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EXAMPLES OF SOLVABLE AND NON-SOLVABLE
CONVOLUTION EQUATIONS IN ^ r ; , p ^ 1

OLAF VON GRUDZINSKI

For £>e[l, +oo) let 3f'v be the space of distributions on
Rn not growing faster than some power of exp(| |p)> and
let ^L, be the space of distributions on Rn of finite order.
For every p 6 (1, +oo] the existence of convolutors / is proved
such that f*JT'p = ^T'p but f*3ίΓ'sφ3r's for every s < p.
The main step in the proof is a construction of slowly
decreasing entire functions which satisfy suitable estimates
of Paley-Wiener type and which have countably many zeros
of orders as high as possible.

1* Introduction* Let £&'F (resp. g7') be the space of Schwartz
distributions on JB% of finite order (resp. of compact support), g7'
is the space of convolution operators on 3f'F. Recall that a function
F: Cn —> C is said to be very slowly decreasing if it satisfies an
inequality of the form

(1) sup {\F{x + w)\; w e Cn, \w\ <£ r(x)} ^ const exp (~Nω(x)) ,

xeRn ,

where r: Rn —> JB+ is a function satisfying

(2 ) r(x) = o(ω(x)) as x > oo

and where β) equals log (1 + | |) and N is a constant. The following
theorem is well-known.

THEOREM 1 (Ehrenpreis [3], Hormander [6]). For every /eg" "
the following conditions are equivalent.

( i ) f*j£f'F = &'F.
(ii) f*has a fundamental solution in S3?'F.
(iii) The Fourier transform f of f is very slowly decreasing.

Let 3^f

v1 p ^ 1, be the space of distributions on Rn which do
not grow faster than some power of exp(| |p), and let ^'C(J>Γ'P) be
the space of distributions which decrease faster than any negative
power of exp(| |p) (for the precise definitions see [8, 9]). ^άC-SΓί)
is the space of convolution operators on 3fΓ9

v. A function F: Cn —> C
is said to be q-slowly decreasing, qe(l, +oo], if it satisfies (1) with

( 3) r = Aω1/q + B

where A, B, N are constants and ω is equal to log (1 + | |); a co-
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slowly decreasing function is also called extremely slowly decreasing.
Recently Sznajder and Zielezny proved an analogue of Theorem 1
for the spaces JsΓ'p; for the case p = 1 see also Grudzinski [5]:

THEOREM 2 (Sznajder and Zielezny [8, 9]). For arbitrary pe
[1, +oo) and fe^c(Jst~p) the following conditions are equivalent.

(ii) / * has a fundamental solution in
(iii) / is qslowly decreasing where 1/p + 1/q = 1.

In the present note we are concerned with the relations between
the various types of slowly decreasing functions defined above.
Observe that we have the following inclusions:

3ίΓ9 c ^r's c 3f'F f o r l£p ^s < +oo

a n d

=> 8 " f o r 1 ^ p ^ s < +

For a few moments let us denote 3f'F and If' by 3ίΓ9^ and
Let p, s e [1, + oo] and / e ^ ( X ί ) where r: — max {ί>, s}. Since
trivially a g-slowly decreasing function is q -̂slowly decreasing for
every qx< q and also very slowly decreasing, Theorems 1 and 2
show: if s>p then f*Jst~'p = J%^'p implies f*^"s = St~'8. Now,

the main question we are dealing with in this note is whether or not
this assertion remains valid if s < p. Under additional assumptions
on / the answer is positive as is shown by the following result to
be proved below.

THEOREM 3. Let f e ^c{SίΓp) such that f is q-slowly decreasing
where 1/p + 1/q = 1. // / belongs to ^'c(^ίΓf

t) for some t > p then
f is extremely slowly decreasing.

Combined with Theorem 2 this leads to

COROLLARY 1. Let feέ?f

c(^Γp) such that f*ST'p = 3ΓP. If f
belongs to <^(JίΓ'l) for some t > p then f * J Γ ! = X ! for every
s 6 [1, p).

In general, however, the answer to our question is negative.
For the space 3?f

F this was established by Malliavin who —according
to Hormander [6, Remark on p. 168]—proved the following unpublished
result.
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THEOREM 4. There exist distributions / e g 7 ' such that f is
very but not extremely slowly decreasing.

Combining this with Theorems 2 and 3 we obtain

COROLLARY 2. There exist distributions / e g " such that
f*^'F = ̂ 'F but f*JT'p Φ 3tΓ'p for every p e [1, + oo).

According to a personal communication by Prof. Ehrenpreis a
proof of Theorem 4 can be obtained by modifying the construction
in [4, §2]. Below we give a proof which is based on the slightly
simpler method of [4, §4]. It is the same method which we use
to establish the negative answer to our question for the spaces 3ίΓ9

v,
p < + co 9 namely we shall prove

THEOREM 5. For every p e ( l , +©o) there exist distributions
f e ^c(^Γp) such that f is q-slowly decreasing but not qx-slowly
decreasing for any qt > q. Here 1/p + 1/q = 1.

COROLLARY 3. For every p e ( l , +co) there exist distributions
feέ?'c(Sr'p) such that f*Sr'p = Srp but f*3T'sΦ 3έT's for every
s e [1, p). In view of Theorem 3 these distributions do not belong
to \jt>p ^ ( a r i )

The proofs of Theorems 4 and 5 follow the pattern of Ehrenpreis
and Malliavin [4]: For the different kinds of slowly decreaing Fourier
transforms of convolutors we derive estimates of the orders of their
zeros (see §4); then we construct examples showing that these
estimates are sharp (see §6).

Since analogues of Theorems 1 and 2 hold for Beurling distribu-
tions as well (see for example Grudzinski [5] for the case p = 1)
we replace the function log (1 + | |) by an arbitrary Beurling weight
function a) throughout the rest of the paper. This requires hardly
any additional effort in the proofs.

2* Notation* We stick to the customary notation of Schwartz'
distribution theory. If F: Cn -> C is an entire function we write

MF(z, r): = sup{\F(z + w)\; w eCn, \w\ <,r} , zeCn , r > 0 ,

and denote by ord (z, F) the order of z as a zero of F (which is by
definition equal to zero if \F{z) Φ 0). By Wln we denote the set of
continuous functions ω: Rn —> [0, oo) such that

(a) 0 = ω(0) ^ ω(x + y) ̂  ω(x) + ω(y) , x,yeRn,
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(β) (l + HΓ^ωeLXβ*),

(7) ω^a + 61og(l + | |) ,

where aeR and b > 0 are constants (see Bjorck [1, Definition 1.3.22]).
It follows from (β) (see [1, Corollary 1.2.8]) that

(4 ) ω(x) = o(\x\βog \x\) as x > oo .

Note that log (1 + | |) belongs to SKW. g 7 ! is the space of Beurling
distributions with compact support, ω e 9ftΛ (see [1]).

We call a function F: Cn —> C q-slowly decreasing (resp. very
slowly decreasing) with respect to ω e fflln if (1) holds with r being
of the form (3) (resp. (2)). If F is oo-slowly decreasing with respect
to a) it is also called extremely slowly decreasing with respect to ω.

3* Proof of Theorem 3* We prove the following version of
Theorem 3.

THEOREM 3'. Let ωeWn and qe[l, +°°), and let F: Cn -> C be
an entire function satisfying an inequality of the form

(5) \F(x + iy)\ ^Cexv(Nω(x) + S\y\q) , x,yeRn,

where C, N, S are constants. If there exists a number Qe(q, +°°)
such that F is Q-slowly decreasing with respect to a) then F is ex-
tremely slowly decreasing with respect to ω.

COROLLARY 4. Let / e g 7 ! . If f is q-slowly decreasing with
respect to ωe <3Jln for some q > 1 then f is extremely slowly decreas-
ing with respect to α>.

This contradicts an assertion at the end of [2].

Proof of Theorem 3'. We follow the proof of [5, Satz 11] which
is identical with Corollary 4. Let us fix r > 1 and η > 0, and set
R: = rι+1/v. For 7: = log (22/r)/log R we have 1/7 = 1 + V and
(1 — 7)/7 = V' Choose x, w eCn such that \w\ = 1 and \F(x + rw)\ =
MF(x, r). By applying Hadamard's Three-Circles-Theorem to the
function C 3 X t-* F(x + Xw) we obtain

(6 ) MF(x, 1) ̂  MF(x, rί+1/T*MF(x, r)1 + 3 ? , xeCn .

From (5) and (a) we conclude

( 7 ) MF(x, R)^C exp (̂ α>(ί») + 2SRq + d) , x e Rn ,
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where d is the constant defined by d: ~ sup {iVtfφO — S\x\; x eRn}
which is finite by (4). Setting η\ = q/(Q — q) we see that R9 = rQ;
hence for r = Aω(x)1/Q we have Rq = Arω(x) where A! is another
constant. Inserting this into (7) and combining the resulting in-
equality with (6) and with (1) where r is of the form (3) with q
replaced by Q we arrive at the desired conclusion.

Note that F = f satisfies (5) with ω = log (1 + | |) if / e <?'Ό{3ίr'ύ
and 1/p + 1/q — 1. So Theorem 3 is a special case of Theorem 3'.

4* Estimates for the orders of the zeros of slowly decreasing
entire functions* In this section we derive the estimates for the
orders of the zeros of slowly decreasing entire functions which we
need for the proof of Theorems 4 and 5. For simplicity we consider
the real zeros only.

THEOREM 6. Let ωeWln and feξ?'ω. If f is very slowly
decreasing with respect to ω then

lim sup ord (x, f)/ω(x) — 0 .

THEOREM 7. Let ωeΈin and qe(l, +°°], and let F: Cn -> C be
an entire function. If q < + °° we suppose that F satisfies an in-
equality of the form (5); if q — + oo we suppose that F satisfies

(8 ) \F(x + iy)\ ^ Cs exp (Nsω(x)) , x, y eRn, \y\ ̂  S, S > 0 ,

where Cs and Ns are constants depending on S.
( i ) If F is q-slowly decreasing with respect to ω then

lim sup ord (x, F)/ω(x) < + oo .
x^oo,χeRn

This limit is equal to zero if in addition the following condition
holds:

(9) F satisfies (5) (resp. (8)) for every S > 0 with a constant
N = Ns being independent from S.

(ii) If there is Q > q such that F is Q-slowly decreasing with
respect to a) then

lim sup ord (x, F) log ω{x)jω{x) < + oo .
x-^oo,xeRn

Note that if / e g 7 ! and if / is extremely slowly decreasing
with respect to a) then assertion (ii) of Theorem 7 applies to F = /.
This special case of Theorem 7 as well as Theorem 6 are contained
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in [5, Satz 13]. The proof of Theorem 7 is similar and is based on
the following lemma.

LEMMA 1. Let F be an entire function, and let ψ: Rn —> [0, + oo)
and φ:[0, -foo)—> [0, + co] be weight functions such that

(10) \F(x + iy)\ ^ exp (ψ(x) + φ(\y\)) , x,yeRn .

Suppose that ψ satisfies (a) and that φ is increasing. Then for
arbitrary Θ, r > 0 and xeRn the following estimate holds:

ord (x, F) ^ θ(ψ(x) - log MF(xf r) + ψ(rθ) + φ{rθ))

where ψ(t): = max {ψ(y); y e Rn, \y\ <; t} and rθ: = r exp (l/θ).

Proof. Choose w eCn such that \w\ = r and \F(x + w)\ — MF(x, r),
and define entire functions G,g:C—>C by G(λ): = F(x + \w) and
ί/(λ): = λ-ord(0 C)G(λ). The maximum principle yields ^-^^^^^(O, Λ) =
Jf,(0,12) ^ M,(0, 1) - AΓσ(O, 1), R > 1. Since ord (a?, F) ̂  ord (0, G),
M^x, rJ?) ^ ΛfG(O, β) and ΛfG(0,1) ^ ΛίF(x, r) we obtain by taking
logarithms and setting R: = exp (l/θ)

ord (x, F) <, #(log MF(x, rR) - log MF(x, r)) .

An application of (10) and (a) leads to desired inequality.

Proof of Theorem 7, (i). I f g < + o o f i χ # > 0 and set ψ — Nω,
φ = S\ \q and r = A(ω(x) + l)1/?. Then φ(rΘ) = (Aθ)

qS(ω(x) + 1). Note
that by (4) there is a constant d(θ) such that ψ(rθ) <. ω(x) + d(g).
Hence applying Lemma 1 and using (1) we see that the lim sup in
(i) is not greater than Θ(N + JV + 1 + S(Aθ)

q). If (5) is valid for
every S > 0 with a constant N being independent from S we choose
S to be (Aθ)~q. Since θ can be taken arbitrarily small the lim sup
in (i) is equal to zero. If q = + °° fix θ and set

(log Crθ for \y\<^rθ
Φ{V): = 1 + oo otherwise '

and argue similarly as in the case q < + ©o.

Proof o/ Theorem 7, (ii). Here g < +co# Apply Lemma 1 to
f = Nω, φ = S\ \q, r = A(ω(x) + l)1 / ρ and ^ = t/logω(x) where ί: =

- q/Q). Note that eq/θrq<,Aq(ω(x) + 1).

5» The main lemma for the construction of slowly decreasing
functions with high order zeros. The lemma of this section is
essentially due to Ehrenpreis and Malliavin [4, §4].
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Let (ίfc)fcejv be a sequence of real numbers, and let (mk) and (lk)
be sequences of positive numbers. Our main assumption for the
construction of slowly decreasing entire functions postulates the
existence of a sequence of numbers vk ^ 1 with

(11) exp (~vk) < +
\ 2 /

such that the points ίfc lie so far apart from each other that

(12) the intervals Jk: = [tk — τfc, ίfc + τk] (where τk: = vklk) are
pairwise disjoint having distance greater than 1.

Moreover, we assume that the sequence (lk) converges to + °o so
that we can define a continuous function h: R —> [0, +°°) by

(13) h(y): - i - Σ m a x {\y\ - lh9 0}ψ- , yeR.
4 keN lk

LEMMA 2. Under the preceding hypotheses there exists an entire
function F: C —> C having the following properties:

(14)

(15)

(16)

where

Γ e x p (-

ord (ί4, F )

- 2τr|Im(.)l)e

2ττ

π π

Proof. The idea of the proof is as follows: First a suitable
subharmonic function is constructed which reflects the desired
properties of F (this step is essentially [4, Lemma 4]); then F is
found by means of the theory of solution of the Cauchy-Riemann
equations as developed in Hormander [7]. The second step is sug-
gested by a result of Bombieri's (see for example Hormander [7,
Theorem 4.4.4]).

Step 1. Define g: C -+ [- oo, 0] by

f 0 if |Im z| ^ 1

if |Im z\ ̂  1 "
2π

oπz/2

oπzβ + 1
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As is easily calculated, g has the following properties:

(17) g — (l/2ττ) log I I is harmonic in the strip {zeC; |Im z\ < 1}

(note that g restricted to the strip is Green's function for the strip),

(18) g(χ + iy) ^ - — exp(-—\x\) , x, y eR, \x\ ^ — ,
π \ 2 / π

and

(19) Δg=δ-1r® (δ+i + 3-i)

where δe&\R2) and δ+1, δ^ e ^\Rι) are the Dirac-distributions at
0 G R2 and +1, — 1 e R respectively and where ψ(x): = (4 cosh (πx/2))~\
xeR. We set

(20) v(z): = Σ ™kg(2-=M , zeC.

If Re z g Jk then |Re (z - tk)/lk\ ̂  vk. So by (12), (18) and (11) we
obtain

0 if Rezi\J

(21) ( ) ^ / < r , x
| ^ ) if

Hence v: C—> [— °°, 0] is a well-defined upper semicontinuous function.
Since the series (20) converges in the space L\0C(R2), differentiation
(in the distribution sense) and summation commute, and using (19)
we obtain

(22) Δv = Σ mAk - Σ ψψt Θ (δ+Σ k Σ
ieί keN

+lk(,k

where δtke
rS"(R2) and δ+ϊk, δ_lk e ^'(R1) are Dirac-distributions and

ψk(x): = (4 cosh ( ^ " **>))" , * 6 Λ .

Since r̂Λ ^ 1/4 and since

^ 7 / 2 4 keN lk

 k k

it follows from (22) that the function w:C—>[— 00, +°°) defined by
w(2): = (̂2;) + h(lmz), zeC, is subharmonic.

2. For x eR and r > 0 we denote by S(x, r) the open
square {ί + iy; \t — x\ < r, |τ/| < r}. Let us choose a test function
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1 e C0°°(iί
2) such that

(23) (a) supp%cS(o, A.) , (b) X|S(0,1/8) = 1 , (c) 1 ^ 0 .

By (xj we denote the sequence of numbers x e (1/2)Z such that the
distance of x to every Ik is greater than 1/4. Define G: C —> [0, +<»)
by

(24) G: = 1

0 on

on

on

c., i ) if

-ί) if S(
4

(xn, i-) n U Λ = 0

Note that G is well defined by (23.a) and (12). Since G is constant
on every square S(x, 1/8), xe{l/2)Z, dG/dz is identically zero there,
and we define by

(25) H{z): =
dG_

0

if z e supp — :

otherwise

a C°°-f unction H:C->C. Because suppG Π Ik = 0 by our choice of
(xn) we derive from (21) and (18) that \dG/dz\ ^ const e\ Since
|sin(# + iy)\2 = |sinx|2 + |sinhτ/|2 the same inequality (with a new
constant) holds for H. Consequently the function He~w(l + H2)"1

belongs to L2(R2). By Hormander [7, Theorem 4.4.2] we obtain a
solution u 6 L\0C(R2) of the equation

(26) -ίp = -if

such that

(27) tίβ~w(ί + I |2)~2 £ L2(R ) .

We set FOs): = G{z) + w(s) sin 2πz, zeC. By (26) and (25) we
have dF/dz = 0, i.e., F is an entire function. Since \G\f too, is
majorized by const e°, it follows from (27) that

(28) Fexp( — w — 2ττ|Im ( )|)(1 + \-\)~4 eL2(R2) .

Since v ^ 0 (14) is a consequence of (28). (15) follows by
noticing that (28) and (17) imply the local square-integrability of
z \-^ \z - tk\

n* near tk where nk: = ord (tk, F) - mk/2π, and this can
only be true if nk > — 1. Finally (16) results from the definition
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(24) of G and from the choice of (xn) since F(xn) = G(xn) and Z(0) = 1.

REMARK. If we define g by

if Im z < 1
2i -

0 otherwise

and take %[0,TOΛ instead of h in the statement and in the proof of
Lemma 2 we obtain functions F which are bounded by (1 + | |)4 on
the lower half plane, provided we change the hypothesis (11) into

(ii)' Σ ™>hivk < + oo .

This means, however, that the intervals Jk become very much
larger, in fact so large that no longer all the examples of the
following section can be obtained by the modified version of Lemma
2. Nevertheless, the examples needed for the proof of Theorems 4
and 5 can be obtained in this manner.

6* Slowly decreasing entire functions with high order zeros*

From Lemma 2 we now derive theorems on the existence of slowly
decreasing entire functions with high order zeros. Together with
our estimates for the orders of the zeros of slowly decreasing
functions they yield proofs of Theorems 4 and 5.

THEOREM 4'. Let ω e 3K1# For any function m: R+ —> R+ such
that

(29) m(t) = o(ω(t)) as t > oo

there exist f e g 7 ' and (tk) aR+ such that f is very slowly decreasing
with respect to a) and tk is a zero of f of order greater than m(tk)
for every keN.

It we set m: = ω(max{l, logω})~1/2 we obtain / e g 7 ' such that
/ is very but (in view of Theorem 7, (ii)) not extremely slowly
decreasing with respect to a). This proves in particular Theorem 4
(if n > 1 take tensor products).

Proof of Theorem 4'. Choose (tk) c R+ with tk+ι ^ 2tk such that
converges where mk: = 2π(m(tk) + 1) and lk: = Vm(tk)ω(tk).

Changing m if necessary we may assume that lk+ι ^ lk + 1. Note
that with vk\ = (2/ττ) log ω(tk) (11) is valid. Since by (4) the function
Vmω log ω is o(t) as t -> oo, (12) is valid if we choose tx large



SOLVABLE AND NON-SOLVABLE CONVOLUTION EQUATIONS 571

enough. By Lemma 2 there is an entire function F:C-+ C such
that ord (tk, F) ^ m(tk) and such that (14) and (16) hold. Since
h ^ const I I (14) implies by the Paley-Wiener theorem: There is
/ e g 7 ' such that F = / . To conclude from (16) that F is very
slowly decreasing with respect to ω it suffices to demonstrate the
existence of a constant c and of a sequence (εk) converging to zero
such that

(30) lk <: ekω(x) + c , xelk, JceN,

and

(31) mk <: εkω(x) + c , xeJk,keN.

By (4) there is cf such that ω ^ | | + c\ By (29) there is a sequence
(τ]k) converging to zero such that lk ^ *̂Λ>(t*). (30) follows since
o)(ίfc) <: α>(») + o)(tfc - x) S <o(x) + h + c' for a e 1̂ . To derive (31)
we choose by (4) a constant R > e such that 2α>(#) ^ I?/1/log |̂ /| for
every yeR with |?/| ^ J?. Hence

(32) 2ω(tk) - 2o)(a?) ^ 2ω(ίfc ~ a;) ^ c + τfc/log rfc , xeJk,keN,

where c: — max {ω(i/); \y\ ̂  ϋ?}. Here we have used the fact that
the function tι->t/logt is increasing on (e, +oo). If α)(ίfc) ^τk then
rfc/log rfc ^ τfc/log ω(tk) = (2/π)lk ^ α>(ίfc) for sufficiently large A;. If on
the other hand ω(tk) ^ τfc, then rfc/log τk ^ ω(tfc). So (32) becomes

(33) ω(tk) <^ 2ω(x) + const , xeJk,keN,

which together with (29) immediately implies (31).
Theorem 4' shows that the estimate in Theorem 6 is sharp in

general. Next we prove a similar result for convolutors in 0

THEOREM 5'. Let ωeSfti and pe[l, +00), and let m:R+->R+

be a function satisfying (29). Then there exist f 6 #>c{*5?"ώ and
(tk) a R+ such that f is q-slowly decreasing with respect to a) and
tk is a zero of f of order greater than m(tk). Here 1/p + l/# = 1.

Let p > 1. If we again set ra: = α)(max {1, log ω})~1/2 we obtain
/ 6 ^ c ( ^ r ) such that / is g-slowly but (in view of Theorem 7, (ii))
not Q-slowly decreasing with respect to ω for every Q > q. This
proves in particular Theorem 5.

Proof of Theorem 5': the case p > 1. By ε: R+ —• R+ we denote
the function i/m/max {1, ω). Let us choose a sequence (tk) c R+

with tk+1 ;Ξ> 2tk such that Σ?=i ε(^) converges. We define mfc: =
2π(m(tk) + 1) and lk: = (s(tk)ω(tkψ

q. With vk\ = (2/TΓ) log α)(ίfc) (11) is
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valid. Since q > 1 the function (eω)]/q log ω is o(t) as t —> oo by
(4); hence if tx is large enough (12) holds. Since without loss of
generality m M we may assume that lk+ι ^ lk + 1 and that e(tk) <5
1 <5 m{tk) ^ Q)(tk). This and the definition of ε imply: mk ^ Aπε(tk)ll.
Hence for every j e N we derive from the definition (13) of h that

Since g > 1 it follows that

(34) h(y) =-- o(\y\q) as 2/ > 00 .

An application of Lemma 2 and similar arguments as in the proof
of Theorem 4' lead to the desired assertion. Note that an entire
function F satisfying (14) with h fulfilling (34) is of the form F = f
where / e ^ ( . ^ r ; ) .

Proof of Theorem 5': the case p = 1. Define ε: i?+ —> /?+ by s: =
m/max {α>, 1}. By changing m if necessary we may suppose that
lim^>co ε(t)m(t) = + o° Then we can choose a sequence (ίfc) c R+ with
ίfc-i-i ^ 2ί& such that for every keN

(35) 1 ^ ε(ίfc)m(ίA) ^ ε(tk+ι)m(tkil)/2

and

(36) ε(ίfc+1) < ε(tkγ £ 1 ,

and such that with mk: = 2π(m(tk) + 1) and i;Λ: = (2/ττ) log ft)(ίfc) (11)
holds. Since ε(t)~λ log ΰ>(ί) <; α>(ί) log α>(ί) for sufficiently large t and
since by (4) ωlogω is o(ί) as t —> 00, (12) is valid with ZΛ: = l/ε(ίΛ)
if ίL is chosen large enough. By Lemma 2 we obtain an entire
function F: C—> C such that ord (tk, F) ^ m(tk) for every keN and
such that (14) and (16) hold. Using Cauchy's formula we deduce
from (14):

(37) \F(x + iy)\ ^ c o n s t ( 1 + W e x p (h(\y\ + 1) + Ί\y\) , x , y e R .

This implies: there is / e έ?c(.βέΓ[) such that F = f (see for example
[5]). To prove that F is extremely slowly decreasing with respect
to ω we conclude from (36) that lk <; l\ < lk+1 for every k. Hence

From the definitions of m$, 13 and ε and from (35) we see
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^ ^ 2 j - k ε ( t k ) m ( t k ) = 2 j - k ω ( t k ) l k

2 , j £ k .

Consequently

(38) h(ll) ^ 2πω(tk) , k e N .

Moreover, (35) implies: ω(tk) = e{tk)m{tk)l\ ̂  ϊ | . Since for sufficiently-
large k the inequality l\ :> r* + 1 holds where rk: = (2/π)lk + 1, it
follows from (37) and (38) that for sufficiently large k

(39) M F ( x , r \ ) ^ c o n s t ( 1 + \ x \ γ e x p ( U ω ( t k ) ) , x e R .

Since τk <; ω(£fc) log ω{tk) the same arguments as in the proof of
Theorem 4' yield (33). Combining (6) (with η = 1), (39), (33), (Y)
and (16) we conclude that F is extremely slowly decreasing with
respect to ω.

The entire functions constructed in the proofs of Theorem 5'
satisfy condition (9). Hence Theorem 5' shows that for entire
functions satisfying (9) the estimate of the orders of the zeros in
assertion (i) of Theorem 7 is sharp in general.

As for the question whether or not the estimate in assertion (ii)
of Theorem 7 is sharp as well, the method of Lemma 2 seems to
yield only the following rather weak result.

THEOREM 8. For arbitrary ωe^ and s < 1 there exist / e g 7 '
and (tk) c R+ such that f is extremely slowly decreasing with respect
to ω and tk is a zero of f of order greater than oo(tk)

s for every
keN.

Proof. Let σ: = (1 - s)/2. Choose (tk) c R+ with tk+ι ^ 2tk such
that Σ*=i ω(tk)~a converges. Define mk: = 2π(ω(tk)

s + 1) and lk: =
ω(tk)

s+σ. Then h <L const | |. By proceeding similarly as in the
proofs of the foregoing theorems we obtain an entire function F,
which is the Fourier transform of a distribution / e g 7 ' , such that
ord {tk, F) ^ ω(tk)

s for every keN and such that F is g-slowly
decreasing with respect to ω where q: = (s + σ)~\ By Corollary 4
F is even extremely slowly decreasing with respect to ω.

If one wants to obtain better results it seems that one has to
use a more refined method than that of Lemma 2 for instance the
one employed by Ehrenpreis and Malliavin [4, §2] for the con-
struction of distributions / e g " such that / is slowly but not very
slowly decreasing.



574 OLAF VON GRUDZINSKI

Note added in proof. A slightly more precise version of Lemma
2 leads to an improvement of Theorem 8 showing that the estimate
in Theorem 7, (ii), is sharp in general, namely: For arbitrary w eTi±

and c > 0 there exist a distribution / e g " and a sequence (tk)cR+

such that f is extremely slowly decreasing with respect to ω and
ord (tk, f) ^ cω(tk)/log ω(tk) for every kεN.
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