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A CHARACTERIZATION OF COVERING DIMENSION
BY USE OF Δk(X)

JEROEN BRUIJNING AND JUN-ITI NAGATA

Covering dimension, in the sense of Katetov, of a topo-
logical space X is characterized by use of Δh(X) which will
be defined in the main discussion in terms of cardinalities
of finite open covers of X.

1* Introduction* L. Pontrjagin and L. Schnirelmann [6] charac-
terized dimension of a compact metrizable space X by use of the
numbers Np(e, X) = min {meN\ the metric space (X, p) has a cover
^ such that 1^1 = m and diam U ^ s for every Ue^}. Their
result is quite interesting in the sense that covering dimension, which
is defined in terms of order (a kind of local cardinality) of a cover,
is characterized in terms of global cardinality of a cover. J. Bruijning
[1] generalized Pontrjagin-Schnirelmanns theorem to separable metric
spaces by use of totally bounded metrics and to topological spaces
by means of totally bounded pseudometrics.

In the present paper, we shall characterize covering dimension
of topological spaces by use of a new function Δk{X), which will be
defined later. It seems that Ak(X) can provide us with a neater
characterization of dimension, perhaps because it does not involve
the metric p in its definition while Np(ε, X) does.

2 Conventions. In the following discussions we frequently
consider a finite collection ^ — {Uί9 , Z7J of subsets of a space
X such that U {US\X <; j ^ i}Z)A for a certain subset A of X, and
a cover T = {Vlf , Vt} of A such that Vά c U, Π A for 1 ^ j ^ i.
Then we may say: ^ is shrunk to Ψ* on A.

If Y* consists of open (closed) subsets of A, we shrink ^ to
the open (closed) cover T* of A. If A — X, we may drop the words
"on A". If Π T = 0 , T is vanishing.

We shall denote by d the set of all m-element subsets of the

set {1, 2, , k} and by (j*) its cardinality, i.e., (k) = k\jm\(k - m)\.
\ΊΪl/ \ΊΪb/

By the dimension of a space X, dim X, we will mean its Katetov
dimension, i.e.,

dimX = - 1 iff X = 0

dim X <Ξ n(n ^ 0) iff every finite cover of X ,

consisting of functionally open sets, has a finite refinement, also
consisting of functionally open sets and with order <; n + 1;
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dim X = n(n Ξ> 0) iff dim X <; n but not dim X <; n — 1

dimX = co iff not dimX ^ w , for every n .

We will sometimes use the following, without explicitly mentioning
it: for normal spaces, Katetov dimension coincides with ordinary
covering dimension [3, p. 268].

For basic concepts in general topology and dimension theory see
[3], [4], and [5]. The reader is warned that different authors some-
times mean different numbers by the order of a cover; in our definition,
the order is the maximum number of mutually intersecting sets in
the cover, but in Engelking [3] the order is defined to be one less.
Since we will frequently be referring to [3] the reader should be
aware of this.

3* The main theorem: the normal case* Let X be a topological
space and k a positive integer. Define
Ak(X) = min{meiV| for every functionally open cover ^ of X with

I *BS I <L k there exists a functionally open cover °F of X with

| | }
Here TΔ = {St (x, T)\xeX) and < means: "refines".

REMARK. If X is a normal space, we may drop the word "func-
tionally" in the above definition either or both times it occurs and
still arrive at the same number. This is easily proved using similar
techniques as in the proof that Katetov dimension coincides with
ordinary covering dimension referred to above. We will use this
observation in the sequel without explicitly mentioning it.

PROPOSITION 1. Let n ^ 0, and X be a topological space with
dim X ^ n. Let ke N. Then

AJC(X) ^ 2k - 1 if k £ n + 1

if k^n + 1.

Proof. Suppose ^ = {Uί9 , Uk) is a functionally open cover
of X. Since dim X <; n, we can shrink ^ to a functionally open
cover T = {V19 , Vk) with ord T ^ n + 1. Further shrink T to
a functionally closed cover ^' = {Flf , Fk} (as in [3, p. 267]). For
every nonempty A c {1, •••,&} we define the following functionally
open set:

W(A) = [Dί V,|i 6 A}] n [ Π W I t ί A}] .

Let 3T = {W(A)\W(A)Φ0}. Since ord T^n + l, W(A)= 0 if
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n + 1. Therefore \W\^2k- 1 if k ^ n + 1, and \W\ ^ ( f ) +

L + i) i f k ^ n + !• I ί ; i s a l s o e a s y t o s e e t h a t Ύ^Δ <T <<%?, be-
cause for each x e Fif St (x, W~) c F*. This proves Proposition 1.

LEMMA 1. Let Xbe a normal space and n ^ 0. Then dim X <* n
iff every open cover {Wlf , Wn+2} of X can be shrunk to a vanishing
open cover of X.

Proof. See Engelking [3, p. 282].

LEMMA 2. Let X be a normal space with dim X ^ n, where
either n ^ 1 or n = 0 and X infinite.

Let keN. Then there exist k disjoint closed subsets of X with
dimension

Proof. The proof is by techniques similar to those of C. H.
Dowker [2] who proved related results.

If n = 0 we use the fact that X is infinite to prove our result.
If n > 0 the result will follow from: there exist two disjoint closed
subsets of X with dimension ^ n. Let ^ = {Uί9 , Z7J be an open
cover which has no open shrinking of order ^n and has no proper
subcover. Since n > 0, i ^ 2. Let ^~ — {Flf , FJ be a closed
shrinking of ^ . From [3, p. 276] it follows that some element of
_^7 say Flf has dimension ^ n. Let V be an open set such that
F1czV(zV(zUί. We claim: dim (X\V) ^ w. Indeed, the collection
{Ulf U2\V, ., C7Λ̂ } -is an open cover of X\V. If dim (X\V) < n, by
standard methods one can prove the existence of a collection W^ —
{Wlf , Wi) of open subsets of X such that W1 c ί̂ , W2 c Z72\F, ,
Ŵ  c i7AF, ord ^ ^ n and I \ 7 c U 5 ^ Then define O t = F U TFi,
O2= W2, - - , Oi—Wi to get an open cover {Oly , OJ of X with order
<*n and shrinking ^ , contradicting our initial assumption. Thus
dim F1 ̂  w, dim X\V^ n, and ^ Π (X\V) = 0 . This proves Lemma 2.

PROPOSITION 2. Let X be a normal space with dim X^ n and
let either n ^ 1 or w = 0 and X infinite. Let keN. Then

Δk(X) ^ 2& - 1 if k ^ n + 1

V t s . + i .

Proof. We will only prove the proposition for the case & ^ w + 1,
since the case k <; n + 1 then follows by substituting & — 1 for n.
So, let k^n + 1. Let {C(α)|αeCi+1} be a collection of disjoint



JEROEN BRUIJNING AND JUN-ITI NAG AT A

closed subsets of X of dimension ^n (Lemma 2). For each aeC^+ί we
can find, by Lemma 1, an open cover ^{a) — {U"\ί ea} of C(a) which
cannot be shrunk to a vanishing open cover of C(a). Note that
I ̂ {a) I = M + 1. Note also that 9^(a) cannot be shrunk to a vanishing
closed cover of C(a) either, since such a cover could, by using
normality of C(a), be expanded to a vanishing open cover of G(a)
still refining <%f{a). Now, define open subsets Ut (1 ^ i ^ k) of X as
follows:

(note that a, not i, is the free variable in the right hand formula).

Then Ψ^ = {Ui | 1 ^ ί <; fc} is an open cover of X. Suppose Tά < <2S

for a finite open cover T. We claim: l ^ l ^ f ί W + L l Λ
w h i c h i m p l i e s Λ ( X ) ^ ( - M + + ί 1 - , ) . W e w i l l s h o w t h i s i n

\ i / \n -r 1/

the following way: let βa{l, ••-,&} be chosen so that 1 <Ξ |/3| g
w + 1. We will prove the existence of an element V(β) e ψ* such
that

In this way we can assign in a one-to-one manner an element V(β) e Ψ*
to every β. Since there are ( i ) + + ( , i ) /S's, this gives us
I ̂  I ^ ( 1 ) + + (^ + l ) So, let ^ c {1, , &} be subject to the
condition 1 <; \β\ ^ ^ + 1, and fixed. Let 7 C {1, ••-,&} be so that
/9 Π Ί = 0 and /S U 7 6 C5+1. We will write ίt = β U 7 . Put ϋΓ =
C ( α ) \ U ί ^ ? K € ^ } Observe that {U°-\jeβ} is a collection of open
subsets of C(a) which covers K and cannot be shrunk to vanishing
closed cover {Kό \jeβ) on K: namely, suppose it could. For each
j e β, the set Kό could, by normality of C(α), be expanded to an open
set Hβ of C(a) such that KjCzHjCzU" in such a way that
Π {Hj I j 6 β} = 0 . Thus ^ ( α ) = {Ϊ7f | i 6 a} could be shrunk to the
vanishing open cover {Hό\jeβ} (J {Z7f | i e T } of C(α), which is a con-
tradiction. Now define closed sets Gjf j e /S, as follows.

For any j e β, put Gά = {xeK\ St (a?, 3^) c I7y}. Then it is easy to
see that Gάc:U« and that \J{G5\jeβ) = K (recall that TΔ <^).
Hence Π ί ^ i l i e /3} ^ 0 . Let xe Π{GAJ 6 /3}. Let F(/3) be an
element of 3^ containing α?. Since x e G3 for i e β, V(β) c E7y for
i e /S. Since x $ U, for i ί β, V(β) qL Ut for i$β. Thus ^ =
{je{l, •• ,k}\V(β)c:Uj}. As noted above, this suffices to prove the
proposition.

Combining Propositions 1 and 2, we have the following

COROLLARY. Let X be an infinite normal space, with d imX =
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?̂ , 0 ̂  n ^ co, and let k be a natural number. Then

= 2k - 1 if k £ n + 1

REMARK. This corollary is nothing but a special case of our
main theorem. The first equality holds for finite - as well for infinite
dimensional X.

Proof. If X is finite dimensional, this is a combination of Pro-
positions 1 and 2. If dim X — coy Proposition 2 gives us Ak(X) >̂
2k - 1, thus we only have to prove Δk(X) ̂  2k - 1. To this end, let
& — {Oίf , OJ be an open cover. Obviously, ord & ^ &. Now take
this £? and substitute it for °Γ in the proof of Proposition 1. Since
in this proof the fact dim X <ί n is used only to find this Y* with
ord 3^ ^ w + 1, everything still works and we find a cover /^" with
I W \ <; 27ί - 1 and , ^ J < ^ . This proves our corollary.

4* The main theorem: the completely regular case* In this
section we will extend the above result to the class of completely
regular spaces. Let, for X in this class, βX be its Cech-Stone
compactification.

LEMMA 3. Let X be a Tychonoff space. Then dim X = dim βX.

Proof. This is well-known and, in fact, may be chosen to be
the definition of dim X. See e.g., [3, p. 272].

PROPOSITION 3. Let X be a Tychonoff space, and k ;> 1. Then
MX) = Ak{βX).

Proof. Proposition 1, applied to X, and Proposition 2, applied
to βX, together with Lemma 3 yield Δk{X) <; Ak{βX). To prove the
converse, let keN and 2/ = {U19 •••, Uk) be a functionally open
cover of βX such that for every (functionally) open cover °Γ of βX
with Tά < <%f the relation \T\^ Δk{βX) holds true. Shrink ^ to
a functionally open cover <&' = {J7ί, , C/̂} with UlaU^l ^i^k).
Define 2 ^ = {i7ί Π X, , Uk Π X}. Then 2 ^ is a functionally open
cover of X. Suppose Ύ/""' is a functionally open cover of X with
W'J < ^ ^ We will prove: ] W"\ S Δk(βX).

Let Ex be theop erator which assigns to every open subset 0
of X the largest open subset, Ex O, of βX with the property that
E x O n X - 0 . In [3, p. 269-270] it is proved that Ex (O.Πfλ) =
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Ex 0, Π Ex O2 for open sets Oί and 02, and that Ex(Ot U 02) = Ex 0Σ U Ex 02

whenever 0L and 02 are functionally open. Furthermore, it is easily
seen that ExOcO (closure taken in βX). Write W' = {W[, - , W[)
and define T •= {ExTΓJ, « ,ExTF;}. Then U ^ = ExTFJ U - UExT^; =
Ex (W[ U U W\) = Ex X = /3X, thus ^ is an open cover of βX.
Let p e /3X and consider all elements of T* that contain p.

Let us say that these are ExWJ, , ExTF^ (m <; I). Apparent-
ly, 0 Φ Ex TFί Π n Ex Wi = Ex (TFί ίΊ • n TF£), which implies
W[ ίΊ ίl W'm Φ 0 . Let g e T7ί ΓΊ ΓΊ W^. Since ^ ^ M < ^
TΓί U U W'm c St (ί, 3^') c ί / n l for some i, 1 ^ i £ k. Thus

••• U W;)
U'i n X c ί7 c Ϊ7, e ̂ . Therefore ^ J < ^ , and by the choice of <%f
and the fact that \τ\ = \<W'\=l we conclude l^Δh{βX). This
proves 4fc(X) ^ Ak{βX). Since we already had Δh(X) g Δk(βX), the
proposition is proved.

COROLLARY. Lβί X be an infinite Tychonoff space, and let k
be a natural number. Then, if dimX = n, 0 ^ n ^ co?

2fc - 1 i/ & ̂  n + 1

Proof. This follows immediately from Lemma 3, Proposition 3,
and the corollary in the preceding section.

5* The main theorem: the general case. Let X be a topological
space. Define a completely regular space X and a continuous mapping
^:X->X as follows: if J^ — {f\f:X-*[0f 1], / is continuous}, let
φ: X-> Tίfejr'If be defined by φ(x) = (f(x))fe.,-. (Here i , - [0, 1] for
/ e i ^ ) Define X -

REMARK. The functor which associates X with X was used in
dimension theory by K. Morita [7] under the name of Tychnoff
functor.

LEMMA 4. ( i ) If UczX is functionally open, so is ό(U)(zX;
(ii) // UdX is functionally open, then U = φ~\φ(U));
(iii) If O1 and O2 c X are functionally open, then φ{Oι Π O2) =

Φm n Φ(O2).

Proof, (i) It suffices to observe, that if U = /"'((O, 1]), φ{U) =
^ ( ( 0 , 1]), where πf:X-+If is projection; (ii) if if = /"'((O, 1]), and
x<£ U, then /(x) = 0, thus x$φ-\φ(U)), (iii) always ^(O.nOJc^OJ Π
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Φ(O2). Let p e φ(Ox) n Φ(O2). Then there are x e Olf yeθ2 with ψ(x) =
φ{y) = p. Thus y e 0~1(0(O1)) = 0,.

Therefore p = 0(#) 6 φ(Oγ Π 02).

PROPOSITION 4. ( i ) (K. Morita [7]) d imX = dimX;
(ii) Δk{X) = Λ(X) /or αίί & e N.

Proof, (i) Let d i m X ^ w , and let ^ = {£/„ , Um) be a
functionally open cover of X. Obviously, <%" = {^(Z/i), , 0-1(i7J}
is a functionally open cover of X. Let T' = {V[, , F/} be a
functionally open refinement of ^ ' such that ord 3 r ' ^ w + 1 and
define r* = {0(FD, , 0( V!)}. By (i) of the preceding lemma, T is a
functionally open cover of X and 3 ^ < ^ ; from (iii) of the same lemma
it follows that ord T = ord T'<*n + l. This proves dimX^^. Now
let dim X <^ n, and let ^ = {Ulf , ?7m} be a functionally open cover
of X. Then ^ " = {̂ (C/J, •••, Φ(Um)} is a functionally open cover of
X, and, consequently, has a functionally open refinement T" =
{ K , V7} with ord T'^n + 1. Now 3^ = {φ~\ v[), , ^-χ( VI)} is
a functionally open cover of X with ord T ^ ^ + 1. Take an element
of 3^, e.g., Φ~\V[). There is some i, 1 ^ i ^ m, such that FJ c 0(17,).
But then ^ ( F O aφ-\φ(U>i) = C7,, by (ii) of the proceding lemma.
Thus 3^ < ^ , which completes the proof of the first part of Proposi-
tion 4.

(ii) From (i), Proposition 1 and the corollary of §4 it follows
that Λ(I) ^ Λ( ^ ) . To prove the converse, let <2S = {Ulf , C7fc} be
a functionally open cover of X. Define ^ ' = {̂ (CTΊ), , φ~\Uk)}.
Then there exists a functionally open cover T' = {VI, •••, FL} of X
with 5rM < ^/' and m = \ T" \ ^ Λ(I) . Put ^ = [φ{ V) \ V e T'}. Then
5^ is a functionally open cover of X. Let p e l , and consider the
elements of 3^ which contain p. Let us say that these are φ{V[),
. . , φ(VΊ). Since 0(71)0 Π 0(VY) Φ 0 , we infer, by (iii) of Lemma
5, V[ Π Π VI Φ 0 . But ^ / J < ^/', so there exists Ό\ e <%S[ with
V[ U U VI c [/;. Therefore 0(FO U U 0(F/) = 0(Fί U U VI) c
0(17J) = CTί. Thus ^ < ^ , and |T\ ^ 13^'| = m ^ J/£(X). This proves
Δk(X) ^ Λk(X), and completes the proof of Proposition 4.

Now we will state and prove our

MAIN THEOREM. Let X be a topological space, such that either
1 ^ dim X ^ oo or dim X = 0 cmcί X is infinite. Let dim X — n,
and let k be a natural number. Then

Δh{X) = 2 / 5 - l ΐ / f c ^ ^ + 1
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Proof. Note that the conditions of the theorem imply that X
is always infinite: for if dim X > 0, so is dim X by Proposition 4,
and a Tychonoff space with positive dimension is always infinite. So
we may apply the corollary of §4 to X, and this, together with
Proposition 4, proves our result.

COROLLARY. If X satisfies the conditions of the main theorem,

1 .
log k
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