
PACIFIC JOURNAL OF MATHEMATICS
Vol. 80, No. 2, 1979

ON THE MEIJER TRANSFORM OF
GENERALIZED FUNCTIONS

R. S. PATHAK

An extension of the Meijer transform to a certain space
generalized functions (distributions) is provided. The validity
of the inversion formula in the distributional sense is
established. Characterization theorem for the distributional
Meijer transform is proved and a structure formula for the
Meijer transformable generalized functions is given. An
operation-transform formula is obtained, which together
with the inversion formula, is applied in solving certain
integrodifferential equations.

l Introduction. During the past decade a number of integral
transforms have been extended to various classes of generalized
functions. Some of these extensions have been incorporated by
Zemanian in his monograph [14]. The Meijer transform of ordinary
functions has been studied by many authors [2], [5], [8], and [9]
but its distributional theory has not yet been explored. The aim
of the present paper is to extend the Meijer transform to a certain
space of generalized functions and to establish certain related results.
The novelity of the extension lies in the construction of the testing
function space where instead of taking a differential operator one
has to think of an integrodifferential operator of a certain kind.

Let k, m, and z be complex variables, let t, σ, and ω be real
variables in R1, and set s = σ + iω. The Whittaker functions Wk>m(z)
and Mk>m{z) are defined by the series [7, pp. 9-10]

/ 1 \ Ά/Γ ( ~\ -(l/2)+»Λ-(l/2)2 TΓ I A- tWI L 1 _L VΎVI'
I 1 ) -LVJ-Ir m\Zj — Z € i/* il ~Γ *Iv *C» •*- \ Aiiv,

and

( 2 ) Wk,m(z)

+

α _ m ΛΓ(l+2m) r ( i + m -

The function Mk,m(z) is analytic everywhere except at the points
2m = —1, —3, —5, •••, where it has simple poles. At these points,
however, the function Mk,m(z)/Γ(l + 2m) is analytic. The function
Wk,m(z) is defined for all real and complex values of k, m, and z.
It is a many valued function of z. We shall take as its principal
branch that which lies in the z-plane cut along the negative real
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axis. It is a fact that Wk>m(z) = Wki-m(z) [7, p. 11], therefore, we
lose no generality in restricting according to 0 <J Re m < °°.

The asymptotic behaviors of Whittaker functions for large
values of z are the following [2, pp. 734-735]. For any fixed ε > 0
a n d \z\ —• oo,

( 3 ) e-W'Wu^z) = e~^zk{l + 0(|̂ |-1)}(-|-7Γ + ε < arg * < J-π-e

- 2m) Λβ#,-Λ/i _

2m)

1 3
-—π + ε < arg z < —π - ε

Δ Δ

0{\z\-λ)}

(——^ + e < arg « <—7Γ - ε) .
Δ

The other results that we shall need are the following differentiation
formula [7, p. 25]

( 6) jL{e-^χ™~^Wk,m(x)} - -e
ax

and the indefinite integral [2, p. 733]

(a - ί) J ̂ ^ ^ / ^

( 7 ) - — l ~
m —
- (fc

Now, we reproduce Meijer's inversion theorem in the original
form.

THEOREM (Meijer). Let F(s) be an analytic function on the half
plane Re s > a ^ 0. For some real constant c > a, let the integral
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\F(c + iy)\dy

converge. Moreover, assume that F(s) is bounded according to
\F(s)\ < A, A > 0 for Re s ^ c and that F(x + iy) —> 0 as x —> oo
uniformly for — °°<y<°°. Finally, assume that Re A;<J— Re < 1/2.
Then, for Re s > c,

( 8 ) ί1(s) = S"e-"!"1

Jo

f Λ o ί Γ
27Γ̂ JΓ(1 + 2m) •)«-

2* An integrodifϊerential operatorΦ Prom the differential
equation satisfied by Whittaker functions [7] it is a simple exercise
to show that the kernels

(10) K

and

(11) H{x) Δ

satisfy the integrodiίferential equations

(12) AxK(ax) - ~aK(ax)

and

(13) PxH(ax) = a.H(ax)

respectively, where Δx and Vx are defined as below:

(14) Δm Δ 4c 'm Δ χ

(15) F. Δ Fϊ'w Δ x

— - dt and in Fx, D~ι = 1 dt.
oo JO

REMARK. The operator Δx can be applied on any C°°(JB + ) func-
tion φ any number of times which satisfies the asymptotic orders

(16) φ{r)(x) - 0{x«~r) , x > oo , r = 0,1, 2,

where a + 2 Re k < 0. If φ{r\x) possess exponentially small aymptotic
orders as x-+ oo, then this condition does not apply. The operator
Fx can be applied to any C°°(J? + ) function φ any number of times
which satisfies the asymptotic orders
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(17) φ{r)(x) = 0(xa~r) , x > 0 + , r = 0, 1, 2, • -

where a > 2Rek. Furthermore, if φ(x) e Gco(RJr) is of compact
support in (0, oo) then the two interpretations of D'1 are identical
and the aforesaid asymptotic order conditions are not required.

Some properties of these operators are described below.

LEMMA 1. Let φeCco(R + ) with the asymptotic orders (16) (or
(17) in case of Fx), then the integration operator (x'^D^x21^1) and
the differentiation operator (x1~k+mDxk~m) occuring in Δx (or in Vx)
when acting on φ in succession are commutative.

Proof. A simple computation shows that

y2k~ιΦ(y)dy

= φ(x) - (m + k)x~2k \X tk~ιφ(y)dy , a + Re 2k < 0
Jco

and

(χ-2kD~1x2k~ι)(xι~k+mDxk~m)φ(x)

= χ-2kD-1xk+m[xk-mφ'(x) + (k - m)xk~m-^(x)]

= φ(x) - (m + k)x~2k Γ y2k~^(y)dy , a + Re 2k < 0 .
J CO

This proves the lemma.

COROLLARY. The differentiation and integration operators as
defined in Lemma 1 occuring in Δx and Vx when acting on φe C°°(R + )
satisfying (16) in case of Vx and (17) in case of Fx can be switched in
any order.

Proof. Since two differentiation operators are commutative the
result follows in view of Lemma 1.

3. The testing function space ^ ί m ( I ) . Let /denote the open
interval (0, co), # e l and let a be a real positive number and k and
m be complex numbers. Assume that Re m ̂  0. Now, define J?k

a>
m(I)

to be the collection of all infinitely differentiate complex valued
functions φ(x) on I with the properties (16) and

(18) pn(Φ) Δ pk£(φ) Δ sup \eaxxk+mAn

xφ(x)\ < <*> , n - 0, 1, 2, .
0<α;<α3

where Δx is the integrodifferential operator defined by (14). The
sequence {/0Λ}»=O is a separating collection of seminorms [14, p. 8]
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which generates the topology of ^k

a'
m{I). It can be readily seen

that ^t'm(I) is a locally convex, sequentially complete, Hausdorff
topological vector space. The dual space of ^kam{I) is denoted by

Let D(I) denote the space of infinitely differentiate complex
valued functions with compact support on I, equipped with the usual
topology. The dual space D\I) is the space of Schwartz distribu-
tions on / [14, pp. 33-34]. It is easily seen that D(I) c J?kam{I)
and that the topology of Ό{T) is stronger than that induced on it
by J?Ί>m{I). Hence the restriction of any fe^k'm\I) to D(J) is in

For 0 < a < b the space ^k

h>
m c ^k

a>
m, and the topology

is stronger than the topology induced on it by ^l'™. Consequently,
the restriction of/e ^« ' m / to ^fm is in ^k

h'
mf and the convergence

in ^l'™' implies convergence in ^\'mt.
We notice that for every fixed s such that Re s > a > 0 and

R e m ^ O , (st)-k-ll2e-ll28tWk+1/2,m(st) is a member of ^ ' m ( J ) .

4* The Meijer transform of generalized functions• Let / be
a member of <J^t'm' for some k, m, and a. Then, from the preceding
argument it is clear that there exists some real number σf >̂ 0,
depending upon / such that fe^k>m' for all a > σf and / ί Λ M '
for every a < σf.

Now recall the definition (10) of K(z). Since K(st) e <_^m for
every s such that Re s > a and Re m ^ 0, we may define the
distributional Meijer transform of / by

(19) F(s) Δ Λίtmf(8) Δ </(ί), K(st)} , Re s > σf

where σf is called the abscissa of definition.

LEMMA 2. Let Re m ^ 0, and let a and b (>a) be two real
numbers. Then, for Re ζ ^ 6, ζ Φ 0, — π < arg ζ <; π and 0 < t < °o,

(20) \e

where A is a constant independent of ζ αwd £, emώ λr = Re (m + fe).

Proof. The proof can be given by following the technique of
Zemanian [14, p. 184] and using the estimates

\zm~ll2e-ll2zWk+ll2im(z)\ <A for R e m ^ O and \z\ ̂  1

and

\zm-ll2e~ll2zWk+ll2,m(z)\ < B\z\χre-
n«* for
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These estimates can easily be obtained from the series representation
(2) and the asymptotic expansion (3).

THEOREM 1. (Analiticity of F(s)). For Res>σf, let F(s) be
the Meijer transform of fe ^a'™' defined by (19). Then, F(s) in
analytic and

(21) ±F(s) = (f(t), fκ(st))
as \ as I

where Re m ̂  0.

Proof. Using the differentiation formula (6), series representa-
tion (2) and the asymptotic expansion (3) we observe that d/dsK(st) e
^a>m(I) and hence the right-hand side of (21) is meaningful. Using
Lemma 2 and following the technique of Zemanian [14] used in
proving Theorem 6.5-1, p. 185, the proof can be given.

5* Inversion and uniqueness. In this section we shall prove
an inversion theorem for the distributional Meijer transform and
then deduce an uniqueness theorem.

LEMMA 3. For Res > σff let F(s) be defined by (19). Let φe D(I),

and set

ψ(s) = Γ K(st)φ(t)dt , Re s > 0 .
Jo

Then, for any fixed real number r in (0, oo),

(22) \r

 r f(sKf(τ), K(sτ))dω -

where s = σ + iω and σ is fixed with σ > max (0, σf).

Proof. Consider the integral

(23) I(τ) = J' ψ(s)K(sτ)dw

where max (0, σf) < a < a. For Re m ^ 0 we can apply the operator
Δτ within the integral sign in (23) and write

\eaττk+mA{

T

n)I(τ)\ = IΓ ψ(s)eaτsnK(st)dω

^ Γ \f(s)sn-k-m\A(l + \s\λήdω < oo
J-r

(by Lemma 2) .
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This proves that I{τ)e^k

a'
m and hence the right-hand side of (22)

is meaningful. The equality (22) can be proved by following the
technique of Riemann sums [14, pp. 187-188].

LEMMA 4. Let φ{%) e D(I) and let its support be contained in
[c, d], where 0 < c < d < oo. Let Re w ^ 0, Re (m — jfc) ̂  0 and
Re k < 1/2. Then for fixed σ > a ̂  0,

Wr{τ) Δ — Γ K{sτ) Γ φ(t)H(st)dtdω , s = σ + iω
2TΓ J-r JO

converges in ^k

a

ym to φ(τ) as r—>°°.

Proof. In view of the definitions of the operators Δx and Fx,
we have

= — Γ 4?}ί:(8r) (°° φ(t)H(st)dtdω
2π i-r Jo

- 4~ Γ ^(S Γ) Γ Φ(t)(-iyv{

t

n)H{st)dtdω
2TΓ J-r Jo

= - ^ Γ #(βr) Γ φn{t)H{st)dtdω
2TΓ J-r Jo

where ^Λ(ί) Δ Jί*V(*)> o n integrating by parts with respect to t n
times. Changing the order of integration we can write

(24) 4W) Wr(τ) = \ Ur{t, τ)φn(t)dt ,

where

(25) x

- (fc

Now, break up the integration (24) into integrations on c < t <
τ — δ, τ - δ <t <τ + δ and τ + δ < t < d where 0 < δ < c and
denote the corresponding integrals by I19 J2, and Iz respectively.
We shall show first that

Fr(τ) Δ β V+«[It(τ) - ^(τ)] , (Λ = 1, 2, •)

converges uniformly to zero on 0 < τ < oo as r —> oo. If either
τ + δ ^ c or τ — 8 ̂ > d, then J2 Ξ 0 and φn(τ) = 0. Therefore, we
consider the case c — < § < r < ί Z + δ .

Now, for s — σ ± ir where σ > 0 is fixed, using the asymptotic
orders (3), (4), and (5) we can write
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Vr{τ) = ^

(26) )
sτ|/J Jτ-δ \ σ + ir σ — ir

It is a simple exercise to show that the second and third terms
on the right-hand side of (26) are uniformly bounded on the domain

Ωi Δ {(*, τ):c<t<d,c-δ<τ<.d + δ]

by ε/3 for all r > 1 and δ sufficiently small, say δ = δ1#

Next, the difference of the first and last term in (26) can be
written as

(27) i - Γ G(x, τ) sin (rx)dx + eaττk+mφn{τ)\ — Γ" -5S^d» - lΊ

where G(«, τ) is defined by

G(α?, τ) - e α r τ w + f t -ί[e σ ^(τ + a?) - φn(τ)] xΦQ
x

= eazτm+kφ'n(τ) x = 0 .

Then Cr(ίc, τ) is a continuous function of (x, τ) for x + τ > 0 and
r > 0. Consequently, the first term in (27) can be made less than
ε/3 for all r > 1 by choosing δ small enough, say δ = <52. Now, fix
δ — min (δlf δ2). Since the second term in (27) converges uniformly
to zero on 0 < Γ < oo a s r - > w , we conclude that

Since ε > 0 is arbitrary, Vr(τ) converges uniformly to zero on
0 < τ < oo as r->oo.

Following the technique of Zemanian [14, pp. 191-194] it can be
shown that

e^τ^Ifc) and eaττk+mlz(τ)

converge uniformly to zero on 0 < τ < oo as r—> oo. This proves
the lemma.
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Now, we are able to establish the following inversion theorem.

THEOREM 2 (Inversion). Let F(s) be the distributional Meijer
transform of fe^ϊm'(I) for Res > σf defined by

(28) F(s) Δ

where Re m ^ 0, Re (m — k) ^ 0 and Re k < 1/2. Tftew for each
φ(x) e

lim (
(29) '-co \2τα Γ(l + 2m)

where σ is any fixed number greater than a.

Proof. Recall the definitions (10) and (11) of K(x) and H(x)
respectively. The theorem will be proved by establishing the follow-
ing string of equalities.

(30) ( - L \ F(s)H(st)ds, φ(t)

(31) = Γ φ(t)dt— Γ F(s)H(st)dω (s = σ + i
Jo 2π J-r '

(32) = τ L - Γ <f(τ), K(sτ))\~ φ(t)H(st)dtdω
2ττ J-r Jo

(33) = (/(τ), J i - Γ K(sτ) (°° φ(t)H(st)dtdω)
\ 2π i-r Jo /

(34) -> </(τ), ^(r)> .

Since ^(t) is of compact s u p p o r t (30) is a r e p e a t e d i n t e g r a l on
(£, ft)) a n d consequent ly (30) equals (31). Since b y T h e o r e m 1 F(s) is
analytic, for fixed r we can change the order of integration and
arrive at (32). To which an application of Lemma 3 yields (33).
Now, (33) goes into (34) by Lemma 4.

From the above inversion theorem the following uniqueness
theorem can be deduced as a corollary.

COROLLARY. Let F(s) = ^ , m / for Res > σf, let G(s) =

for Re s > σg9 and let F(s) = G(s) for Re s > max (07, σg). Then in
the sense of equality in D'(I), f = g.

6. An operation-transform formula* Now, we shall obtain an
operation-transform formula which may be used in solving certain
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integrodiffierential equations.
We define an operator Δ*: ̂ kam\I) -> ^k

a'
m\I) by the relation

(Δ*f(x), φ(x)} Δ <f(x), Δxφ(x))

for all / e ^ * m'(I) and φe^k'm(I). Let us call Δ% as the adjoint
of the operator Δx defined by (14). It can also be shown that for
all r - 1, 2, 3, and φ(x) e ^k

a>
m(I),

{{ΔiYf{x\ φ(x)) = </(x), (ΔxYφ(x)) .

It can be readily seen from the definitions of the operators Δx and
V x given in §2 that if / is a regular generalized function in ^ * m ' ( J )
generated by a member of D(I), then

Δϊf = VJ .

THEOREM 3. Let F(s) be the distributional Meijer transform of
f for Res > σf, then for any positive integer r,

(35) Λί.JLVΐYf] = (-sYF(s) .

The proof of trivial.

7* Characterization of Meijer transforms* The following
theorem gives a characterization of distributional Meijer transforms.

THEOREM 4 (Characterization). Let Re m iΞ> 0 and Re k ^
— R e m < l / 2 . Then a necessary and sufficient condition for a
function F(s) to be the Meijer transform of some generalized func-
tion according to our definition given in §4 is that there be a half-
plane {s \ Re s >̂ 6 > 0} on which F(s) is analytic and bounded ac-
cording to

(36) \F(s)\ ̂  Pb(\s\)

where Pb(\s\) is a polynomial in \s\ depending in general on the
choice of b.

Proof. Necessity. By Theorem 1 F(s) is analytic function of s
for Re s > σf. Choose two real numbers a and b such that σf <
a<b. Then, K(st)e^t'm for Res>ί>. Now, by the boundedness
property of generalized functions [14, pp. 18-19], there exist a
constant C and a nonnegative integer r such that

\F(s)\ ̂

= C m a x sup |e" t ί* + "^ >{β-1/tol(βί)-*-1/ίTF»+lΛ>.(βί)}|
0^£ t
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= Cmax sup \eαttk+msne-ι'ut{styk-χβ

O^n^r 0<ί<oo

— 1 / * β - 1Wλ^" sup |e '(βί)
0<ί<oo

where \r — Re (m + &) and λ̂  = Im (m + k). The inequality (36) now
follows from Lemma 2.

Sufficiency. Let g be a real number greater than 1 and let n
be a positive integer such that n — # is greater than or equal to
the degree of Pb(\s\). Then, s~nF(s) satisfies the assumptions of
Meijer's theorem stated in §1 and therefore, for Res > c > 6,

(37) 8-*F(8) = Γ g{t)e-^
Jo

where

(38) g(t) = f(1 - k + ™\ \ C+i°°
2πιΓ(l + 2m) Jc-«~

Now, consider the expression

g{t)e~ct _ 1 Γ(l - k + m) f'+<°°
f+-(l + ί-Ό - 2ίί Γ(l + 2m)

( 8 9 )

 x [e-'W'M^ustXstrn,
x L ( l r ^ ) ( i | | ^ ) Γ s

Using the series representation (1) and the asymptotic expansions
(4) and (5) and following the technique of the proof of Lemma 2 it
can be shown that

on the line s = c + i(O, — co < α> < oo uniformly for all £e(0,
where D is a constant independent of s and t. Furthermore,

where E is another constant. Since q > 1 and λr <; 0, it follows
that for any d>c, e~dtg{t){l + tλr)~ι is absolutely integrable on 0<£<oo,
and consequently e~dtt~~λsg(t) is also absolutely integrable on the same
interval. Hence g(t) generates a regular distribution of ^k

d

>m\I).
Therefore, (37) represents a distributional Meijer transform for
Re s > d.

Now, let / = (-Δ*Yg. Then, by Theorem 3,

<7] = F{β)

for at least Re s > d. This completes the proof.
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We conclude this section with the following structure theorem.

THEOREM 5. Let f be an arbitrary element of ^ α ' m ' ( I ) . Then
there exist bounded measurable functions gt(x) defined for x > 0 and
for i = 0,1, 2, , r where r is some nonnegative integer depending
upon f such that for arbitrary φ β D(I), we have

(40) </, φ) = ( - Σ n[eaxxk+mD! j * flr4(ί)dί], 0(aθ) ,

where Vx is the integrodifferential operator defined by (15).

Proof. The proof is analogous to a number of proofs available
in the literature [10, pp. 272-274; 6, pp. 14-15] and therefore is
omitted.

8* Applications* Now we will apply our inversion theory to
the solution of certain integrodifferential equations.

(a) Solution of P{A*)u = g. Let P be any polynomial. For
R e m ^ O and Rek <̂  - R e w < 1/2, consider the operational equation

(41) P(Δ*)u = g 0 < x < oo

where g is a given Meijer transformable generalized function and u
is unknown generalized function.

Now to determine u, using (35) we apply the distributional
Meijer transformation to (41) and get

P(-8)U(8)=G(8)

where G(s) = ^/^,mg for Re s > σg. Let σp be the largest of the real
parts of the roots of P( — s) = 0. Then G(s)/P( — s) satisfies hypotheses
of Theorem 4 on some half-plane {s | Re s ̂  b > max (0, σg, σp)} and
hence it is a distributional Meijer transform of some u e ̂ l*™'. We
may apply the inversion formula (29) to get u. Thus

(42) u(x) = lim
2πiΓ(l + 2m)

x \σ+tr [G(s)/P( -
Jσ—ίr

in the sense of equality in D\I)9 which is a solution of (41). This
solution is in fact a restriction of u e ̂ \'m\I) to D(I), and is unique
in view of the corollary following Theorem 2.

By arguments preceding Theorem 3 one can easily verify that
u as determined by (42) is also a solution to the distributional
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integrodifferential equation

(43) P{Vk

x^)u - g .

(b) Solution of P(F~k'm)φ = ψ. Suppose that ψ is a given Meijer
transformable conventional function possessing the asymptotic pro-
perties:

ψ(x) = O(eax) x > oo

x >0 +

where a > 0 and Re (±m — k) + p + 1 > 0. We wish to find φ such
that

(44) P(J-k>m)φ = ψ .

If we assume that

φ<*\x) = 0(ehx) , x —

= 0(xβ-r) , x —

for each r = 0,1, 2, , we can apply Meijer transform (8) to (44)
and get

(45) Γ P(J~k'm)φ(x)K(sx)dx = Ψ(s)
Jo

where Re s > max (α, 6) and ?F(s) is a Meijer transform of ψ(»).
Now, using the formula [2, p. 733]

{zeWkdz

and integrating by parts the left-hand side of (45), we get

P(-s)Φ(s) = Ψ{β)

where Φ(s) is the Meijer transform of φ(x). If we further assume
that Re s ^ c > max (α, b, σq), where σq is the largest of the real
parts of roots of P(-s) = 0, we find that Ψ(s)/P( — s) satisfies condi-
tions of Meijer's theorem (given in §1), and hence is the Meijer
transform of some function φ(x) defined by

Φ(x) f T Λ o χ P eM^ί/2,m(xs)(xs)
(46) 2τnΓ( l + 2m) Jβ-ioo

x [¥(s)/P(-s)]ds .

Following the technique of proof of sufficiency part of Theorem 4
it can be shown that φ(x), as a regular distribution, is a member
of ^ ί ' m ' ( I ) , where d > c.
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