ON COMMON FIXED POINT SETS OF COMMUTATIVE MAPPINGS

TECK-CHEONG LIM

Let *C* **be a compact convex subset of a locally convex topological vector space** *X.* **Anzai and Ishikawa recently** proved that if T_1, \dots, T_n is a finite commutative family of **continuous affine self-mappings of** C, then $F(\sum_{i=1}^{n} \lambda_i T_i) =$ $\bigcap_{i=1}^n F(T_i)$ for every λ_i such that $0 < \lambda_i < 1$ and $\sum_{i=1}^n \lambda_i = 1$, **where** *F(T)* **denotes the fixed point set of** *T.* **It is natural to question whether the conclusion of their theorem is dependent on the topological properties of** *X, C* **and** *Tt—***in this case, the linear topology, the compactness and the continuity. We shall see that this is not; the theorem can be formulated in an algebraic context.**

Our theorem, when applied to Hausdorff topological vector spaces, yields a better version of Anzai-Ishikawa's theorem (see Corollary 2).

DEFINITION 1. A subset *B* of a real vector space is said to be (algebraically) bounded if $\bigcap_{\varepsilon>0} \varepsilon(C-C) = \{0\}$, where $C = \mathrm{C}_0(B)$, the convex hull of *B.*

Every bounded convex subset of a Hausdorff topological vector space is algebraically bounded. Every bounded subset of a locally convex Hausdorff topological vector space is algebraically bounded.

THEOREM 1. *Let C be a convex subset of a real vector space X* and T_1, \cdots, T_n a finite commutative family of affine self-mappings $of \ C. \quad If \ the \ set \ D = \{T_1^{m_1}T_2^{m_2}\cdots\ T_n^{m_n}x: 0 \leq m_i < \infty, \ i = 1, \ \cdots, \ n \} \ \ is$ *bounded for each* $x \in C$ *, then* $F(\sum_{i=1}^n\lambda_i T_i) = \bigcap_{i=1}^n F(T_i)$ *for every* $0 <$ $\lambda_i < 1$ with $\sum_{i=1}^n \lambda_i = 1$.

LEMMA 1. *Let xⁿ be a sequence in a Banach space such that* $x_n \rightarrow x$. Then the sequence y_n defined by

$$
y_n = (1/2^n)(x_0 + {}_nC_1x_1 + \cdots + {}_nC_ix_i + \cdots + x_n)
$$

converges to x.

Proof. For an arbitrary $\varepsilon > 0$, choose m such that $\|x_i - x\|$ $\varepsilon/2$ for $i \geq m$. Choose $N \geq m$ such that

$$
1/2^{n}(1 + {}_{n}C_{1} + \cdots + {}_{n}C_{m-1}) < \varepsilon/(2D)
$$

for all $n \ge N$, where *D* is a number such that $||x_i - x|| \le D$ for all $i \geq 0$. Then

$$
||y_n - x||
$$

= $||(1/2^n)(x_0 - x + {}_nC_1(x_1 - x) + \cdots + {}_nC_{m-1}(x_{m-1} - x) + \cdots + x_n - x)||$
 $\leq (1/2^n)(1 + {}_nC_1 + \cdots + {}_nC_{m-1})D + (\varepsilon/2)(1/2^n)({}_nC_m + \cdots + 1)$
< ε

for all $n \geq N$.

REMARK 1. The above lemma is also a consequence on Silverman Toeplitz's theorem on regular method of summability.

Proof of Theorem 1. We may assume that $n = 2$. The inclusion $\mathbb{P}^{\ast} F(T_i) \subset F(\sum_{i=1}^{n} \lambda_i T_i)$ is obvious. Let $A = \lambda_1 I + \lambda_2 T_1$, $B = \lambda_2 I + \lambda_1 T_2$ and $T = (1/2)(A + B)$. Then $T = (1/2)(I + \lambda_1 T_1 + \lambda_2 T_2)$. Moreover, $F(T) = F(\lambda_1 T_1 + \lambda_2 T_2), F(A) = F(T_1)$ and $F(B) = F(T_2)$. Let $x \in$ $\mathbb{P}_2 T_2$) = $F(T)$. For every *n*, we have

(1)

$$
x = \left(\frac{A+B}{2}\right)^{n} x
$$

$$
= \frac{1}{2^{n}} (A^{n} x + {}_{n} C_{1} A^{n-1} B x + \cdots + {}_{n} C_{i} A^{n-i} B^{i} x + \cdots + B^{n} x)
$$

and

$$
(2) T_1x = \frac{1}{2^n}(T_1A^n x + {}_nC_1T_1A^{n-1}Bx + \cdots + {}_nC_iT_1A^{n-i}B^ix + \cdots + T_1B^nx),
$$

where we make use of the commutativity of *A* and *B* and the affine property of T_1 .

Following Anzai-Ishikawa's computation [1], we have

$$
A^m y - T_1 A^m y = \sum_{i=0}^m {}_m C_i \lambda_1^{m-i} \lambda_2^i T_1^i y - \sum_{i=1}^{m+1} {}_m C_{i-1} \lambda_1^{m-i+1} \lambda_2^{i-1} T_1^i y
$$

\n
$$
= \sum_{i=0}^{m+1} ({}_m C_i \lambda_1^{m-i} \lambda_2^i - {}_m C_{i-1} \lambda_1^{m-i+1} \lambda_2^{i-1}) T_1^i y, {}_m C_{-1} = {}_m C_{m+1} = 0
$$

\n
$$
= \sum_{i=0}^{m_0} \mu_i T_1^i y - \sum_{i=m_0+1}^{m+1} (-\mu_i) T_1^i y
$$

\n
$$
= a_m \Big(\sum_{i=0}^{m_0} \alpha_i T_1^i y - \sum_{i=m_0+1}^{m+1} \beta_i T_1^i y \Big).
$$

Here, m_0 is the largest integer less than or equal to $\lambda_2(m + 1)$;

$$
\mu_i = {}_mC_i\lambda_1^{m-i}\lambda_2^i - {}_mC_{i-1}\lambda_1^{m-i+1}\lambda_2^{i-1} ,
$$

 $\mu_i \geqq 0$ for $0 \leqq i \leqq m_{\scriptscriptstyle 0}$ and < 0 for

$$
a_m = \sum_{i=0}^{m_0} \mu_i = \sum_{i=m_0+1}^{m+1} (-\mu_i) = {}_mC_{m_0} \lambda_1^{m-m_0} \lambda_2^{m_0} \longrightarrow 0
$$

as $m \to \infty$; $\alpha_i = \mu_i / a_m \geq 0$ for $0 \leq i \leq m_0$, $\beta_i = -\mu_i / a_m \geq 0$ for $m_0 +$ $1 \leq i \leq m+1$, $\sum_{i=0}^{m_0} \alpha_i = 1$ and $\sum_{i=m_0+1}^{m+1} \beta_i = 1$.

Let $E = C_0(D)$. By the convexity of E, $A^m y - T_1 A^m y \in a_m (E - E)$ provided $T_i^i y \in E$ for $i = 0, \dots, m + 1$.

Since T_1 and T_2 are affine, $T_1^i A^k B^j x \in E$ for $j, k = 0, \dots, n; i =$ $0, 1, \cdots$. It follows from (1) and (2) that

$$
x - T_1x
$$

= $\frac{1}{2^n}((A^nx - T_1A^nx) + nC_1(A^{n-1}Bx - T_1A^{n-1}Bx) + \cdots + (B^nx - T_1B^nx))$
 $\in \frac{1}{2^n}(a_n(E - E) + {}_nC_1a_{n-1}(E - E) + \cdots + {}_nC_{n-1}a_1(E - E) + a_0(E - E))$
 $\subseteq \frac{1}{2^n}(a_0 + nC_1a_1 + \cdots + {}_nC_ia_i + \cdots + a_n)(E - E)$,

the last inclusion being a consequence of the convexity of $E - E$.

Since $E - E$ is convex and $0 \in E - E$, we have $\varepsilon_1(E - E) \subseteq$ $\varepsilon_{2}(E-E)$ if $\varepsilon_{1} < \varepsilon_{2}$. Hence by Lemma 1 and the boundedness of E, $\bigcap_{i=1}^{n} A(n)(E - E) = \{0\}$ where

$$
A(n) = \frac{1}{2^n}(a_0 + {}_nC_1a_1 + \cdots + {}_nC_i a_i + \cdots + a_n).
$$

It follows that $x = T_1 x$. Similarly $x = T_2 x$. This completes the proof.

COROLLARY 1. Let C be a bounded convex subset of a vector space and T_1, \cdots, T_n a finite commutative family of affine mappings of C. Then $F(\sum_{i=1}^n \lambda_i T_i) = \bigcap_{i=1}^n F(T_i)$ for all positive numbers λ_i , $i=1, \dots, n$ such that $\sum_{i=1}^n \lambda_i = 1$.

COROLLARY 2. Let C be a convex bounded (in the usual sense) subset of a Hausdorff topological vector space and T_1, \cdots, T_n a finite commutative family of affine mappings of C. Then $F(\sum_{i}^{n} \lambda_i T_i) =$ $\bigcap_{i=1}^{n} F(T_i)$ for all positive numbers λ_i , $i=1,\dots,n$ such that $\sum_{i=1}^{n} \lambda_i = 1$.

REMARK 2. We note that the boundedness condition cannot be removed. The mappings $T_{1}x = x + a$, $T_{2}x = x - a$, $a \neq 0$ defined on R^1 are commutative and affine, with $F(T_1) = F(T_2) = \phi$ and $F((1/2)T_1 + (1/2)T_2) = R^1$.

COROLLARY 3. Let C, T_i , $i=1,\dots,n$ be defined as in Corollary 2. Assume that $T_1^p \cdots T_n^p = T_1 \cdots T_n$ for some $p \geq 2$ and that for each $x \in C$ and each $i = 1, \dots, n$, the set

$$
A_ix=\{T_{\tau_1}^{m_1}\cdots\ T_i^{m_i}\cdots\ T_{\rule{0pt}{2ex}n}^{m_n}X\hspace{-.5pt}:0\leq m_j<\infty,\,j=1,\,\cdots,\,n\}
$$

520 TECK-CHEONG LIM

is bounded, where \wedge indicates that $T_i^{m_i}$ is missing. Then $F(\sum_{1}^{n}\lambda_iT_i) =$ $\bigcap_{i=1}^{n} F(T_i)$ *for all positive numbers* λ_i , $i = 1, \dots, n$ *such that* $\sum_{i=1}^{n} \lambda_i = 1$.

Proof. If m_i , $i = 1, \dots, n$ are *n* natural numbers and $m_j =$ $\min \{m_i, i = 1, \dots, n\},\$

$$
\begin{array}{l} T_1^{m_1} \cdots \ T_n^{m_n}X = \ T_1^{m_1 - m_j} \cdots \ \widehat{T}_j^{m_j - m_j} \cdots \ T_n^{m_n - m_j}T_1^{m_j} \cdots T_n^{m_j}x \\qquad \qquad = \ T_1^{m_1 - m_j} \cdots \ T_n^{m_n - m_j}T_1^{l_1} \cdots \ T_n^{l_n}x \in A_j(T_1^{l_1} \cdots T_n^{l_n}x) \end{array}
$$

where k is an integer satisfying $0 \leq k < p$. It follows that

$$
\begin{aligned} Ax &= \{T_1^{m_1} \cdots \, T_n^{m_n}x; \, 0 \leq m_i < \, \infty, \, i = 1, \, \, \cdots, \, n\} \\ &= \bigcup \left\{A_i(T_1^k \cdots \, T_n^k x); \, i = 1, \, \, \cdots, \, n, \, k = 0, \, \, \cdots, \, p-1\right\}. \end{aligned}
$$

Hence Ax, being a finite union of bounded sets is bounded.

The special case when $n = 2$ and $p = 2$ can be given a simple direct proof. We shall illustrate it for the case $\lambda_1 = \lambda_2 = 1/2$. First we prove:

LEMMA 2. For each $n \geq 1$, there exists rational numbers $(depending on n and not necessarily nonnegative) \lambda_1, \cdots, \lambda_{\lceil n/2 \rceil} such$ *that*

$$
\lambda_1 + \cdots + \lambda_{\llbracket n/2 \rrbracket} = 1 - (1/2^{n-1})
$$

and such that the equation

$$
(3) \qquad \begin{array}{l}D^n=(1/2^{n-1})\Big(\frac{A^n+B^n}{2}\Big)+\lambda_{1}ABD^{n-2}+\cdots+\lambda_{i}A^{i}B^{i}D^{n-2i}+\cdots\\+\lambda_{\lfloor n/2\rfloor}A^{\lfloor n/2\rfloor}B^{\lfloor n/2\rfloor}D^{n-2\lfloor n/2\rfloor}\end{array}
$$

is valid for any two commutative affine mappings A, B defined on *a convex set, where* $D=1/2(A+B)$ *.* ([m] denotes the largest integer $\leq m$.)

Proof. If such rational numbers λ_i exist for a fixed n, then by putting $A = B = I$, we see that

$$
\lambda_1 + \cdots + \lambda_{\lceil n/2 \rceil} = 1 - (1/2^{n-1}).
$$

We shall prove by induction on *n*. For $n = 2$, $\lambda_1 = 1/2$. Assume that the lemma is true for $m \leq n$. Then

$$
(4) \qquad \begin{array}{l}D^{n+1}=D^{n}D=(1/2^{n})\Big(\frac{A^{n+1}+B^{n+1}}{2}\Big)+\frac{1}{2}(1/2^{n-2})\Big(\frac{A^{n-1}+B^{n-1}}{2}\Big)AB\\ \qquad +\left.\lambda_{1}ABD^{n-1}+\cdots+\left.\lambda_{\lceil n/2 \rceil}A^{\lceil n/2 \rceil}B^{\lceil n/2 \rceil}D^{n-2\lceil n/2 \rceil+1}\right.\end{array}
$$

Making use of the induction hypothesis for $m = n - 1$, substitue

$$
(1/2^{n-2})\left(\frac{A^{n+1}+B^{n+1}}{2}\right)=D^{n-1}-\mu_1 ABD^{(n+1)-4}-\cdots\\-\mu_{[(n-1)/2]}A^{[(n-1/2]}B^{[(n-1/2]}D^{n-1-2[(n-1)/2]}\right)
$$

into (4). The proof will be then complete by collecting similar terms and making use of $[(n-1)/2]+1=[(n+1)/2]$ and $[(n+1)/2]-[n/2]=0$ or 1.

COROLLARY 4. *Let C be defined as in Theorem* 1 *and A, B be* $two \; commutative \; \emph{affine} \; \emph{self-mappings} \; \emph{of} \; \emph{C} \; \emph{such that} \; \emph{A}^{\emph{2}}\emph{B}^{\emph{2}} = \emph{AB} \; \emph{and}$ *such that the sets* $\{A^n x: n = 0, 1, 2, \cdots\}$ and $\{B^n x: n = 0, 1, 2, \cdots\}$ are *bounded for each* $x \in C$ *. Then* $F((1/2)A + (1/2)B) = F(A) \cap F(B)$.

Proof. Let $x \in F((1/2)A + (1/2)B)$. Using Lemma 2 and the condition $A^2B^2 = AB$, we have

(5)
$$
x = \left(\frac{A+B}{2}\right)^n x = (1/2^{n-1})\left(\frac{A^nx + B^nx}{2}\right) + \left(1 - \frac{1}{2^{n-1}}\right)ABx.
$$

Thus,

$$
x - ABx = \frac{1}{2^{n-1}} \Big(\frac{A^n x + B^n x}{2} - ABx \Big) .
$$

By the boundedness condition, we see that $ABx = x$. By (3) for $n = 2$, we have $x = (A^2x + B^2x)/2$. By applying A to $x = (1/2)Ax +$ $(1/2)Bx$ we have $Ax = (1/2)A^2x + (1/2)x$ and hence $A^2x - x = 2(Ax - x)$. Thus by repeatedly replacing A, B by A^2 and B^2 in the above argu ment, we obtain $A^{2n}x - x = 2^n(Ax - x)$. This contradicts the boun dedness of $\{A^n x: n = 0, 1, 2, \cdots\}$ unless $Ax = x$. Similarly $Bx = x$, completing the proof.

REFERENCES

1. K. Anzai and S. Ishikawa, *On common fixed points for several continuous affine mappings,* Pacific J. Math., 72 (1977), 1-4.

Received March 3, 1978.

61-C, LORONG KϋMARA, SINGAPORE 27

Present address: Department of Mathematics The University of Chicago Chicago, IL 60637