A WITT'S THEOREM FOR UNIMODULAR LATTICES

Y. C. Lee

Let K be a dyadic local field, o its ring of integers, L a regular unimodular lattice over 0 . If x and y are vectors in L, we ask for necessary and sufficient conditions to map x isometrically to y. Trojan and James obtain conditions via a T-invariant when o is 2 -adic. Hsia uses characteristic sets and G-invariants for vectors and he solves the problem when o is dyadic in general. We define here a new numerical invariant, the degree of a vector, which reflects more on the structure of L and the relationship between x, y and L. The Witt conditions will be stated in terms of this degree invariant.

1. Introduction. Let π be a prime element generating the maximal ideal of 0 and let e be such that $20=\pi^{e} 0$. Let Q be a quadratic form on L, B its associated symmetric bilinear form. Then Q and B are connected by

$$
Q(x+y)=Q(x)+Q(y)-B(x, y) .
$$

The lattice L is unimodular simply means $B(L, L)=0$ and $\operatorname{det} L$ is a unit. The structure of unimodular lattices is well-known and can be found in O’Meara [7]. A vector v is primitive if $v \notin \pi L$. Hence v is primitive if and only if $B(v, L)=0$.

Proposition 1. Let v be a vector in a unimodular lattice L. Then $v \in \pi^{k} L$ if and only if $B(v, L) \subseteq \pi^{k} \mathrm{D}$.

Proof. The necessity is trivial. Assume $B(v, L) \cong \pi^{k} \mathfrak{D}$ and h is the highest power of π that divides v, that is, $v=\pi^{h} w$ for some primitive vector w. Hence $B(w, L)=\mathrm{o}$ and $B(v, L)=B\left(\pi^{h} w, L\right)=$ $\pi^{h} \mathbf{0}$ and $h \geqq k$.

If $z \in L$ satisfies ord $Q(z) \leqq \operatorname{ord} B(z, L)$, then the map σ_{z} given by

$$
\sigma_{z}(v)=v-B(v, z) z / Q(z)
$$

is an integral isometry known as the reflection of z. The group of integral isometries is denoted by $O(L)$. O'Meara and Pollak [8], [9] have shown that $O(L)$ is generated by reflections except in a few cases when the residue field $\mathrm{o} / \pi \mathrm{o}$ contains only two elements, and that in the exceptional cases one extra generator given by an

Eichler transform is needed. If i is a nonzero isotropic vector and z satisfies $B(i, z)=0$ then an Eichler transform E_{z}^{i} is defined by:

$$
E_{z}^{i}(v)=v+B(v, i) z-B(v, z) i-Q(z) B(v, i) i
$$

We say two vectors x and y are associated, denoted $x \sim y$ if there is a $\phi \in O(L)$ such that $\phi(x)=y$. For each k such that $e \geqq k \geqq 0$, let

$$
L^{(-k)}=\left\{v \in L: Q(v) \in \pi^{-k} \mathrm{p}\right\}
$$

Each $L^{(-k)}$ is invariant under the action of $O(L)$ and

$$
L=L^{(-\varepsilon)} \supseteq \cdots \supseteq L^{(-1)} \supseteq L^{(0)} .
$$

Definition. The lattice L is said to have degree k if

$$
L=\cdots=L^{(-k)} \neq L^{(-k+1)}
$$

The sublattice $L^{(0)}$ is called the even sublattice of L. A degree 0 lattice is simply called an even lattice.
2. The degree invariant.

Definition. Let v be a primitive vector. The degree of v, $m(v)$, is given by $m(v)=\operatorname{ord} B\left(v, L^{(0)}\right)$.

If d is the degree of L, then clearly $\pi^{[d / 2]} L \subseteq L^{(0)}$, where [d/2] denotes the smallest integer greater than $d / 2$. Consequently, $m(v) \leqq$ [$d / 2$].

Furthermore, if v is a primitive vector with degree m and w is another primitive vector with $w-v \in \pi^{m} L$, then the degree of w is also m. For we have $w=v+\pi^{m} z$ and

$$
\begin{aligned}
B\left(w, L^{(0)}\right) & =B\left(v+\pi^{m} z, L^{(0)}\right) \\
& =B\left(v, L^{(0)}\right)+\pi^{m} B\left(z, L^{(0)}\right) \\
& =\pi^{m_{\mathrm{D}}}
\end{aligned}
$$

3. Witt's theorem.

Theorem. Let x and y be primitive vectors such that $Q(x)=$ $Q(y)$. Then x is associated to y if and only if $m(x)=m(y)=m$ and $y-x \in \pi^{m} L$.

We remark that the condition $y-x \in \pi^{m} L$ expresses how close the vectors x and y must be. With the upperbounds calculated for m, this condition becomes quite appealing. Before proving the
theorem we first set up an invariant which has its own importance.
Definition. If a is an element of K, the quotient field of o, let

$$
S_{a}=\{u \in L: Q(u) \equiv a \bmod \mathfrak{o}\}
$$

Definition. If v is a primitive vector of degree m, let

$$
S_{a}(v)=B(v, u) \bmod \pi^{m} \mathfrak{D}
$$

where u is a vector in S_{a}.
Since $Q(\phi(u))=Q(u)$ for any isometry ϕ, it is clear that S_{a} is invariant under $O(L)$. To show that $S_{a}(v)$ is well-defined, let u, u^{\prime} be vectors in S_{a}. Then $Q(u) \equiv Q\left(u^{\prime}\right) \equiv a \bmod \mathfrak{o}$, and

$$
\begin{aligned}
Q\left(u-u^{\prime}\right) & =Q(u)-Q\left(u^{\prime}\right)-B\left(u^{\prime}, u-u^{\prime}\right) \\
& \equiv 0 \bmod \mathrm{o} .
\end{aligned}
$$

Hence $u-u^{\prime} \in L^{(0)}$ and

$$
\begin{gathered}
B(v, u)-B\left(v, u^{\prime}\right)=B\left(v, u-u^{\prime}\right) \\
\equiv 0 \bmod \pi^{m_{0}} .
\end{gathered}
$$

Since S_{a} is invariant under $O(L)$, we immediately obtain that if x and y are associated, then $S_{a}(x)=S_{a}(y)$.

Proof of theorem. Let x and y be associated vectors. Clearly $m(x)=m(y)$. For each nonempty S_{a}, we have

$$
S_{a}(x) \equiv S_{a}(y) \bmod \pi^{m_{0}}
$$

Therefore,

$$
B(y-x, u) \equiv 0 \bmod \pi^{m} \mathrm{D}
$$

for any $u \in S_{a}$. Since the collection $\left\{S_{a}\right\}$ partitions L, this means

$$
B(y-x, u) \equiv 0 \bmod \pi^{m} \mathrm{D}
$$

for all $u \in L$. Proposition 1 shows that $y-x \in \pi^{m} L$.
It is convenient to collect that following two results.
Proposition 2. Let x and y be primitive vectors such that $Q(x)=Q(y)$ and $m(x)=m(y)=0$. Then $x \sim y$.

Proof. This is a direct application of Kneser's theorem [6].

Proposition 3. Let x and y be primitive vectors such that $Q(x)=Q(y)$ and $m(x)=m(y)=m$. Then $x \sim y$ provided one of the following holds:
(i) $y-x \in \pi^{m} L$ and ord $Q(y-x)=2 m$;
(ii) $y-x \in \pi^{m} L$ and there is a vector $u \in L^{(0)}$ with $\operatorname{ord} Q(u)=0$ and ord $B(x, u)=$ ord $B(y, u)=m$;
(iii) $y-x \in \pi^{m+1} L$ and there is a vector $u \in L^{(-1)}-L^{(0)}$ with ord $B(x, u)=\operatorname{ord} B(y, u)=m$.

Proof. Let $z=\pi^{-m}(y-x)$.
(i) Since $Q(z)$ is a unit, the reflection σ_{z} is integral and sends x to y.
(ii) We may assume ord $Q(z)>0$. Let

$$
z^{\prime}=z+B(x, u) u / \pi^{m} Q(u)
$$

Then it is easily shown that $Q\left(z^{\prime}\right)$ is a unit. Hence $\sigma_{z^{\prime}}$ and σ_{u} are integral reflections and $\sigma_{z}, \sigma_{u}(x)=y$.
(iii) Again assume ord $Q(z)>0$. Let

$$
z^{\prime}=z+B(x, u) u / \pi^{m+1} Q(u) .
$$

Then ord $Q\left(z^{\prime}\right)=-1$. Hence $\sigma_{z^{\prime}}$ is integral and $\sigma_{z^{\prime}} \sigma_{u}(x)=y$.
Proof of theorem (continued). Let x and y be primitive vectors satisfying the conditions $Q(x)=Q(y), m(x)=m(y)=m$ and $y-x \in$ $\pi^{m} L$.

If $m=0$, Proposition 2 settles the problem. Let $m \geqq 1$. We may further assume that ord $Q(y-x)>2 m$, otherwise Proposition 3 (ii) already provides the necessary isometry. We proceed with the proof in a series of lemmas.

Lemma 1. If $B\left(x, L^{(-1)}\right)=B\left(y, L^{(-1)}\right)=\pi^{m-1} \mathrm{o}$, then $x \sim y$.
Proof. Since $B\left(x, L^{(0)}\right)=B\left(y, L^{(0)}\right)=\pi^{m} \mathfrak{D}$, we know that $L^{(-1)}-$ $L^{(0)}$ is a nonempty set. Choose v and w from this set so that ord $B(x, v)=\operatorname{ord} B(y, w)=m-1$. Then one of the vectors $v, w, v+$ w, which we denote by u, will satisfy $\operatorname{ord} B(x, u)=\operatorname{ord} B(y, u)=$ $m-1$. This vector u also lies in $L^{(-1)}-L^{(0)}$. Let $z=\pi^{-m}(y-x)$ and $z^{\prime}=z+B(x, u) u / \pi^{m-1} Q(u)$. Then $\sigma_{z^{\prime}}$ is an integral isometry and $\sigma_{z^{\prime}} \sigma_{u}(x)=y$.

Lemma 2. If $B\left(x, L^{(-2)}\right)=B\left(y, L^{(-2)}\right)=\pi^{m-1} \mathfrak{o} \quad$ and $\quad B\left(x, L^{(-1)}\right)=$ $B\left(y, L^{(-1)}\right)=\pi^{m} \mathrm{o}$, then $x \sim y$.

Proof. As in Lemma 1, we can choose a vector z from $L^{(-2)}-$
$L^{(-1)}$ such that ord $B(x, z)=$ ord $B(y, z)=m-1$. Then Proposition 3 (ii) can be applied with $u=\pi z$.

Lemma 3. Assume $B\left(x, L^{(-2)}\right)=B\left(y, L^{(-2)}\right)=\pi^{m} \mathrm{o}$. If there is a vector $z \in L^{(-2)}-L^{(-1)}$, then $x \sim y$.

Proof. There are vectors v and w in $L^{(0)}$ such that ord $B(x, v)=$ ord $B(y, w)=m$. One of the three vectors $v, w, v+w$, which will be denoted by u, must satisfy $\operatorname{ord} B(x, u)=\operatorname{ord} B(y, u)=m$. If ord $Q(u)=0$, Proposition 3 (ii) can be used. Otherwise let $u^{\prime}=u+$ πz. Then ord $Q\left(u^{\prime}\right)=0$ and ord $B\left(x, u^{\prime}\right)=\operatorname{ord} B\left(y, u^{\prime}\right)=m$. Hence Proposition 3 (ii) can again be used.

From here on we may assume that $B\left(x, L^{(-2)}\right)=B\left(y, L^{(-2)}\right)=\pi^{m}$, and that there are no vectors u in L with ord $Q(u)=-2$. This further means that there are no vectors u in L with $Q(u)$ having negative even orders. Hence the degree of L equals $-2 h+1$ for some positive integer h. By an earlier remark and Proposition 2, we may assume that $h>m>1$.

Lemma 4. Under the above assumptions, the lattice L has one of the following decompositions:
(i) $L=\mathrm{o} v^{\perp} M$ if L is odd-dimensional,
(ii) $L=(\mathrm{o} v \oplus \mathfrak{o w})^{\perp} M$ if L is even-dimensional,
where $\operatorname{ord} Q(v)=-2 h+1$, ord $Q(w) \geqq 1, B(v, w)=1$ and M is an even sublattice.

Proof. (i) We can write $L=\mathfrak{D} v_{1} \perp M_{1}$, where ord $Q\left(v_{1}\right)=-2 h+$ 1. If M_{1} is not even, then M_{1} contains vectors u with ord $Q(u)$ being some negative odd integer. By adding appropriate vectors $a v_{1}, a \in \mathbb{0}$, to these vectors, we can form a new decomposition $L=$ $\mathfrak{v} v_{2} \perp M_{2}$ with the degree of M_{2} less than the degree of M_{1}. By induction we can obtain the desired decomposition.
(ii) Starting with a decomposition $L=\left(\mathfrak{o} v_{1} \oplus \mathfrak{o} w_{1}\right) \perp M_{1}$, we can use v_{1} to change M_{1} until $L=\left(\mathrm{o} v_{2} \oplus \mathrm{o} w_{2}\right) \perp M$, where M is even. Finally, since ord $Q\left(w_{2}\right)$ is odd or greater than 0 , we can use v_{2} to change w_{2} to obtain the desired decomposition.

Lemma 5. Let L be odd-dimensional. Then there exists an isometry ϕ such that $\phi(x)-y \in \pi^{m+1} L$. Hence $x \sim y$.

Proof. Let $L=\mathfrak{o} v \perp M$ be given by Lemma 4. Write

$$
x=a v+\pi^{m} z, \quad y=b v+\pi^{m} z^{\prime}
$$

where z, z^{\prime} are primitive vectors of M. Since

$$
Q(x)-Q(y)=\left(a^{2}-b^{2}\right) Q(v)+\pi^{2 m}\left(Q(z)-Q\left(z^{\prime}\right)\right)=0,
$$

we have

$$
\left(a^{2}-b^{2}\right) Q(v) \equiv 0 \bmod \pi^{2 m} \mathrm{D}
$$

so that

$$
a^{2}-b^{2} \equiv 0 \bmod \pi^{2 m+2 h-1} \mathrm{o},
$$

and

$$
a-b \equiv 0 \bmod \pi^{m+h_{\mathrm{D}}}
$$

Hence $\pi^{2 m}\left(Q(z)-Q\left(z^{\prime}\right)\right) \equiv 0 \bmod \pi^{2 m+1} \mathfrak{o}$ and

$$
Q(z)-Q\left(z^{\prime}\right) \equiv 0 \bmod \pi \mathrm{o}
$$

There exists a vector $w \in M$ with $B\left(w, z^{\prime}\right)=1$. Let $u=z^{\prime}+c \pi w$, so that $Q(u)=Q\left(z^{\prime}\right)+c \pi+c^{2} \pi^{2} Q(w)$. The equation

$$
Q\left(z^{\prime}\right)+c \pi+c^{2} \pi^{2} Q(w)=Q(z)
$$

can be solved for c by Hensel's lemma. Since $Q(u)=Q(z), m(u)=$ $m(z)=0$, by Proposition 2 there is an isometry ϕ in $O(M)$ such that $\phi(z)=u$. Now $z-u \in \pi^{m+1} L$. By Proposition 3 (iii), $\phi(x) \sim y$ and so $x \sim y$.

Lemma 6. Let L be even-dimensional. Then $x \sim y$.
Proof. Let $L=(\mathfrak{v} \oplus \mathfrak{o w}) \perp M$ be given by Lemma 4. Write

$$
\begin{aligned}
& x=\pi^{m} a v+w+\pi^{m} z \\
& y=\pi^{m} b v+\varepsilon w+\pi^{m} z^{\prime}
\end{aligned}
$$

where z and z^{\prime} are in M and ε is a unit. Then

$$
\begin{aligned}
0=Q(x)-Q(y)= & \pi^{2 m}\left(a^{2}-b^{2}\right) Q(v)+\pi^{m}(a-b \varepsilon) \\
& +\left(1-\varepsilon^{2}\right) Q(w)+\pi^{2 m}\left(Q(z)-Q\left(z^{\prime}\right)\right) .
\end{aligned}
$$

Using an argument similar to that used in Lemma 5, we show that $a-b \in \pi^{h} \mathfrak{D}$ and $1-\varepsilon \in \pi^{m} \mathfrak{o}$. Hence for some $c \in \mathfrak{o}$,

$$
\begin{aligned}
\pi^{m}(a-b \varepsilon) & =\pi^{m}\left(a-\left(a+\pi^{h} c\right) \varepsilon\right) \\
& \equiv \pi^{m} a(1-\varepsilon) \bmod \pi^{2 m+1} \mathfrak{p}
\end{aligned}
$$

If $\operatorname{ord}(1-\varepsilon) \geqq m+1$, then $\pi^{m} a(1-\varepsilon) \equiv 0 \bmod \pi^{2 m+1} 0$. Hence $Q(z)-$ $Q\left(z^{\prime}\right)=0 \bmod \pi 0$ and there is an isometry $\phi \in O(M)$ such that $\phi(z)-$ $z \in \pi M$. Hence $\phi(x)-y \in \pi^{m+1} L$ and $\phi(x) \sim y$ by Proposition 3 (iii).

If $\operatorname{ord}(1-\varepsilon)=m$ we note that a and b must be simultaneously units or nonunits.
(1) Both a and b are units. Then ord $\pi^{m}(a-b \varepsilon)=2 m$. Hence ord $\left(Q(z)-Q\left(z^{\prime}\right)\right)=0$, and at least one of $Q(z), Q\left(z^{\prime}\right)$ is a unit. Without loss of generality, let $Q(z)$ be a unit. If ord $B\left(z, z^{\prime}\right) \geqq 1$, then the vector $u=z+w$ fulfills the hypothesis of Proposition 3 (ii), hence $x \sim y$. Now let ord $B\left(z, z^{\prime}\right)=0$.
(i) ord $Q\left(z^{\prime}\right) \geqq 1$. There exists a vector $z^{\prime \prime}=z+\zeta z^{\prime}$ such that ζ is a unit and $Q\left(z^{\prime \prime}\right)=Q\left(z^{\prime}\right)$. For this $z^{\prime \prime}$, we have $B\left(z^{\prime \prime}, M\right)=$ $B\left(z^{\prime}, M\right)=0$. Hence there is an isometry $\phi \in O(M)$ with $\phi\left(z^{\prime}\right)=z^{\prime \prime}$. Proposition 3 (ii) can now be used on $\phi(x)$ and y, with $u=z$.
(ii) $\operatorname{ord} Q(z)=\operatorname{ord} Q\left(z^{\prime}\right)=0$. Since $Q(z)-Q\left(z^{\prime}\right)$ is not zero, the residue field $o / \pi 0$ must possess more than two elements. And since ord $B(x, w+\zeta z)=0$ for all units ζ, we can choose a unit ζ such that $\operatorname{ord} B(y, w+\zeta z)=0$ as well. Now Proposition 3 (ii) can be used with $u=w+\zeta z$.
(2) Both a and b are nonunits. Then ord $a(1-\varepsilon) \geqq 2 m+1$. Here $Q(z)-Q\left(z^{\prime}\right) \equiv 0 \bmod \pi 0$. Hence there is an isometry $\phi \in O(M)$ such that $\phi(z) \equiv z^{\prime} \bmod \pi M$. Now we can rewrite

$$
\begin{aligned}
& x=\pi^{m+1} a^{\prime} v+w+\pi^{m} z \\
& y=\pi^{m+1} b^{\prime} v+\varepsilon w+\pi^{m} z+\pi^{m+1} \bar{z}
\end{aligned}
$$

where $\bar{z} \in M$. Since x and y are primitive, z must also be primitive. Hence there exists a primitive vector $z^{\prime \prime} \in M$ which decomposes M as:

$$
M=\left(\mathrm{o} z \oplus \mathfrak{o} z^{\prime \prime}\right) \perp M^{\prime}
$$

If $\operatorname{ord} Q(z) \geqq 1$, we may choose $z^{\prime \prime}$ so that $\operatorname{ord} Q\left(z^{\prime \prime}\right)=0$. Hence the hypothesis of Proposition 3 (ii) is satisfied with $u=z^{\prime \prime}+w$. Assume now ord $Q(z)=0$. If we can choose a vector $z^{\prime \prime}$ with ord $Q\left(z^{\prime \prime}\right)=0$, we are again done. Otherwise we can choose a vector $z^{\prime \prime}$ with $Q\left(z^{\prime \prime}\right)=0$. Let $\gamma=(\varepsilon-1) / \pi^{m}$. Consider the Eichler transform $E_{r w}^{z^{\prime \prime}}$ on x :

$$
E_{\gamma w}^{z^{\prime \prime}}(x)=x+B\left(x, z^{\prime \prime}\right) \gamma w-B(x, \gamma w) z^{\prime \prime}-Q(\gamma w) B\left(x, z^{\prime \prime}\right) z^{\prime \prime}
$$

An easy calculation shows that

$$
x-E_{r w}^{z^{\prime \prime}}(x) \equiv \varepsilon w \bmod \pi^{m+1} L
$$

Hence

$$
y-E_{r w}^{z^{\prime \prime}}(x) \equiv 0 \bmod \pi^{m+1} L
$$

Proposition 3 (iii) can be applied to y and $E_{r w}^{z^{\prime \prime}}(x)$, with $u=\pi^{h} v$.

References

1. J. S. Hsia, An invariant for integral equivalence, Amer. J. Math., 93 (1971), 867-871.
2. , Integral equivalence of vectors over depleted modular lattices on dyadic local fields, Amer. J. Math., 90 (1968), 285-294.
3. - Integral equivalence of vectors over local modular lattices, Pacific J. Math., 23 (1967), 527-542.
4. —, Integral equivalence of vectors over local modular lattice, II, Pacific J. Math., 31 (1969), 47-59.
5. D. G. James, On Witt's theorem for unimodular quadratic forms, II, Pacific J. Math., 33 (1970), 645-652.
6. M. Kneser, Witt's Satz für quadratische Formen über lokalen Ringen, Nach. der Akad. Wiss. Göttingen, II, Math-Phys. Klasse, Heft, 9 (1972), 195-205.
7. O. T. O'Meara, Introduction to Quadratic Forms, Springer Verlag, 1962.
8. O. T. O'Meara and B. Pollak, Generation of local integral orthogonal groups, Math. Zeit., 87 (1965), 385-400.
9. -, Generation of local integral orthogonal groups, II, Math. Zeit., 93 (1966), 171-188.
10. A. Trojan, The integral extension of isometries of quadratic forms over local fields, Canad. J. Math., 18 (1966), 920-942.

Received August 31, 1977.
Massachusetts Institute of Technology
Cambridge, MA 02139

