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A WITT'S THEOREM FOR UNIMODULAR LATTICES

Y. C. LEE

Let K be a dyadic local field, o its ring of integers, L
a regular unimodular lattice over o. If x and y are vectors
in L, we ask for necessary and sufficient conditions to map
x isometrically to y. Trojan and James obtain conditions
via a T-invariant when o is 2-adic. Hsia uses characteristic
sets and G-invariants for vectors and he solves the problem
when o is dyadic in general. We define here a new numeri-
cal invariant, the degree of a vector, which reflects more on
the structure of L and the relationship between x, y and
L. The Witt conditions will be stated in terms of this
degree invariant.

1* Introduction* Let π be a prime element generating the
maximal ideal of o and let e be such that 2o = πeo. Let Q be a
quadratic form on L, B its associated symmetric bilinear form.
Then Q and B are connected by

Q(χ + y) = Q(χ) + Q(v) - B{x, y).

The lattice L is unimodular simply means B(L, L) — o and det L is
a unit. The structure of unimodular lattices is well-known and can
be found in O'Meara [7]. A vector v is primitive if vgπL. Hence
v is primitive if and only if B(v, L) = o.

PROPOSITION 1. Let v be a vector in a unimodular lattice L.
Then v e πkL if and only if B(v, L) Q πko.

Proof. The necessity is trivial. Assume B(v, L) £ πko and h
is the highest power of π that divides v, that is, v = πhw for some
primitive vector w. Hence B(w, L) = o and B(v, L) = B(πhw, L) =
πho and h ^ k.

If z e L satisfies ord Q(z) ^ ord B(z, L), then the map σz given

by

σz(v) = v- B(v, z)zlQ(z)

is an integral isometry known as the reflection of z. The group
of integral isometries is denoted by O(L). O'Meara and Pollak [8],
[9] have shown that O(L) is generated by reflections except in a
few cases when the residue field o/πo contains only two elements,
and that in the exceptional cases one extra generator given by an
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Eichler transform is needed. If i is a nonzero isotropic vector and
z satisfies B(i, z) = 0 then an Eichler transform El is defined by:

Etiv) = v + B(v, i)z - B(v, z)i - Q(z)B(v, i)i .

We say two vectors x and y are associated, denoted x ~ y if there
is a φ 6 O(L) such that (̂α?) = #. For each k such that β ̂  k ^ 0,
let

L(-*} = {veL:Q(v)eπ-ko} .

Each Z -̂*0 is invariant under the action of O(L) and

L = L(~e) a 2 L("1} 2 L(0) .

DEFINITION. The lattice L is said to have degree k if

The sublattice L(0) is called the even sublattice of L. A degree 0
lattice is simply called an even lattice.

2* The degree invariant*

DEFINITION. Let v be a primitive vector. The degree of v9

m{v), is given by m{v) = ord B(v, I/o))

If d is the degree of L, then clearly π [ i / 2 ]L C L(0), where [d/2]
denotes the smallest integer greater than d/2. Consequently, m(v)^
[d/2].

Furthermore, if v is a primitive vector with degree m and w
is another primitive vector with w — veπmL, then the degree of w
is also m. For we have w = v + πmz and

, L(0)) - B(v + πm^, L(0))

- B(v, L(0)) + 7ΓmJB(̂ , L(0))

3. Witt's theorem*

THEOREM. Let x and y be primitive vectors such that Q(x) —
Q(y). Then x is associated to y if and only if m{x) — m(y) — m
and y — x e πmL.

We remark that the condition y — x e πmL expresses how close
the vectors x and y must be. With the upperbounds calculated for
m, this condition becomes quite appealing. Before proving the



A WITT'S THEOREM FOR UNIMODULAR LATTICES 511

theorem we first set up an invariant which has its own importance.

DEFINITION. If a is an element of K, the quotient field of o,
let

Sa = {u e L: Q(u) = a mod 0} .

DEFINITION. If v is a primitive vector of degree m, let

Sa(v) = B(v, u) mod πmo

where u is a vector in Sa.

Since Q{φ(u)) — Qiu) for any isometry φ, it is clear that Sa is
invariant under O(L). To show that Sa(v) is well-defined, let u, u'
be vectors in Sa. Then Q(u) = Q(ur) = a mod 0, and

Q(u - u') = Q(u) - Q(^') - B(u', u - u')

= 0 mod 0 .

Hence u — u' e L(0) and

) - B(v, u') =

Ξ 0 mod πmo .

Since Sα is invariant under O(L), we immediately obtain that if x
and y are associated, then Sa(x) = Sβ(i/).

Proof of theorem. Let a? and 2/ be associated vectors. Clearly
= m(y). For each nonempty Sa9 we have

Therefore,

B(y — a?, u) ΞΞ 0 mod πmo

for any u e Sa. Since the collection {Sa} partitions L, this means

B(y — x,u) = 0 mod πmo

for all ue L. Proposition 1 shows that y — x e πmL.

It is convenient to collect that following two results.

PROPOSITION 2. Let x and y be primitive vectors such that
Q(x) = Q(y) and m{x) = m(y) = 0. Then x ~ y.

Proof. This is a direct application of Kneser's theorem [6].
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PROPOSITION 3. Let x and y be primitive vectors such that
Q(x) — Q(y) and m(x) = m(y) = m. Then x ~ y provided one of the
following holds:

( i ) y — x e πmL and ord Q(y — x) = 2m;
(ii) y — xeπmL and there is a vector ueL{0) with orάQ(u)=0

and ord B(x, u) = ord B(y, u) = m;
(iii) y — xeπm+1L and there is a vector u^L{~ι)— L(0) with

ord B(x, n) = ord B(y, u) = m.

Proof. Let z — π~m(y — x).
( i ) Since Q(z) is a unit, the reflection σz is integral and sends

x to y.
(ii) We may assume ord Q{z) > 0. Let

z' = z + 2?(ί&, u)u/πmQ(u) .

Then it is easily shown that Q(s') is a unit. Hence σ2, and σu are
integral reflections and σZί, σu(x) = y.

(iii) Again assume ord Q{z) > 0. Let

zr = z + B(x, u)u/πm+ίQ(u) .

Then ord Q(z') = — 1. Hence ov is integral and az,ou{x) = y.

Proof of theorem (continued). Let x and y be primitive vectors
satisfying the conditions Q(x) = Q(y), m(x) — m(y) — m and y — x e
πmL.

If m = 0, Proposition 2 settles the problem. Let m ^ 1. We
may further assume that ord Q(y — x) > 2m, otherwise Proposition
3 (ii) already provides the necessary isometry. We proceed with
the proof in a series of lemmas.

LEMMA 1. / / B(x, U~ι)) = B{y, U~ι)) = πm~ιo, then x ~ y.

Proof. Since B(x, L(0)) = B(y, L(0)) - πmo, we know that L{~1)-
L{0) is a nonempty set. Choose v and w from this set so that
ord^(^, v) = ord2?(τ/, w) = m — 1. Then one of the vectors v, w, v +
w, which we denote by u, will satisfy ord B(x, u) = ord B(y, u) =
m — 1. This vector u also lies in &~ι) — L{0). Let z — π~m(y — a;)
and z' = z + B(x, u)ujπm~ιQ(u). Then σz, is an integral isometry
and σΛ>σu(x) = ?/.

LEMMA 2. 1/ B(a;, L(~2)) = B(y, L{~2)) = πm~ιo and B(x, L{~1)) =

x ~ y.

Proof. As in Lemma 1, we can choose a vector z from L(~2) —
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L(~υ such that oτdB(x, z) = ord B(y, z) = m — 1. Then Proposition
3 (ii) can be applied with u = πz.

LEMMA 3. Assume B(x, L(~2)) = B(y, L{~2)) = πmo. If there is a
vector zeL{~2) — &~~1], then x ~ y.

Proof. There are vectors v and w in L(0) such that ord B(x, v) =
ord B(y, w) = m. One of the three vectors v, w, v + w, which will
be denoted by u, must satisfy ord B(x, u) = ord B(y, u) = m. If
ovd Q(u) = 0, Proposition 3 (ii) can be used. Otherwise let uf = u +
πz. Then ord Q(ur) = 0 and ord B(x, uf) = ord B(yf u') = m. Hence
Proposition 3 (ii) can again be used.

From here on we may assume that B(x, L{~2]) = B(y, L(~2)) = πmo,
and that there are no vectors u in L with oτάQ(u) = — 2. This
further means that there are no vectors u in L with Q(u) having
negative even orders. Hence the degree of L equals —2hJ

Γl for
some positive integer h. By an earlier remark and Proposition 2,
we may assume that h > m > 1.

LEMMA 4. Under the above assumptions, the lattice L has one
of the following decompositions:

( i ) L — ovLM if L is odd-dimensional,
(ii) L = (ovφowyM if L is even-dimensional,

where ord Q(v) = — 2h + 1, ord Q(w) ^ 1, B(y, w) = 1 and M is an
even sublattice.

Proof, ( i ) We can write L = ov1l.M1, where orάQ{v1) = —2h +
1. If M1 is not even, then Mx contains vectors u with oτάQ(u)
being some negative odd integer. By adding appropriate vectors
avlf a BO, to these vectors, we can form a new decomposition L =
ov2 _L M2 with the degree of M2 less than the degree of Mx. By
induction we can obtain the desired decomposition.

(ii) Starting with a decomposition L = (ovx 0 owλ) JL M19 we
can use vx to change M1 until L — (ov2 0 ow2) ± M, where M is even.
Finally, since oiά Q(w2) is odd or greater than 0, we can use v2 to
change w2 to obtain the desired decomposition.

LEMMA 5. Let L be odd-dimensional. Then there exists an
isometry φ such that φ(x) — ye πm+ίL. Hence x ~ y.

Proof. Let L = ov _L M be given by Lemma 4. Write

x = av + πmz, y = bv + πmzr



514 Y. C. LEE

where z, z' are primitive vectors of M. Since

Q(x) - Q(v) - (α2 - b2)Q(v) + π^(Q(z) - Q(z')) = 0 ,

we have

(α2 - b2)Q(v) = 0 mod π2mo

so that

α2 - 62 = 0 mod π^^-'o ,

and

a — b = 0 mod πm+ho .

Hence πZm{Q{z) - Q(s')) == 0 mod π2m+ιo and

- Q(s') = 0 mod πo .

There exists a vector w e l with J5(w, 2') = 1. Let % = zf + cπw,
so that Q(u) = Q(zr) + cπ + c2π2Q(w). The equation

Q(z') + cπ + c2π2Q(w) - Q(z)

can be solved for c by Hensel's lemma. Since Q(u) = Q(»), m(w) =
m(«) = 0, by Proposition 2 there is an isometry φ in O(M) such
that ^(») = u. Now « — u e π w + 1 L. By Proposition 3 (iii), φ(x) ~ y
and so x ~ y.

LEMMA 6. Let L be even-dimensional. Then x ~ y.

Proof. Let L — (ov © ow) 1 M be given by Lemma 4. Write

a; = πmav + w + πmz

y = 7rw6v + εw + πmzf ,

where ί? and zf are in Λf and ε is a unit. Then

0 - Q{x) - Q(y) = π2m(a2 - b2)Q(v) + πm(a - be)

Using an argument similar to that used in Lemma 5, we show that
a — beπho and 1 — ε6π m o. Hence for some c e o ,

πm(a — be) = πm(a — (a + πhc)e)

= πma(l - ε) mod π2m+ιo .

If ord (1 - ε) ^ m + 1, then πma(l - e) =• 0 mod π2m+1o. Hence Q(z)-
Q(z') = Omodπo and there is an isometry φeO(M) such that (̂2;) —
zeπM. Hence φ(x) — yeπm+1L and φ(x) ~ y by Proposition 3 (iii).
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If ord (1 — ε) — m we note that a and b must be simultaneously
units or nonunits.

(1) Both a and b are units. Then ord πm(α — be) = 2m. Hence
ord (Q(z) - Q(z')) = 0, and at least one of Q(z), Q{z') is a unit.
Without loss of generality, let Q(z) be a unit. If ord B(z, zf) ^ 1,
then the vector u = z + w fulfills the hypothesis of Proposition 3
(ii), hence x ~ y. Now let ordi?(z, z') = 0.

( i ) ord Q(z') ^ 1. There exists a vector zff — z Λ ζz' such that
ζ is a unit and Q(z") = Q(z'). For this z", we have B{z", M) =
J5(z', Λf) = o. Hence there is an isometry φ e O(M) with φ(z') = 2".
Proposition 3 (ii) can now be used on φ(x) and y, with w = 2.

(ii) ord Q(z) = ord Q( '̂) = 0. Since Q(z) - Q( '̂) is not zero, the
residue field o/πo must possess more than two elements. And since
ord B(x, w + ζz) — 0 for all units ζ, we can choose a unit ζ such
that ord B(y, w + ζz) — 0 as well. Now Proposition 3 (ii) can be
used with u = w + ζz.

(2) Both a and 6 are nonunits. Then ord α(l — ε) ^ 2m + 1.
Here Q(z) — Q{z') = 0 mod πo. Hence there is an isometry φ e O(M)
such that φ(z) = z' mod πM. Now we can rewrite

x = πm+ιa'v + w + τrm^

where zeM. Since & and y are primitive, 2 must also be primitive.
Hence there exists a primitive vector z" e M which decomposes M
as:

M = {pz 0 oz") l ikf' .

If ord Q(z) ^ 1, we may choose z" so that ord Q(z") = 0. Hence
the hypothesis of Proposition 3 (ii) is satisfied with u = z" + w.
Assume now ord Q(z) ~ 0. If we can choose a vector z" with
ord QOO = 0, we are again done. Otherwise we can choose a vector
2" with Q{z") = 0. Let 7 = (e - l)/ττm. Consider the Eichler trans-
form Eγw on x:

E£(x) = x + B(x, Z")ΊW - B(x, Ίw)z" - Q(ΎW)B(X, z")z" .

An easy calculation shows that

x — Eγ'J,{x) = εw mod π m + 1 L .

Hence

y - E£(x) = 0 mod πm+ίL .

Proposition 3 (iii) can be applied to y and E£(x), with u = TΓ̂ V.
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