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A WITT’S THEOREM FOR UNIMODULAR LATTICES
Y. C. LEE

Let K be a dyadic local field, o its ring of integers, L
a regular unimodular lattice over o. If x and y are vectors
in L, we ask for necessary and sufficient conditions to map
x isometrically to y. Trojan and James obtain conditions
via a T-invariant when o is 2-adic. Hsia uses characteristic
sets and G-invariants for vectors and he solves the problem
when o is dyadic in general. We define here a new numeri-
cal invariant, the degree of a vector, which reflects more on
the structure of L and the relationship between z, ¥ and
L. The Witt conditions will be stated in terms of this
degree invariant.

1. Introduction. Let 7= be a prime element generating the
maximal ideal of o and let ¢ be such that 20 = 7. Let @ be a
quadratic form on L, B its associated symmetric bilinear form.
Then @ and B are connected by

Q + ¥y) = Q) + Qy) — B, v) .

The lattice L is unimodular simply means B(L, L) = o and det L is
a unit. The structure of unimodular lattices is well-known and can
be found in O’Meara [7]. A vector v is primitive if v¢ L. Hence
v is primitive if and only if B(v, L) = o.

PROPOSITION 1. Let v be a wvector in a unimodular lattice L.
Then ven*L if and only if B(v, L) < z*o.

Proof. The necessity is trivial. Assume B(v, L) < w*o and h
is the highest power of = that divides v», that is, v = 7w for some
primitive vector w. Hence B(w, L) =0 and B(v, L) = B(z"w, L) =
w'o and h = k.

If ze L satisfies ord Q(z) < ord B(z, L), then the map o, given
by

0. (v) = v — B(v, 2)2/Q(z)

is an integral isometry known as the reflection of z. The group
of integral isometries is denoted by O(L). O’Meara and Pollak [8],
[9] have shown that O(L) is generated by reflections except in a
few cases when the residue field o/zp contains only two elements,
and that in the exceptional cases one extra generator given by an
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Eichler transform is needed. If 7 is a nonzero isotropic vector and
z satisfies B(4,z) = 0 then an Eichler transform E! is defined by:

Eiw) = v + B(w, 1)z — B(v, 2)i — Q(z)B(v, 1)1 .

We say two vectors x and y are associated, denoted x ~ y if there
is a ¢eO(L) such that ¢(x) = y. For each k such that e= %k = 0,
let

L™ = {we L: Q(v) et "o} .
Each L™® is invariant under the action of O(L) and

L — L(—e) Doeee D L(—l) D L(O) .

DEFINITION. The lattice L is said to have degree k if
L =0 = L0 £ [-k+0

The sublattice L is called the even sublattice of L. A degree 0
lattice is simply called an even lattice.

2. The degree invariant.

DEFINITION. Let # be a primitive vector. The degree of w,
m(v), is given by m(v) = ord B(v, L‘").

If d is the degree of L, then clearly z!%2L & L, where [d/2]
denotes the smallest integer greater than d/2. Consequently, m(v) <
[d/2].

Furthermore, if v is a primitive vector with degree m and w
is another primitive vector with w — ven™L, then the degree of w
is also m. For we have w = v + 7™z and

B(w, L) = B(v + n™z, L)

= B(v, L") 4+ n™B(z, L)
=7a"D.

3, Witt’s theorem.

THEOREM. Let x and y be primitive wvectors such that Q(x) =
Q). Then x is associated to y if and only if m(x) = m(y) = m
and y — xex™L.

We remark that the condition y — xez™L expresses how close
the vectors x and ¥ must be. With the upperbounds calculated for
m, this condition becomes quite appealing. Before proving the
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theorem we first set up an invariant which has its own importance.

DEFINITION. If o is an element of K, the quotient field of o,
let

S. ={ueL:Qu) =a modo}.
DEFINITION. If v is a primitive vector of degree m, let
S.(v) = B(v, w) mod z™p

where % is a vector in S,.

Since Q(¢(u)) = Q(u) for any isometry ¢, it is clear that S, is
invariant under O(L). To show that S,(v) is well-defined, let u, u’
be vectors in S,. Then Q(u) = Q') = a mod o, and

Qu — %) = Q(u) — Q') — B(w', u — u')

Omodo.

1

Hence w — 4’ € L' and

B(v, u) — B(v, w') = B(v, u — u")
= Omod 7™p .

Since S, is invariant under O(L), we immediately obtain that if «
and y are associated, then S,(x) = S.(¥).

Proof of theorem. Let x and y be associated vectors. Clearly
m(x) = m(y). For each nonempty S,, we have

S.(2) = S,(y) mod z™o .

Therefore,
B(y — », w) = 0 mod 7™

for any ueS,. Since the collection {S,} partitions L, this means
B(y — x, ) = 0 mod z™

for all we L. Proposition 1 shows that y — xen™L.
It is convenient to collect that following two results.

PROPOSITION 2. Let x and y be primitive wvectors such that
Q) = Q) and m(x) = m(y) = 0. Then x ~ y.

Proof. This is a direct application of Kneser’s theorem [6].
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PROPOSITION 3. Let x and y be primitive vectors such that
Q(x) = Q(y) and m(x) = m(y) = m. Then x ~ y provided one of the
following holds:

(i) y—xzenL and ord Qly — x) = 2m;

(ii) y —zxzen™L and there is a vector we L with ord Q(u) =0
and ord B(x, u) = ord B(y, u) = m;

(iii) y —xen™"L and there is a wvector we LY — L with
ord B(x, w) = ord B(y, u) = m.

Proof. Let z = ™(y — x).

(i) Since Q(z) is a unit, the reflection o, is integral and sends
x to y.

(ii) We may assume ord Q(z) > 0. Let

2 =z + Bz, wu/t"Qu) .

Then it is easily shown that Q(2’) is a unit. Hence o, and o, are
integral reflections and o,, o,(2) = y.
(iii) Again assume ord Q(z) > 0. Let

2 =z + B(x, wu/z""'Qu) .

Then ord Q(z') = —1. Hence o, is integral and o,0,(x) = ¥.

Proof of theorem (continued). Let z and y be primitive vectors
satisfying the conditions Q(x) = Q(y), m(x) = m(y) = m and y — x €
" L.

If m = 0, Proposition 2 settles the problem. Let m = 1. We
may further assume that ord @(y — «) > 2m, otherwise Proposition
3 (ii) already provides the necessary isometry. We proceed with
the proof in a series of lemmas.

LemMA 1. If Bz, L'™") = B(y, L") = ™ 'o, then ¥ ~ ¥.

Proof. Since Bz, L'”) = B(y, L'”) = #™0, we know that L‘"—
L is a nonempty set. Choose » and w from this set so that
ord B(x, v) = ord B(y, w) = m — 1. Then one of the vectors v, w, v+
w, which we denote by w, will satisfy ord B(x, u) = ord B(y, u) =
m — 1. This vector w also lies in L™ — L., Let z =77y — x)
and 2’ =z + Bz, w)u/z"'Q(u). Then ¢, is an integral isometry
and o,0,(x) = ¥.

LEmMA 2. If B(x, L'™®) = By, L") = ™0 and B(x, L'™) =
B(y, L'™) = ™o, then x ~ y.

Proof. As in Lemma 1, we can choose a vector z from L —
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L such that ord B(x, z) = ord B(y, z2) = m — 1. Then Proposition
3 (ii) can be applied with u = =z.

LEMMA 3. Assume B(x, L'™®) = B(y, L'™) = a™0. If there is a
vector ze L% — L', then x ~ .

Proof. There are vectors » and w in L' such that ord B(zx, v)=
ord B(y, w) = m. One of the three vectors v, w, v + w, which will
be denoted by u, must satisfy ord B(x, ) = ord By, ) = m. If
ord Q(u) = 0, Proposition 3 (ii) can be used. Otherwise let u’ = u+
7z. Then ord Q') =0 and ord B(x, w') = ord B(y, ') = m. Hence
Proposition 3 (ii) can again be used.

From here on we may assume that B(x, L'™®) = B(y, L'™?) = z™p,
and that there are no vectors w in L with ord @u) = —2. This
further means that there are no vectors w in L with Q(u) having
negative even orders. Hence the degree of L equals —2h + 1 for
some positive integer h. By an earlier remark and Proposition 2,
we may assume that 2~ > m > 1.

LEMMA 4. Under the above assumptions, the lattice L has one
of the following decompositions:

(i) L =ov*M if L is odd-dimensional,

(ii) L = (v @ ow)*M if L is even-dimensional,
where ord Q(v) = — 2h + 1, ordQ(w) =1, Blv,w) =1 and M is an
even sublattice.

Proof. (i) We can write L = ov, | M,, where ord Q(v,) = —2h +
1. If M, is not even, then M, contains vectors w with ord Q(u)
being some negative odd integer. By adding appropriate vectors
av,, a €0, to these vectors, we can form a new decomposition L =
ov, L M, with the degree of M, less than the degree of M,. By
induction we can obtain the desired decomposition.

(ii) Starting with a decomposition L = (ov, Pow,) L M,, we
can use v, to change M, until L = (ov, @ ow,) L M, where M is even.
Finally, since ord Q(w,) is odd or greater than 0, we can use v, to
change w, to obtain the desired decomposition.

LEMMA 5. Let L be odd-dimensional. Then there exists an
isometry ¢ such that ¢(x) — yen™'L. Hence x ~ y.

Proof. Let L =ov 1 M be given by Lemma 4. Write

x=aqv + "2, Y =>bv+ a"z
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where z, 2 are primitive vectors of M. Since

Q@) — Q) = (@ — v)Q(W) + 7(Q(2) — Q) =0,

we have

(a* — b)Q(v) = 0 mod ™0
so that

a* — b* =0 mod 7*™**'p ,
and

a—b=0 modz™to.
Hence 7*(Q(z) — Q(2")) = 0 mod z*"*'p and
Q) — Q) =0 mod 7o .

There exists a vector we M with B(w, ?’) =1. Let u =2’ + ctw,
so that Q(u) = Q(2") + e + *n*Q(w). The equation

Q") + e + 7 Q(w) = Q(z)

can be solved for ¢ by Hensel’s lemma. Since Qu) = Q(z), m(u) =
m(z) = 0, by Proposition 2 there is an isometry ¢ in O(M) such
that ¢(z) = u. Now z —uen™"L. By Proposition 3 (iii), ¢(x) ~ v
and so © ~ ¥y.

LEMMA 6. Let L be even-dimensional. Then x ~ y.

Proof. Let L = (ov@ ow) L M be given by Lemma 4. Write
r=7a"av + w + "2
y =7r"bv + ew + "2,
where z and 2’ are in M and ¢ is a unit. Then
0 = Q(z) — Q(y) = w*™(a* — b )Q(v) + n"(a — be)
+ (1 — &HQ(w) + 7(Q(z) — Q(2")) .

Using an argument similar to that used in Lemma 5, we show that
a —ben' and 1 — een™o. Hence for some ceo,

7™(a — be) = 7™(a — (a + whe)e)
= "a(l — &) mod 7*"*'p .
If ord(1 —¢&) = m + 1, then 7™a(l — ¢) = 0 mod 7*™*'o. Hence Q(z)—

Q(z') = 0mod 7o and there is an isometry ¢ée€ O(M) such that 4(z)—
zenM. Hence ¢(x) —yen™L and é(x) ~y by Proposition 3 (iii).
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If ord(1 —¢)=m we note that ¢ and b must be simultaneously
units or nonunits.

(1) Both a and b are units. Then ord 7™(a — be) = 2m. Hence
ord (Qz) — Q) =0, and at least one of Q(z), Q(2’) is a unit.
Without loss of generality, let Q(z) be a unit. If ord B(z, 2') =1,
then the vector w = z + w fulfills the hypothesis of Proposition 3
(ii), hence x ~ y. Now let ord B(z, #’) = 0.

(i) ordQ(z’) = 1. There exists a vector 2’ = z + {2’ such that
¢ is a unit and Q") = Q). For this 2, we have B(z", M) =
B(z', M) = 0. Hence there is an isometry ¢ecO(M) with ¢(2') = 2".
Proposition 3 (ii) can now be used on ¢(x) and y, with » = z.

(ii) ord @(z) = ord Q(2') = 0. Since Q(z) — Q(z') is not zero, the
residue field o/ro must possess more than two elements. And since
ord B(x, w + {z) = 0 for all units {, we can choose a unit { such
that ord B(y, w + {z) = 0 as well. Now Proposition 8 (ii) can be
used with v = w + (z.

(2) Both @ and b are nonunits. Then orda(l —¢) = 2m + 1.
Here Q(z) — Q(z') = 0 mod wo. Hence there is an isometry ¢ O(M)
such that ¢(z) = 2’ mod zM. Now we can rewrite

x =a""a'v + w + 7™z
Yy ="ty + ew + "2 + "7,

where Ze M. Since x and y are primitive, 2z must also be primitive.
Hence there exists a primitive vector 2" € M which decomposes M
as:

M= (0zP0o2") L M.

If ord@(2) =1, we may choose 2z’ so that ord Q(z"") = 0. Hence
the hypothesis of Proposition 8 (ii) is satisfied with w = 2" + w.
Assume now ordQ(z) =0. If we can choose a vector 2’ with
ord Q(z"”) = 0, we are again done. Otherwise we can choose a vector
2" with Q#") = 0. Let v = (¢ — 1)/a™. Consider the Eichler trans-
form E7, on x:
Ez(x) = ¢ + Bz, 2")vyw — B(x, yw)2" — Q(vw)B(x, 2")z" .
An easy calculation shows that
x — K7, (x) = ew mod 7L .

Hence

y — E7(x) = 0 mod z™ 'L .

P

Proposition 8 (iii) can be applied to ¥ and E7/(x), with w = 7.
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