To this end, let $(x_n) \in \overline{m(X)}$ be a weakly-Cauchy sequence.

Define $F\colon X^*\to C$ by $F(f)=\lim_{n\to\infty}f(x_n)$. Since $|F(f)|\leqq||f||\sup_n||x_n||$, then $F\in X^{**}$. Now let $\varepsilon>0$, it shall be shown that there exists $y\in X$ such that $||F-y^{**}||<\varepsilon$ where y^{**} is the canonical image of y in X^{**} . To see this, select $(y_n)\in m(X)$ such that $||(x_n)-(y_n)||<\varepsilon/3$ and select a subsequence (y_{n_k}) of (y_n) such that $y_{n_k}\overset{w}\to y$. Select $f\in X^*$ such that $||f||\leqq 1$. For k sufficiently large, $|f(y_{n_k})-f(y)|<\varepsilon/3$ and $|f(x_{n_k})-F(f)|<\varepsilon/3$. Thus, for k sufficiently large,

$$\begin{split} |F(f) - y^{**}(f)| &\leq |F(f) - f(x_{n_k})| + |f(x_{n_k}) - f(y_{n_k})| \\ &+ |f(y_{n_k}) - f(y)| \leq \frac{\varepsilon}{3} + ||f|| \, ||x_{n_k} - y_{n_k}|| + \frac{\varepsilon}{3} < \varepsilon \;. \end{split}$$

Thus, F is in the norm closure of the canonical image of X in X^{**} . This image is norm closed; therefore, there exists $x \in X$ such that F is the canonical image of x. Thus, $m(X) = \overline{m(X)}$ which proves our theorem.

2. Now for $T \in B[X, Y]$ we have

LEMMA 4. (1) If $T \in B[X, Y]$, then T sends m(X) to m(Y). (2) T is weakly-compact iff T maps $l_{\infty}(X)$ into m(Y).

Proof. Clear.

Now for $T\in B[X,Y]$, let P(T) be the induced operator from $l_{\omega}(X)/m(X)\to l_{\omega}(Y)/m(Y)$. Denote by $\mathscr{P}(X)$ the quotient $l_{\omega}(X)/m(X)$. Then $W\in W[X,Y]$ iff P(W)=0. Therefore we have the following theorem.

THEOREM 5. $B[\mathcal{S}(X), \mathcal{S}(X)]$ contains a faithful representation of B[X, X]/W[X, X].

THEOREM 6. Let $T \in B[X, Y]$.

- (1) If N(T) is a reflexive subspace and is complemented in X and if R(T) is closed then P(T) is one-to-one.
- (2) If P(T) is one-to-one, then N(T) is a reflexive subspace of X.

Proof. To see (1) let N(T) be a complemented reflexive subspace, then there exists a closed subspace M such that $X = N(T) \oplus M$. Since R(T) is closed, then T | M(T) restricted to M) is an isomorphism.

phism. Now let us assume that there exists a sequence (x_n) in $l_{\infty}(X)$ such that $P(T)(x_n + m(X)) = (Tx_n) + m(Y) = m(Y)$.

Let $x_n = k_n + z_n$ where $x_n \in N(T)$ and $z_n \in M$. Since there exist bounded projections onto N(T) and M then (k_n) and (z_n) are in $l_{\infty}(X)$. Now (Tx_n) has a weakly-convergent subsequence, say (Tx_{n_j}) . Thus (Tz_{n_j}) converges weakly and since R(T) = T(M) is closed then $Tz_{n_j} \stackrel{w}{\to} Tz$ for some $z \in X$. Since T is invertible when restricted to M, thus, $z_{n_j} \stackrel{w}{\to} z$. Since N(T) is a reflexive subspace, some subsequence of (k_{n_j}) converges weakly; (x_n) has a weakly convergent subsequence and $(x_n) \in m(X)$.

To see (2), we assume that N(T) is not reflexive, then there exists a bounded sequence (x_n) in N(T) with no convergent subsequence. Hence, $(x_n) \notin m(X)$ while $(Tx_n) \in m(Y)$; contradicting that P(T) is one-to-one.

ACKNOWLEDGMENTS. The authors would like to thank Professor Charles Byrne for discussions with regards to this problem.

REFERENCES

- 1. J. J. Buoni, R. E. Harte and A. W. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc., 66 (1977), 309-314.
- 2. N. Dunford and J. T. Schwartz, *Linear Operators*, Part 1, Interscience Publishers Inc., New York 1958.
- 3. S. Goldberg, Unbounded Linear Operators, McGraw-Hill Book Co., New York 1966. 4. K. W. Yang, The generalized Fredholm operators, Trans Amer. Math. Soc., 216 (1976), 313-326.

Received April 5, 1978 and in revised form July 14, 1978.

Youngstown State University Youngstown, OH 44555