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DOUBLE COSET AND ORBIT SPACES

D. K. HARRISON

It is our purpose to study abstractly and in general,
the structure of the set of all double cosets of a group
with respect to a subgroup. In our first section we allow
the groups to be infinite, and focus on a ternary collinea-
tion relation. If X, Y, Z are double cosets, we say they are
collinear if there exists xeX,y eY,zeZ with x y z=l. This
relation is abstracted and forms the basis of that section.
In the second section we essentially insist the groups are
finite, and count the double cosets which products from two
cosets can appear in (i.e., count all Z with x yeZ for xe
X, y e Y). We abstract the properties that these numbers
possess, and study their implications. The orbit space of
conjugacy classes of a finite group can be taken as a set of
double cosets (in the holomorph of the group). This set has
a natural dual, and in certain instances other sets of double
cosets have one also. We study this situation in the third
and last section by use of a complex matrix which enjoys
some of the properties of the character table of a finite
group; this may be thought of as another approach (slightly
different than Brauer's pseudogroups) to character tables
as a thing in themselves.

We have restricted attention in all three sections to a single
operation. There are applications, particularly to valuations, of
two operation systems where the additive structure is that of an
orbit space, but in order to keep this paper from being too long
we do not include those here.

We are grateful to Kenneth A. Ross for pointing out that
several harmonic analysts (see [5], [6], and [11]) have considered
these same problems with certainly related solutions. We believe
we have minimized overlap, except for a crucial proof that the set
of double cosets does satisfy the properties we wish to generalize,
a proof which is one of Jewitt's ([6]), which we include for the
reader's convenience. We wish to acknowledge helpful conversations
with Horn Nath Bhattarai, James W. Fernandez, and William
McClung.

1* Double coset spaces. If H is a subgroup of a group G,
the set of double cosets, G//H = {HaH\aeG}, is a group only when
H is normal in G; however, in genaral it carries some structure
which is retained by the following concept. The relation Δ which
we use, in many cases is, and in general can be thought of, as a
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sort of collinearity. By a Pasch geometry (alias multigroup or
hypergroup, see [3]) we mean a triple (A, Δ, e) where A is a set, e
is an element in A, and Δ is a subset of A x A x A such that:

(1) for each aeA there exists a unique be A with (α, b, e) e Δ;
denote 6 by α*,

( 2) e* = e and (α*)* = α for all aeA,
( 3 ) (a,b,c)eΔ implies (6, c, α) e Δ, and
( 4 ) (Pasch's axiom) (α^ α2, α3), (αx, α4, α5) e Δ imply there exists

an a6eA with (α6, αf, α2), (α6, α5, αf) 6 // (see mneumonic diagram
below).
We have so labelled (4), because when A is the real projective plane
and Δ is collinearity, then (4) is expressed by the following diagram:

FIGURE 1

EXAMPLE 1.1 (see [4]). Let H be a subgroup of a group G.
Let G//H = {HaH\ a e G}. Let

J = {(X, Y,Z)e(G//Hγx\lxeX,ye Y,zeZ with

Then one easily checks (G//H, Δ, H) is a Pasch geometry.

EXAMPLE 1.2. Let F be a group of automorphisms of a group
G. Let G/ί7 = {{/(α) | / e F) \ a e G) be the set of orbits. Let

Δ = {(X, Y,Z)e(G/FΓ\lxeXfye YyzeZ with â s = 1}.

Then one easily checks (Cr/ί7, Δ, {!}) is a Pasch geometry. This can
be viewed as a special case of the last example, for it is isomorphic
to G x F//F where G x F is the split extension of G by F with
the given operation of F on G.

EXAMPLE 1.3. We say a Pasch geometry (A, Δ, e) is sharp if
for each a, be A there exists at most one ceA with (α, 6, c) e z/.
One can show there always is at least one such c, and if α 6 denotes
c#, one checks a group results. Conversely, if G is a group, one
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gets a sharp Pasch geometry by letting Δ = {(a, b, c) eG3x\abc — 1}.

EXAMPLE 1.4 (compare [7]). Protective spaces in which lines
have exactly three points are rather transparent since they corres-
pond exactly to groups in which every element is its own inverse;
i.e., to vector spaces over Z2. Hence in the interest of simplicity
we use the following definition. By a (not necessarily Desarguean)
protective space we mean a pair (P, ^f) where P is a set and ^f
is a set of subsets of P, each of which has at least four elements,
such that:

(1) p, qeP, p Φ q imply 3 unique L e ^f (denoted by Lpq) with
{p, q} C L, and

( 2 ) (the real Pasch axiom) p2, p8, p4, p5 distinct in P, and pt e
Lp2p3 n Lp4pδ i m p l y 3 p 6 e L p 2 p , Π Lp3pδ.

Let (P, J2?) be such. Let e be an element not in P and let
p* = p u {e}. For plf p2, pz e P, we let (pίf p2, p3) be in Δ if and only
if they are distinct and collinear (meaning pz^Lpj)2)9 or they are
equal (meaning p1 == p2 = pz). We also let (e, e, e) and (β, p, p),
(ί>> β> P)» (P* V, e) be in Δ for all p e P . A tedius checking of special
cases gives that (P#, Δ, e) is a Pasch geometry.

EXAMPLE 1.5. Let L be a lattice with least element e. Let

ΔL = {(α, 6, c) 6 L3a? I α ^ 6 V c, 6 ^ α V c, c ^ α V 6} .

Then we show (L, 4£, e) is a Pasch geometry if and only if L is
modular (Proposition 1.8).

A Pasch geometry (A, Δ, e) will often simply be denoted by A,
in which case we may either write ΔA for Δ and eA for e, or simply
let context descriminate between possible ambiguities. Also, when
the context is clear, we will sometimes simply write "geometry" for
"Pasch geometry".

Two lemmas which are easily checked for an arbitrary Pasch
geometry A are: (α, 6, c) e Δ implies (c*, &*, α*) e Δ, and a?, y e A implies
3z e A with (as, #, z) e J .

Let A, B be geometries. By a (geometry) morphism from A
to B we mean a subset f oί A x B such that:

( 1 ) for each a e A there exists a 6 6 A with (α, b) e f,
( 2.) (e, b)ef implies b = e,
( 3 ) (α, δ) e / implies (α#, 6#) 6 / , and
( 4 ) (alf α2, α*) e 4o (a, b) e f imply there exists b19 b2eB with

(α» δi), (α2, δ2) e / and (6X, δ2, δ
#) e z/£.

We call a morphism / sharp when it is a map (i.e., when aeA
implies there is at most one beB with (α, δ ) e / ) , and call it strict
when the converse to (4) holds; i.e.,
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( 5 ) (a19 &i), (α2, δ2) ef, (b19 b29 6*) e ΔB imply there exists an a e A

with (a19 a29 α#) e J^ and (a, b) ef.
If C is a geometry, # is a morphism from B to C, and / is a

morphism from A to B9 one checks #°/ is a morphism from A to
C, where #°/ denotes

{(α, c) e A x C| 3δ 6 B with (α, b)ef and (6, c) e g) .

If / and g are sharp (respectively strict), then gof is sharp (respec-
tively strict). Since the identity map is a morphism (which is
sharp and strict), we have the category of Pasch geometries (and
the sharp and strict subcategories). One checks an isomorphism
from A to B is a bijective map /: A-+B with/(e) = β and (aL9 a29 α8) e
ΔA if and only if (/(αj, /(α2), /(α8)) 6 ΔB. We write A ^ 5 only if
such exists. By a homomorphίsm we mean a sharp and strict
morphism. If we identify groups with sharp geometries, the cate-
gory of groups is a full subcategory of the category of geometries
with homomorphisms. Most of the elementary properties of the
category of groups extend to this category.

By a subgeometry of a geometry A we mean a subset S of A
such that eeS and (sί9 s29 α) eΔ9 sί9 s2eS imply αeS. Note that if
A is a group (i.e., is sharp), a subgeometry is the same as a sub-
group. We call a subgeometry S of A normal (see [4]) if (s, α, 6) e
Δ9 seS imply there exists 8XeS with (s19 δ, α) 6Δ. If T is any
subset of A, we denote the intersection of all subgeometries of A
which contain T by (T) and call it the subgeometry generated by
T. Note if S is a subgeometry of A, by letting Δs = ΔA D S3% S is
itself a Pasch geometry.

Let S be a subgeometry (not necessarily normal) of a geometry
A. For a9beS write α — 6 if 3^, s 2 eS and x e A with (α, s19 x*)9

(x9 b\ s2) e Δ. One checks this is an equivalence relation. For a e A
let [α]s (or simply [α]) denote {b e A \ a ~ b}. Let A//S denote
{[a] I a e A}. One checks [e] = S. Let

Δu//S) - {(X, Γ, Z) 6 (A//SY* \lxeX9yeY9zeZ with (a, y9 z) e 4J .

PROPOSITION 1.1 (compare [4]). ί/βί S be a subgeometry of a
Pasch geometry A. Then A//S is a Pasch geometry. The natural
map a \-> [a]s is a sharp morphism from A to A//S. It is strict
(i.e., a homomorphism) if and only if S is normal.

The proof is a routine check and is omitted.

PROPOSITION 1.2. Let A and B be Pasch geometries. Let f be
a homomorphism from A to B. Let Kf = {α e A | f(a) = e) and
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If = {/(α) I a e A) Then If is a subgeometry of B, Kf is a normal
subgeometry of A, f induces an isomorphism f from A//Kf onto
If, and f can be factored as f=i°f°j where j : A-+ A//Kf and
i:If->B are the natural homomorphisms.

Proof. eeKf and if (kίf k2, a) e ΔA, k19 k2 e Kf, then (/(fcj, f(k2),
f(a)) eΔ B so (e, e, /(α)) 6ΔB so (e, f(a), e) 6 J 5 so f(a) = β* = e so αe
if/. Thus if/ is a subgeometry. If [αj = [α2], then (α^ &3, x*)9

(x, at, h) e ΔΛ where k3, k4 e Kf. Thus (/(αj, β, /(a?)1), (f(x), f(a2)*, e) e
^ so f(a2)* = f(x)* and (e, /(a?)*, /(αj) e z/ΰ, so /(α2) = (/(α2)*)* =
(/(x)*)* = fix) and (/(a?)*, /(αx), β) 6 ΔB. Thus /(αx) = (/(a?)*)* - /(a?).
We get /(αx) = /(αa). Thus [α] ι-> f(a) is a well-defined map which
we denote by /. Let /(α3) - /(α4). Then (/(α3), /(α|), β#) e ΔB, so
since / is strict, (α3, αf, α#) 6 ΔA, (a, e) e f for some aeA. Thus
(α*, e*) e / so α* e uT/# Also β 6 iΓ/ and (αx, e, αf), (αlf a% α*) 6 J 4 so α x~
α2 so [αj — [αj. Thus / is injective. The proof is easily continued
in this fashion.

PROPOSITION 1.3 {see [4]). Let A be a Pasch geometry. If S
is a subgeometry of A and T is a normal subgeometry of A and
S T denotes {xe A\ls e S, t e T with (s, t, x) eΔ}9 then S T is a
subgeometry of A, S n T is a normal subgeometry of S, and

Proof. This is easily checked using among other things s M>
[s]τ and the last proposition.

PROPOSITION 1.4. Let S be a subgeometry (not necessarily nor-
mal) of a Pasch geometry A. Let f: A—> A//S be the natural map.
For T a subgeometry of A which contains S, T//S (which is the
same as {f(t)\te T}) is a subgeometry of A//S, and

(AIIS)H(TIIS) = A//T.

Moreover, this gives a bijective inclusion preserving correspondence
between the set of all subgeometries of A which contain S and the
set of all subgeometries of A//S. Also normal correspond to normal
in this correspondence if and only if S is normal in A.

Proof. This is a long but straightforward check which we omit.
We call a geometry A abelian if (alf a2, α3) e ΔA implies

(α2, al9 α3) 6 ΔA.
Let A, B be geometries. We define
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ΛXB = {((«» δj, («2, δ2), (α8, W) e (A x S H f o , α8, α3)

e Λ, (δi, δ2, δ3) e Λ} ,

and check that (A x 5, AAXBJ (e, e)) is a geometry. For notation we
let Sh (respectively St) denote the category of all Pasch geometries
with sharp morphisms (respectively with strict morphisms). Thus
if C is a geometry, Sh(A, G) denotes the set of all sharp morphisms
from A to C, and St(A, C) denotes the set of all strict morphisms
from A to C. We define pA e Sh(A x B, A), pB e Sh(A x B, B), inA e
St(A, A x JS), inBeSt(B, A x B) by p^((a, 6)) = a, pB((a, 6)) = 6,
inA(a) = (a, β), mB(δ) = (e, 6) V a e i , beB, and check these maps are
in the sets we claim they are. It is easy (but tedious) to check
the following:

PROPOSITION 1.5. For A, B, C Pasch geometries we have a
natural identification

Sh(C, Ax B) < > Sh(C, A) x Sh(C, JS) (h < > (pAoh, pBoh))

and if in addition C is abelian, we have another natural identifi-
cation

St(A x B9C) < > St(α, c) x St(5, C) (h < > (hoinA, hoinB)) .

Let G be a group. By a G-geometry we mean a Pasch geometry
A together with a group homomorphism, a*-+fa, of G into the
group of isomorphisms of A to itself. We usually write a(a) for
fa{a). Let A and B be G-geometries. By a G-morphism from A to
B we mean a morphism / from A to B such that (α, δ ) e / implies
(<x(α), α(δ)) e / for all aeG. One checks these compose so we have
the category of G-geometries. One checks A x B is made into a
G-geometry by defining a((a, b)) = (α(α), α(6)) for all α e G, (α, δ) e
AxB. By a G-subgeometry of a G-geometry A we mean a sub-
geometry S of A such that α(s) e S for all S G S and aeG. Such is
clearly a G-geometry in its own right. One can check that all the
previous propositions hold with "geometry", "morphism," and "sub-
geometry" prefixed everywhere they appear by "G-".

Let If be a subgroup of the group G. Let A be a G-geometry.
Then A is naturally an IZ-geometry (by restricting the operation to
H). For a, be A write a ~ b if a{a) = b for some aeH. This is
an equivalence relation, and we write (ά)H (or simply <α» for the
unique equivalence class containing α. Let A/H denote {(a)\aeA),
and

4A/H = {(X9 Y,Z)e(A/H)3*\lxeX,ye Y,zeZ

with (x, y, z) e ΔA) .
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One checks (A/H, AA/H, <β» is a Pasch geometry. For XeG//H let
fx denote

{(Y, Z)e(A/H)2x\lye Y,zeZ,aeX with a(y) = z) .

One checks this is a morphism from A/H to itself, and if H is
normal in G it gives A/H the structure of a G//i?-geometry. We
have:

PROPOSITION 1.6. Let G be a group and A be a Pasch G-geo-
metry. Let H be a subgroup of G. Then A/H is a Pasch geometry.
If in addition H is normal, then A/H is a G//H-geometry. If f is
the natural map from A to A/H and g is the natural morphism
from A/H to A then f is a sharp morphism, g is a strict morphism
and fog is the identity morphism of A/H.

PROPOSITION 1.7. Let H be a group. Let A be a Pasch H-
geometry. Then there exists a natural order preserving bijection
between the H-subgeometrίes of A and the subgeometries of A/H.
This bijection is S\-> {(s)\s e S} = S/H. Moreover, if S is an H-
subgeometry of A, then

(A//S)/H=(A/H)//(S/H)

by ([a]s)H -> K<I>H\S/H.

Proof. This is a routine long check which we omit.

By the split extension A _x_ H of a Pasch ίZ-geometry A we
mean (A x H, A, (e, 1)) where Δ consists of all

((a19 a,), (α2, a2), (α3,

with

(alf α^αg), a^aM)) e ΔA and (au aif a3) e A

One checks this is a Pasch geometry. If / is an iϊ-morphism from
A to an iϊ-geometry B, we let f x_ H denote

{((a, a), (b, ά))\(a, b)ef, aeH} .

One checks this gives a functor, and allows us to extend the notion
of an ίί-geometry to the case where H is an arbitrary Pasch geo-
metry in a way which we now give. Let H be a Pasch geometry.
By an H-geometry we mean a triple (B, S, f) where B is a Pasch
geometry, S is a normal subgeometry of B, and / is an injective
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homomorphism from H into B such that S Γϊ 1/ = {e} and S If = B.
We often denote an H-geometry (B, S, f) simply by S, in which
case we write Bs for B and fs for /. If T is another i7-geometry,
a H-morphism from S to Γ will mean a morphism # from Bs to
£ Γ with #°/s = fτ and with s 6 S, (s, 6) 6 g implying b e T. We denote
B/flf by S/ίΓ. Proposition 1.7 can now be generalized to this
situation in a natural way.

Let A be a Pasch geometry. Let S^(A) be the set of all normal
subgeometries of A. With inclusion &*(A) is a partially ordered
set, and one checks if Si9 iel, is an indexed family of normal sub-
geometries of A then < U S*> is in S^(A) and is a least upper bound
of the Si9 iel. Hence <9*{A) is a complete lattice. If S9 TeSf(A),
the greatest lower bound, SAT, of S and Γ is

{αeAlaiSΓe^A) with aeNQSn T} .

If A is abelian this is just the intersection; in this case one checks
£f(A) is modular so by the next result S^(A) is an abelian Pasch
geometry.

PROPOSITION 1.8. Let L be a lattice with least element e. Let

Δ = {(%, y,z)eL3x\χ\/y = xVz = yVz} .

Then (L, A, e) is a Pasch geometry if and only if L is modular.

Proof. Suppose L is modular. All but Pasch is easily checked.
One checks x^yVz, y£wVu implies x £ ((x V w) A (z V u)) V w.
Now let (alf α2, α3), (αlf α4, αB) 6 4. Letting α6 = (α4 V α2) Λ (α5 V α8) we
have α6 ^ α4 V α2. Since α2 <£ αx V α3 and α ^ ^ V α5, by letting
* = a2, y = alf z = α8, w = ai9u = α5, we get α2 ^ (α2Vα4)Λ(α3Vα5) V
α4 = α6Vα4. Similarly, we get α4^α6Vα2. Thus (α6, α4, α2) e J. Simi-
larly, we show (αβ, α5, α3) 6 zί.

Now conversely, suppose L is not modular. Then Ix <* z with
a? V (y A z) Φ (x V y) A z. This implies x Φ z so x < z. It also implies
xV(y Az)<(xVy) Az (one checks). Let b = x V (y A z), a = (xVy)A
z, c — y. Then one checks αVc — b\Jc — x\Iy. Applying this same
sequence of arguments to the dual of L gives a Ac — b Ac = z Ay.
Thus (a V c, α, c), (6 V c, 6, c) e Δ. Since αVc = ί>Vc, if L were a
geometry there would exist & weL with (w, 6, α), (w, C,C)GJ (one
checks 6* would have to be 6 and c* would have to be c). This
would give w <^bV a — a (since & < a) and ^ ^ c V c = c so w^a A
c. Thus bVw ^bV (a Ac). But a g 6 V w so a <: δV(αΛc). Thus
α^ί)V(αΛc) = δV(6Λc) = 6 which contradicts that b < a. The
proposition is proved.
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Since a modular lattice can be reconstructed from its geometry
(a ^ b if and only if (α, b, b) ez/), we can view a modular lattice as
a special kind of geometry and thus use our terminology for
morphisms. For A a geometry and aeA, let S^{a) be the greatest
lower bound of all TeS^(A) with a e T. At least if one restricts
attention to abelian geometries, a ι-> ̂ (a) and S H-> {(S, α) 6 *^(A) x
A\ae S} are monads and comonands respectively in the appropriate
categories.

The category of projective spaces is a full subcategory of the
category of Pasch geometries; it can be recovered as follows. For
(P, £f) a projective space with P nonempty, (P*, A, e) is a geometry
which is not sharp and which satisfies S^(a) = {ef a} for all aeP*
(see Example 1.4). Conversely, let A be a Pasch geometry such
that {e, a} is a subgeometry of A for all α e i , and A is not sharp.
Let A* = A\M, and for a,bzA*,aΦb let

Lab = {c6 A*I(α, 6, c)ezί}U {α, 6} ,

and let £f = {Lab | α, δ 6 A* with α ^ 6}. With some straightforward
drudgery one can check that (A*, Jίf) is a projective space with
A* nonempty. Also these constructions are inverses of each other.

Let G be a group (not a general geometry simply for simplicity).
We call a G-homomorphism f: A^ B central if (/(α), blf b2) e J 5 implies
(/(α), δ2, δj e 4, for all aeA.

Let S be a G-group (i.e., a sharp G-geometry). By an S-G-
geometry we mean a pair (/̂ , A) where A is a G-geometry and fA

is a strict G-morphism from S to A. One checks then fA must be
a G-homomorphism. We often denote (fΛ, A) simply by A. By an
S-G-morphism from an S-G-geometry A to an S-G-geometry B we
mean a morphism fe from A to B with feo/^ = fB, One checks these
compose so we have the category of S-G-geometries. We wish
particularly to have Proposition 1.5 generalized to this context. For
A and B S-G-geometries we let Sh(S_G(A, B) (respectively St)S_ί?(A, B))
denote the set of all S-G-morphisms which are in Sh(A, B) (res-
pectively St(A, B)). By Proposition 1.5 there exists a unique sharp
G-morphism / from S to A x B with pA°f = fA and pB°f = fε
(simply f(s) = (fA(s),fB(s))). One checks (using S is a group) that /
is strict, and so makes A x B into an S-G-geometry. We denote
/ by fA x fB. By Proposition 1.2 the image I oί fA x fB is a G-
subgeometry of A x J5. In general, we cannot make the G-geometry
A x BUI into a S-G-geometry, but when S is abelian and both
fA and fB are central we proceed as follows. S an abelian group
implies sv-+s~ι is a G-isomorphism (thus strict), so if /j(s) = fB{s~x)
for all 8 e S, /J is a strict G-morphism (actually a G-homomorphism)
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and makes B into an S-G-geometry. We let I be the image of
/A x fi and let A x SB denote the G-geometry A x B//I. Using
that both fA and fB are central, we check that I is normal in
A x B, and thus by Proposition 1.1 get that the natural map g:
i x 5 - > i x 5 β is a strict G-morphism. Letting lB(s) = eVs6 S we
check that 1B is a strict G-morphism and that fA x 1B is strict, and
use go{fAx 1B) (i.e., s ι-> [(fA(s), e)]z) to give i x 5 ΰ the structure
of an S-G-geometry. The apparent lack of symmetry is only ap-
parent, since if seS,

((Λ(β), e), (e, e), (fA(s), e)% ((fA(s), e), (e,/*(*))*), (fA(s*), /j(s*)) e Δ

so

PROPOSITION 1.9. Let G be a group and S be a G-group. Let
A, B, C be Pasch S-G-geometries. Then we have a natural identi-
fication

Shs_G(C, AxB)< > Shs_G(C, A) x S W C , B)(h < > (pAoh, pBoh))

and if in addition C is abelian, S is abelian, and fA, fB, are
central, we have another natural identification

Sts-G(AxsB, C)< ^SVG(A, C)xSts_G(B, C)(h< >(hogoinA, hogoinB)).

Proof. Using Proposition 1.5 this is a long routine check which
we omit.

We end this section with a construction which gives examples
and also gives some insight into how a single element behaves in
a geometry. Let A be an arbitrary Pasch geometry (not an S-G-
geometry merely for simplicity). Let T be any subset of A which
is closed under ( )* (i.e., PeTVteT) with e$T. For X either A
or T, we define an X-word to mean an w-tuple, n ^ 0, of elements
in X. If a = (a19 α2, , an), β — (blf δ2, , bm) are X-words, we
let a% denote (α|, , αf, a{) and let a β denote (alf a2, , an9 b19

b2, •••,&»)• Since (α /3)* = β*-a\ the set of all X-words forms a
monoid with involution. We let D(X) denote the set of all X-words
a — (xί9 x29 , xn) such that: either n — 0, or n — 1 and xL — e9 or
n = 2 and x2 = xf9 or n = 3 and (xί9 x29 x3) e ΔA9 or n ^ 4 and

3α2, , α%_2 6 A wi th (x19 x29 α2), (αf, a?3, α3), , (α*_2, »»-i, «») e 4 A . One

easily checks the following:

( 1 ) (*i, ««,•••, «•) e D(T) implies (t29 . , tn, t,) e D(T),

( 2 ) ae D(T) implies α # 6 D(T)9
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(3) a,βeD(T) imply a-βeD(T),
( 4 ) (tlf , tn), (819 , O 6 JD(Γ) and ίn = sf imply (ί l f , tn_19

s2, ...,sm)eD(T),
( 5 ) t19t2eT imply fo, ί2) e D(Γ) if and only if t2 = if, and
(6) for teT, (t)$D(T).

We now broaden our point of view and start with a set T, a
map ( )# from T to T, and a set D(T) of T-words such that (l)-(6)
above hold. We say a set J of T-words is inversίve if a β* e D(T)
for all a, βeJ. Such sets are inductively ordered by inclusion; we
let B denote the set of all maximal inversive sets of T-words. We
let

ΔB - {(J,K,L)eB3x\a β ΎβD(T) for all aeJ,βeK,yeL} .

For J an inversive set of T-words, we let J* denote {a*\aeJ} and
D(T):J denote the set of all T-words a such that a-βeD(T) for
all βeJ. One checks Je B if and only if Z>(T): J - JK With this
one can check that (B, ΔBf D{T)) is a Pasch geometry. For teT we
let /OO denote Z>(T): {(£*)}. We let 5* denote 5\{e} (where e is
D(T)). One checks / is an injective map from T into J5*. In fact,
one checks:

(a) for ί,, • , ίn e Γ, (ίlf • , ίn) e D(T) if and only if (/(«, ,
f(tn))eD(B*),

(b) for each b e B*, 3ίx, • •, ίw 6 T with (/(ί,), , /(ίΛ), 6*) 6

(c) for 6lf 62, δ 3 eβ*, (6X, δ2, bd)edB if and only if for all &„ •••,
»», 2/i, , 2/«, «i, , «r'6 Γ with (/0*O, , /(»n), M), (/(l/i), , f(vj,
bΐ), (/(«!, , /OO, 61)) in D(B*), we have

and

(d) if if is any set of £*-words such that α /3*eJ5(β*) for all
a,βeK, then 3δe£ with a-(W) eD(JB*) for all αeϋΓ.

Moreover, (a)-(d) characterize iB in the sense that if C is any
geometry and g is a map from T to C such that (a)-(d) hold with
B replaced by C and / replaced by g, then there exists a unique
isomorphism h from C onto B with / = fco#. We call B the word
completion of T.

Now let A be any abelian Pasch geometry. Let t be any
element in A with t Φ e. Either t — £# or t Φ £#; we consider these
two cases separately.

First suppose t — <*. Let r(t) be the smallest odd positive inte-
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ger (if such exists) with (t,t, , t) e D({t}) (here r(ί) copies of t).
If no such exists let r(ί) = <». Using (l)-(6) above one checks the
structure of D({t}) is determined exactly by r(t). If r is any odd
positive integer with 3 <; r, or r = ©o, we let IT be any set with
one element, say T = {1}, let 1* = 1, let JD(T) be the set of all T-
words (1,1, , 1) (n copies) where n — 0 or n is even or n ^ r,
check that (l)-(6) above hold, and let B(r) denote the word comple-
tion of this T. We let 6(1) denote the natural image of 1 in B(r),
and using (a)-(d) get that r(δ(l)) = r.

Now suppose t Φ t*. We let k(t) be the smallest positive integer
k (if such exists) such that there exists an integer m ^ 0 with
(ί, , ί, t%, , t%) e D({t, £*}) (here k + m copies of £ and m copies
of t*). If no such & exists we let k(t) = oo. If &(£) ̂  oo and n is
any integer, we use 1.-6. to check that there exists a smallest
integer m ^ — 1 with (£, , ί, ί#, , ί#) e D({ί, ί#}) (here f̂c + m + 1
copies of t and m + 1 copies of t*). We denote m by fe(n). With
(l)-(6) above we check that h is a function from Z (the integers) to
Z with:

(1) MO) - - 1 ,
(2) -1 ^h(n), VneZ,
( 3 ) h{nx + n2) ^ fe^) + h(n2) + lV^!, ^ 2 6 Z,
(4 ) Λ(n! + n2) ^ ^(^J + h(n2)Vn19 n2e Z with /ι(^J ^ — 1 and

h( — n2) Φ — 1, and

( 5 ) A(-tt) - n /b + A(w)Vw 6 Z, for k - A(-l) ~ h(l).

We call such a semi-subadditίve integer function. One checks
that h exactly determines the structure of D({t, £*}). Conversely,
we choose any convenient set with two elements, say T = {1, —1}.
We let 1* = — 1, (—1)# = 1. If h is a semi-subadditive integer func-
tion we let k = h( — l) — h(ϊ)9 and let D(T) be all permutations of
Γ-words of the form (1, , 1, — 1, , — 1) (here p copies of 1 and
q copies of — 1 where 3 integer n with p — q = nk and h(ri) + l<^q).
For the other case, if A; is to be oo, we let D(T) be all permuta-
tions of (1, •••, 1, — 1, •••, —1) (p copies of 1, q of —1, where p = q).
In both instances, one checks (l)-(6) hold. We denote the resulting
word completions by B(h) and -B(°°, °°) respectively.

We call r, °°,h, or (oo, oo), whichever corresponds to t, the type
of t (for t Φ e). We let 1 be the type of e and let 5(1) denote the
trivial group 1.

2* Double coset spaces for finite subgroups* If H is a finite
subgroup of a (not necessarily finite) group G, the set G//H of
double cosets has some extra number theoretic properties in addition
to being a Pasch geometry. By a probability group (alias discrete
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convo, or hypergroup, see [5], [6], [8]), [11], we mean a pair (A, p)
where A is a set and p is a map from A3* to the nonnegative reals,
(a, b, c)\-^pc{a, b) (which we read as "the probability that a-b is c")
such that:

(1) for a, be Af pe(a, b) is zero for all but finitely many c in
A, and Σcpc(a, b) = 1,

( 2 ) for α, b, c, de A,

Σ Px(af b)pd(x, c) = Σ 2>d(α, 2/)p,,(&, c) ,
« y

(3) there exists an e e A with pa(e, a) = 1 = pα(α, e) for all
αei,

( 4 ) for each a e A, there exists a unique α * e i with pβ(a, α#)>
0, and

( 5 ) for α, 6, c e A,

ί>β(α, 6) = PAb\ α#) .

Note that (2) is just associativity in the probabilistic sense
(using the usual rule for composite probabilities) and (5) expresses
that the inverse reverses multiplication. If (A, p) is a propability
group, one checks that the identity e is unique, e# = β, and (α*)#= a
for all aeA. We often denote (A, p) simply by A. We let AA

denote {(α, 6, c) e A3* | pe*(af b) > 0} (i.e., the set of all (α, 6, c) such that
"a b'C could be e"). On easily checks:

PROPOSITION 2.1. If A is a probability group, then (A, ΔA, e)
is a Pasch geometry.

If A is a probability group and a e A we note pe(a, α*) > 0 and
write ha(p) (or simply Λβ) for l/pe(a, α#). If r is a positive integer,
we say A is r-ίntegral if &i/r and pc(α, b)h1jrh\lr/h1

c

lr are integers for
all α , i , c e i (here ( )1/r denotes as usual the unique nonnegative
rth root). One can show that if A is finite and r-integral and rφl,
then A is 2-integral, so r = 1 and r — 2 are the two cases that
interest us. We call A abelian if pe(a, b) = pc(6, α) for all α, 6, c e A.

EXAMPLE 2.1. (see [6]), [3]. Let H be a finite subgroup of a
group G. For X, Y, ZeG//H (the set of double cosets), let

p,(X, Y) = \xHyΠZ\/\H\

where xeX, y e Y (it is independent of this choice). We will check
this makes G//H into a probability group. The next lemma shows
this probability group is 1-integral
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LEMMA 2.1. Let H be a finite subgroup of a group G. For
x,y,ze G,

\HzH\l\H\ = \H\I\HC\ zHz~ι\ = h(HtH)

which is an integer. Also

\xHy n HzH\.\zHz~l Π H\li\xHx~ι n H\-\yHy~l Π H|)

is an integer.

Proof. Let / map H2x onto fli&ff by f((hu h2)) = Λf1^. Let
zHz~ι D if operate on H2x by h-(h1} h2) = (/&/&„ z~ιhzh2). Each orbit
has Izffz"1 Π if| elements, and / induces a bijection from the set of
orbits. This proves the first conclusion, since H Π zHz~ι is a sub-
group of H. Now let T = {(/&„ fe2) e if2* | x~ιhτιzh2y~ι e H}. One notes
Γ - /-Xα-HΓl/ Π HzH) so

| Γ | - \zHz~1 Π H\-\xHy n JSfeJEf [ .

Let the direct product of (xHx~ι Π if) and (yHy'1 Π if) operate on
?" by (̂ 1, ̂ 2)(Λi, Λ2) = (ΛΊ0Γ\ h2y

lg2

ly) for (^, λ2) e Γ. Each orbit has
\xHx~ι n if \ \yHy~ι n if| elements, and since the number of orbits
is an integer, the lemma is proved.

EXAMPLE 2.2 (see [6]). Let ί1 be a finite group of automor-
phisms of a group G. For X, Y,ZeG/F (the set of orbits), let

pz(X, Y) = \{(x,y)eXx Y\xy = z}\ \Z\/(\X\-\Y\)

where ze Z (it is independent of this choice). We will check this
makes G/F into a 1-integral probability group.

EXAMPLE 2.3 (see [5], [6], [11]). We say a probability group
A is sharp if for each α, be Alee A with pΰ(a,b)=l (i.e., the
underlying geometry is sharp). One defines α 6 = c, checks a group
results, and so checks that a sharp probability group and a group
are essentially the same concept.

EXAMPLE 2.4. Let (P, £?) be a finite protective space (see last
section). Let m be a real number with m > 2 and such that every
line has exactly m + 1 points on it (so if £f is not empty m is an
integer). Let P* = PU {e}, where e is some element not in P, and
let pβ{e, e) = 1 = pβ(e, α) = pα(α, β) for all α e P. Let pβ(α, α) —
l/(m - 1) and pa(a, a) = (m - 2)/(m - 1) for all α 6 P. For a,beP
with α ^ δ and for 0 e La>b (the line through a and 6) with c Φ a
and c ^ bf let pc(α, 6) = l/(m — 1). For those α, 6, c e P * for which
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pc(a, b) has not yet been defined, let pe(a, b) be zero. A long tedius
straightforward checking gives that this is an abelian probability
group (integral when m is an integer).

EXAMPLE 2.5 (compare [9]). Let G = {χlf ••, χ,} be the set of
all irreducible characters of a finite group G. For χ 0eG, χ, Θ can
be decomposed χ θ = Σg1)θyψψ (the sum over all ψeG) where the
gχ,θ,ir are nonnegative integers. Let

, 0) = deg (<f)gχ,θ,ψ/(deg (0)-deg.(χ)) ,

where deg (Γ) = Γ(l) for each Γ eG. Using some elementary pro-
perties of characters one checks this is a 2-integral abelian probabi-
lity group.

We will give more examples as we progress. By a probability
map f from a set A to a set B we mean a map, (α, 6) ι—>/&(&) (which
we read as "the probability that f{a) is b"), from A x B to the
nonnegative reals such that for each a e A, fh(a) is zero for all but
finitely many b e B and Σbfb(a) = 1. If # is a probability map from
B to a set C, we write #©/ for the probability map from A to C
where (g°f)e(a) = Σδ ge(b)fb(a) for all ceC, ae A. If for each
aeAlbeB with /6(α) = 1, we write f(a) for 6, and call / sharp.
We may view each ordinary map from A to B as being a sharp
probability map. By a (probability) morphism from a probability
group A to a probability group B we mean a probability map /
from A to B such that:

(1) /,(*) = 1,
(2 ) /6#(α*) = /6(α) for all α 6 A, b e B, and
(3) there exists a real constant 7 such that for all alf a2e A

and b e B

Σ Pa(alf a2)fb(a) £ τ ( Σ Σ Λ K ) / ^ ) ^ , d))

(the sums over all aeA, CGB, deB respectively).
Note (3) says "the probability that f{a^a2) is b is bounded by

7 times the probability that /(αx) /(α2) is b". We call a morphism
/ strict if equality holds in (3), (for some 7, which must then
necessarily be 1). If / is both strict and sharp, we call it a homo-
morphism. If g is a morphism from B to a probability group C,
one checks that g°f is & morphism from A to C, and #°/ is strict
(respectively sharp) if both g and / are strict (respectively sharp).
Hence we have the category of probability groups (and the sharp
and strict subcategories). If / is a morphism from a probability
group A to a probability group B, we let Δf denote {(α, b) e A x
B\fb(ά) > 0} and check this is a (geometry) morphism from (A, ΔA, e)
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to (B, ΔB9 e) (sharp if / is sharp and strict if / is strict). This
gives a natural functor from probability groups to Pasch geometries
(which preserves being strict and also being sharp). If r is a posi-
tive integer and A and B are r-integral probability groups, we say
a morphism / from A to B is r-integral if h1jrfb(a)/h\lr is an integer
for all aeA, beB. One checks these compose and give a category
(which contains the category of groups as a full subcategory).

If X is any subset of a propability group A, we write n(X)
for Σ* hx (the sum over all xeX; recall h9 = l/pe(x, x*)) and call
this the order of X; note it is finite if and only if \X\ is finite.
Note always \X\<Ln(X). If A is r-integral (for some positive
integer r) and A is finite, then each hx is a positive integer so n{X)
is an integer. By a subgeometry of A we mean a subset S of A
s u c h t h a t eeS, a n d pc(s19 s2) > 0, sί9 s2eS, ceA i m p l y c*eS ( i . e . , a
subgeometry of (A, zf̂ , e)). Note any such is a probability group in
its own right (by restricting p to S3x). By the complex group
algebra of A, we mean the vector space C(A) over C (the complexes)
which has the elements of A as a basis and has multiplication
defined by linearity and a-b — Σpc(a, b)c for all α, be A. One checks
C(A) is an associative algebra with identity. We define aug: C(A)—>
C and σ: C(A) -+ C(A) by aug ( Σ otaa) = Σ <*» and σ(Σ ααα) = Σ ^α*.
Here the aa are complex numbers, and aa is the complex conjugate
of aa. One checks aug is an algebra homomorphism and σ is a
semi-linear anti-isomorphism with σ(σ(v)) —v for all veC(A). We
define an inner product on C{A) by ( Σ <xaa, Σ &δ) = Σ oίaβape(af α

#),
which one checks is linear in the 1st variable, and satisfies (v29 v1) =
fe, v2), (Vi Va, v8) = (vί9 vs σ(v2)) for all v19 v29 v3eC(A). Also, if v^O,
ve C(A), then (v, v) > 0 (where for α e C , α > 0 means α is real
and a > 0). If ha = ha$ for all α e i (which we will see is the case
if A is finite or abelian), then one checks (vx v29 v3) = (v2, (7(̂ 0 v3)
and (cίVi), (/(v2)) = (̂ i> 2̂) for all Vj,, v29 v3 e C(A). If r is a positive
integer and A is r-integral, by the r-integral group ring Z[A] we
mean the free Z-module over Z (the integers) which has a basis in
bijective correspondence with A, wa «-• α, and which has multiplica-
tion defined by linearity and

wa wb = Σi(Pc(a9 b)h1jrh\lr/h1

c

lr)wc
c

for all α, b e A. By taking wα = hHra e C(A)9 for each ae A, we can
take this ring as a subring of C(A). Then cr (restricted to the
subring) gives an involution of Z[A]f the inner product (also
restricted to the subring) maps to Z9 and aug (restricted to Z[A\)
also maps to Z.

The first two conclusions of the next result are from [6].
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PROPOSITION 2.2. Let S be a finite subgeometry of a probability
group A. Let us — Σ s (hs/n(S))s e C(A) {the sum over all s e S).
Then u2

s = us = σ(us) and for any se S, h\ = hs and s-us = us s =
us. If for any X, Y, Z e A//S, we let

pz(X, 7) = Σ Σ Σ Pa(x, s)pz{a, V)hJn(S)

where x e X, y e Y (the sums over all s e S, all ze Z, and all a e A),
then this is independent of the choice of xe X and y e Y and
makes A//S into a probability group. us-C(A)-us is isomorphic to
C(A//S) by Σ oiaa <-* Σ αα[α]5. The natural map from A to A//S is
a sharp morphism. For each YeA//S, Y is finite and n(S)-hγ =
n(Y). If A is finite, then n(S) n(A//S) = n(A).

Proof. Although the first two conclusions could be simply
quoted, for the reader's convenience we outline a complete proof.

For s, 819 s.eSΣua pa(slf s)pe(a, sf) = Σ * Pe(slf a)pa{s, sf) so pS2(su

s)pe(s2, si) = pe(slf s!)pss(s, sf) so pS2(slf s)hSl = pβ#(s, sf)hS2 so

(hJn(S))pS2(slf s)sS2 = Σ Σ Λ > ( S ) ) ^ , s*)s2

= Σ (hJn(S))8t = us .
S2

Also aug (us) = n(S)/n(S) = 1. These two properties characterize
us as an element in C(S), for if v, w e C(S) with aug (v) = l, aug (w) =
1, and /y s = /y, w*s = w for all s e S , then v σ(w) = t; aug (σ(w)) = v
(since aug (σ (t )) = aug 0) = 1) and w σ(v) = te; aug ((7(v)) = w so i;
σ(w) = σ(σ(v)) σ(w) = σ(w σ(v)) = cr(^) and thus v = α (w ). Applying
this first with w for v we get w = <x(̂ ), and then applying it with
a general v, we get v = w. Since %<? = σ(%5) (from letting w be ŵ )
we have hs = fes# for each s e S. For 8, sλ e S, aug (v^s) = aug (sj
aug (%5) = 1, and (sί us) s = sx (w5 s) = Sj. us so sx ^ = us. Also
uS'Us = us aug (w5) = w5.

We make Homc (C(A), C) into a two sided C(A)-module, by defi-
ning (Vi / OOs) to be / O w O for ^ i;,, t;3 6 C(4) and /eHom c

(C(A), C). Let ̂  be us and let h = u f-u for some / in Homc(C(A),
C) with f{x) ̂  0 for all xeA. Then for s1? s2eS and α e i ,

(s1 fe s2)(α) = h(8z a 8U = fiu s^a-s^u) =f(u-a u) = Λ(α) ,

so if we write pc(slf a, s2) for Σ 6 ί>β(βw b)pb(a, s2) we have λ(α) =
Σ c ^cfe, a, s2)h(c). We also note that c e [α]^ if and only if 3Si, s 2 eS
with pc(s19 a, 82) > 0. Since S is finite this implies [a]s is finite. Note
h(c) ̂  0 for all ceA, as is seen by expanding h(c) = f(u-c-u) and
using that / has this property. Choose ze[α] s such that h(z) ̂  fe(c)
for all c e [a]s. Then for s19 s2 e S,
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Σ PΛsu Z, s2)(h(z) - h(e)) = h(z) - h(z) = 0
c

so for all c with pc(slf α, s2) Φ 0, h(z) = h(c) (since all these numbers
are nonnegative reals). Letting st and s2 vary over all possible ele-
ments in S, we have h(z) = h(c) for all ce[a]s. Thus f(u-x u) =

f(u>c u) for all x, c e [a]s. For each deA let f be fd where fd is

defined by linearity and fd(y) = 1 or 0 according as y is or is not d,
for all ye A. This gives u x u = u-c-u for all x,ce[a]s. Thus
for XeA//S we can unambiguously write u-X u for u-x-u where
xeX. The set of all u-X-u with XeA//S certainly generate
u-C(A)-u, and if ^axu-X-u = 0, taking ( , d) gives αF = 0 where
Y=[d]s. Thus this set is a basis of u-C(A) u. If X, YeA//S,
one checks

where the sum is over all Z e A//S. One now easily checks these
Pz(X, Y) satisfy the axioms of a probability group (using the fact
that U'C(A)-u is an associative ring closed under σ).

One checks the natural map from A to A//S is a morphism
with n(S) for constant. Using (2) and (4) of the definition of a
probability group, one checks pc#(a, b)ha = pa$(h, c)hc$. Let Ye A/IS.
For yx e Y, and s9teS, pa{x, s)pt(a, yf) = 0 unless x e Y. Hence

Ps(Y, Y*)(Σ*K) = ΣPs(Y, Y*)K
y y

- Σ Σ Σ Σ (V, 8)pt(a, y*)hshy/n(S) ,
y s t apa

where the first three sums are over all y e Y, the next two are
over all se S, te S9 and the last is over all aeA. This in turn is

Σ Σ Σ Σ PaΦ, s)pt(a, yf)h.hb/n(S)
b s t a

- Σ Σ Σ Σ Pds, a*)hapt(a, y*)hJn(S)
b s t a

= Σ Σ Σ KPtia, yί)hJn(S)
s t a

= Σ Σ Σ p Λ v i t*)hth./n(S)
s t a

= Σ Σ KhJn(S) = n(S)n(S)/n(S) = n(S) ,
s t

where each s and t are summed through S, and each a and b are
summed through A. This proves n(S)hγ = n(Y). If A is finite,
summing over all Y gives the last result, and the proposition is
proved.

The above proposition does not cover the obvious case in which
A is sharp and S is normal but possibly infinite. For this we want
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the following generalization of A being finite. We say a probalility
group A is of discrete probability type if for each aeA there is a
finite set Fa of real numbers with px(a, b) e Fa for all x, b e A. We
call a subgeometry S of A normal if p8(a, b) > 0, s e S, a, be A
imply pt(b, a) > 0 for some teS (i.e., if S is normal in (A, dA, e)).

PROPOSITION 2.3. Let S be a normal subgeometry of a probabi-
lity group A which is of discrete probabitity type. For X, Y, Z e
A//S, let Pz(X, Y) = ΣzPz(%, y) (the sum over all zeZ), where
x e X, y e Y. Then this is independent of the choice of xeX and
y e Y, and makes A//S into a probability group of discrete probabi-
lity type. The natural map f from A to A//S is a (probability)
homomorphism of A onto A//S. If S is finite, the notation of this
and the last proposition agree. Let B be a probability group and
let g be a (probability) homomorphism from A to B. Let Kg =
{a e A\g(a) = e], and Ig be the image of g. Then Ig is a subgeometry
of B, Kf is a normal subgeometry of A, f induces a (probability)
isomorphism f from Af/Kf onto If, and f can be factored as f =
i°f°j where j : A -> A//Kf and i: If —> B are the natural (probability)
homomorphisms.

Proof. Let Y, Z e A//S, aeA. For any x e A let f(x) = Σ* ϊ>,(α, x)
(the sum over all zeZ). Extending / by linearity, we get it in
Homc(C(A), C). For beA,seS

fφ s) = Σ P,Φ, s)f(c) - Σ Σ Pe(b, s)pz(a, c)
c c z

(a>, b)p,(d, s)

and since pβ(d, s) is zero unless de Z this is Σ« Σ* Pviβf b)pβ(v, s)
(where v and z are summed over Z) and since pw(v, s) is zero unless
w e Z this is

Σ Σ P.(α, b)pw(v, s) = Σ Pv(a, b) = f(b) .
V) V V

Now choose yoe Y such that f(y0) = max {f(y)\ye Y}. There are
only finitely many finite sums of elements in Fa which are bounded
by 1 (using A is of discrete probability type) so the above maxi-
mum exists. For s e S we now have

Σ Py(Vo, s)(f(y0) - f(y)) = Σ P»{V» s)(f(y0) - f(w))

so if py(yo, s) > 0, f(y0) = f(y). Now for any y e Ylslf s2eS, y,eY

with (y0, 819 yf), (ylf y\ s2) e ΔA. Thus f(yQ) = f(yx) and (si y, yf) e AA,
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so ls3 e S with {y, β8, yf) e A so f(y) = f{y,). Thus f(y0) = f(y). This
proves the sum Σ* Pz{a> y) (over all z e Z) is independent of the
choice of y e Y. Replacing Z by Z#and using p*(α, 2/) = pz*(y*> a*) we
get that if aeXeA//S, then ^(X, Y) is well-defined. Now the
rest of the proposition is easily checked.

For future use we give a slight strengthening of this last pro-
position. For / a strict morphism from a probability group A to
a probability group B let Kf denote {aeA\fe(a) = 1} and // denote
{beB\la with fb(a) > 0}. One checks Kf is a subgeometry of A
and // is a subgeometry of j?. Now assume A is finite and let j
be the natural map from A to A//Kf, and let i be the natural map
from Kf into B.

LEMMA 2.2. Let the notation be as above. Then there exists a
unique strict morphism g from A/jKf to If with i°g°j — f.

Proof. For alt a2eA write aλLa2 (respectively aJHa2) if 3s e Kf

with (al9 s, at) eAA (respectively (s, alf aξ) eAA). One checks these are
both equivalence relations. For b e B and X an equivalence class
for L choose xoeX with fb(xQ) = max {/&(#) | x e X). For s e S one
checks

V ( f (Ύ \ _ f (sr\\<n (Ύ <?Ί — 0
jέ-J

Hence #0L£ implies /&(x0) =/&(«). Hence ^Lx2 implies /^xj = fb(x2).
Similarly we show i/JSi/a implies fh{y^) =fb(y2). Now one checks
that if alf a2e A with [αj = [α2] in A//Kf, then 3α3 with α^αs and
a3Ra2 so /^αj =/6(α8) =/δ(α2). We can define ^([αj) to be / ^ α j ,
and have this is well-defined. A long straightforward check shows
g is a strict morphism and proves the lemma.

Propositions 2.3 and 1.3 now immediately give:

PROPOSITION 2.4. Let A be a probability group of discrete pro-
bability type. Let S be a subgeometry of A and T be a normal
subgeometry of A. Then

PROPOSITION 2.5 {see [6]). Let S be a finite subgeometry of a
probability group A. Let T be a finite subgeometry of A with
S£Γ, Then

(A//S)I/(T//S) = A//T .

Proof. By Proposition 2.2 us C(A) us is isomorphic to C(A//S)
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and uiT//s)-C(A//S) u{τ//s) is isomorphie to C((A//S)//(T//S)). If φ is
the first isomorphism, one checks φ{uτ) = uιτ//s), so uτ C{A)*uτ —
uτ-us-C(A)-us-uτ is isomorphie to C((A//S)//(T//S)). One checks
the map is the natural map (the same one as in Proposition 1.4,
which we now have preserves probabilities).

LEMMA 2.3. Let B and C be subgeometrίes of a probability
group A which is of discrete probability type. Let B' be a normal
subgeometry of B and C be a normal subgeometry of C. Then
B'-(Bp{ C) is a normal subgeometry of B' (BΓ) C), C' (B' D C) is a
normal subgeometry of C' (B f) C), and

B'.(Bf) C)HB'.(B ΓΊ C") = C'.(BΠ C)//C'-(£' n C) .

Proof. One checks B π C is a subgeometry of C, so C'-(B Γ)C)
is a subgeometry of C. (c', x, y) e AA, cf 6 C", x, y eC' (B Γ) C) imply
x, 7/ 6 C so 3d' e C with (d'f y, x) e AA. Thus C is a normal subgeo-
metry of C' CBiΊ C) so

= ίn cue n(δnθ

and C Π iβ n C) = C n B is a normal subgeometry of B Π C. Thus

C CBn one = BΠ C//Bn c .

By interchanging B and C the above argument gives Bf is a
normal subgeometry of ΰ ' ( 5 n C ) , 5 ' Π C is a normal subgeometry
β Π C and

£'.(£ n C)//JB' = Bf] C/JB' n C .

Thus D = (J5 Π C') CB' Π C) is a subgeometry of J5 n C. Let (d, x, y) e
J^, d e ΰ , x,yeBf)C There exists ^ e ί n C , d 2 e.B'nC with
(c?!, d2> d) 6 ̂ . By an argument using Pasch's axiom one gets there
is a w 6 B Π C with (df, sc, w*), (df, w, y) e AA. Thus there exist d\ e
B n C, d\ eB' nC with (df, w\ x), (d*, y, w) e ^ so (y, OJ, d0), (df, dj,
df) e ^ so (d4, d3, d0) e zίA. Thus (d6, d0, d3) 6 ^ where d5eB' f) C.
Thus (d8, d5, d0) e J^ so cί0 6 Iλ This proves D is a normal sub-
geometry of B Π C.

Define a map / from C' CBnC) to Bf)C//D as follows: for
(c', 6, x) e 2^, c ' e C , δ e B n C , let f(x) be [6*],,. One checks this is
well-defined. One checks / is a surjective (probability) homomor-
phism with

κf = e (D n(δn O) = e-(B* n o

First applying Proposition 2.3, and then interchanging B and C
gives
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C' CB n C)HC'-(B' f]C)~BΓ\ C//D = B' (B n C)/IB'-(B Π C) .

The lemma is proved.
We call a probability group A simple if it has exactly two

normal subgeometries (A and {e}). A finite probability group A will
have a chain of subgeometries

such that Aΐ+1 is a normal subgeometry of Ai9 and Ai//Ai+1 is simple
for ί = 0, •••, w —1. We call n the length of A and call {A^/A^Ji^
0, •••, n — 1} the sequence of simple composition factors) using the
lemma and the usual argument, one gets the length is well-defined
and the sequence of composition factors is unique as an unordered
sequence. The above proof is complicated by the fact that an inter-
section of normal subgeometries apparently need not be normal.

Let A, B be probability groups. We define

Viavbt)((^ b2), (α 8, 63)) = Pa^cLi, α3)ί>6 l(62, δ3)

and check that this makes A x B into a probability group (see [6]).
For notation we let Shp (respectively Stp) denote the category of
all probability groups with sharp (probability) morphisms (respec-
tively with strict probability morphisms). One checks the natural
map from A x B to A (and also the one to B) is in Shp and the
one from A to A x B (and also the one from B to A x B) is in Stp.

PROPOSITION 2.6. For A, B, C probability groups, we have a
natural identification

Shp (C, Ax B) < > Shp (C, A) x Shp (C, B) (h < > (pA°h, pBoh))

and if in addition C is abelian, we have another natural identi-
fication

Stp (A x B, C) < > Stp (A, C) x Stp (B, C) (h « > (hoinAf hoinB)) .

Proof. The first part is easily checked. Let C be abelian. For
fe Stp (A, C), g e Stp (B, C), define h by

for all ceC, aeA,beB (here the sums are over all clf c2eC). One
checks h e Stp (A x J5, C) and h°inA — f and hoinB — g. The rest of
the proposition is easily checked.

Let G be a group (for simplicity; one can do what follows for
G an arbitrary probability group much as was outlined in the last
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section). By a G-probability group we mean a probability group
A together with a group homomorphism, av-*fa, of G into the
group of (probability) isomorphisms of A to itself, such that for
each aeA, {faiβ)\oίeG} is finite. We usually write a(a) for fa(a).
Let A and B be G-probability groups. By a G-morphism from A
to B we mean a morphism / from A to B such that /α(6)(α(α)) =
/6(α) for all α e i , beB, aeG. One checks these compose so we
have the category of G-probability groups. One checks A x B is
made into a G-probability group by defining a((a, b)) == (a(a), a(b))
for all aeG, (a, b) e A x B. If A is a G-probability group, we note
{A, ΔA, e) is a G-geometry. By a G-subgeometry of A we mean a
subgeometry S of A such that a(s) e S for all s e S, α: 6 G. Such
is clearly a G-probability group in its own right. One can check
that all the previous propositions of this section hold with "proba-
bility group", "morphism", and "subgeometry" prefixed everywhere
they appear by "G-".

Let H be a subgroup of the group G. Let A be a G-probability
group. Then A is naturally an ίf-probability group (by restricting
the operation to H). In particular, A\H — {(ά)H\aeA) is a set of
finite subsets of A (here (a)H = {a(a)\a e H}). For X, Γ
let

Σ T*Pz(x,y)\Z\/(\X\.\Y\),
x e X y e Y

where ze Z.

PROPOSITION 2.7. Let H be a subgroup of a group G. Let A
be a G-probability group. Then the pz(X, Y) defined above is
well-defined and makes A/H into a probability group. For each
XeA//H, hx — n{X) = hx\X\, for any xeX. If A is finite, then
n(A/H) = n(A). If H is normal (a restriction only for simplicity),
then A/H is a G\IE-probability group. Also (A/H)/(G//H) ~ A/G.
In any case, if \X\ is bounded for XeA/H then the natural map
from A to A/H is a sharp morphism.

Proof. If we extend by linearity H operates on C(A) by ring
automorphisms. We let C(A)H denote the subring of all elements
left element-wise fixed by each aeH. For each X e A/H let vΣ =
(ΣiX)/\X\ (the sum over all xeX). One checks the vx, for Xe
A/H, are a basis of C{A)* and vx vγ = Σ*zPz(X, Y)vz for all X, Ye
A/H. With this one easily checks the proposition. If H is normal,
the operation of G//H on A/H is given by (a H)((x}H) = (a(x))H

for all aeG, xe A. The rest can be checked.

COMMENT 2.1. Let A be an iJ-probability group as in the last
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proposition. For XeA/H, aeA, let fa{X) be 1/\X\ if aeX and be
zero otherwise. Then / is a strict morphism from A/H to A. If
A is 1-integral one can check A/H is also 1-integral and / is 1-
integral. If g is the natural map from A to A/H, then gof is the
identity map.

PROPOSITION 2.8. Let H be a group. Let A be an H-probability
group. Let S be a finite H-subgeometry of A. Then the natural
map between (A//S)/H and (A/H)//(S/H) (see Proposition 1.11) is a
probability isomorphism.

Proof. Using the notation of the last proof, let φ be the
isomorphism spoken of there from C(A/H) to C(A)H. One checks
that φ{u{s/H)) = us. Thus φ maps u{S/II)>C(A/H)-u{S/H) isomorphically
onto us-C(A)H'Us. One checks that us C(A)H-us = (uS'C(A)-us)

H.
Using that us-C{A)-us is isomorphic to C(Aj/S), one can combine
these isomorphisms and check that the proposition is true.

Let G be a group. For A a G-probability group, one checks
A x G with

2><β,r>((α, a), (6, β)) = pe(a, a(b))pγ(a, β)

is a probability group; we denote it by A x_ G. A x {1} is a normal
subgeometry and {e} x G is a subgeometry, of A x G and if G is
finite, A x G//{e} x G = A/G. If f:A-+E is a G-morphism to
another G-probability group E, one checks /(β,α>((δ, /3)) = faΦ)δa>β

(Kronecker delta) is a morphism from Ax_G to Ex_G. Conversely,
if C is a normal subgeometry of a probability group B and D is a
finite subgeometry of B with D sharp, C-D -= B, and Cn # = {<?}>
then C is a .D-probability group in a natural way and B = C x^D.

For S and A G-probability groups we call a G-homomorphism
/: S -» A central if px(f(s), a) = pβ(α, /(s)) for all s 6 S, α, £ e A (note
if A is abelian this is certainly the case).

We use the customary term of G-module for an abelian G-group
(i.e., abelian sharp G-probability group). Let S be a G-group (so
not necessarily abelian). By an S-G-probability group we mean
a pair (fΛf A) where A is a G-probability group and fA is a strict
G-morphism from S to A. One checks then fA must be a G-homo-
morphism. We often denote (fA9 A) simply by A. Let A and B
be S-G-probability groups. By an S-G-morphism from A to B
we mean a G-morphism g from A to B with gofA = fB. We let
Shp5_β(A, B) (respectively S t p ^ A , B)) denote the set of all S-G-
morphisms which are in Shp (A, B) (respectively Stp (A, B)). By
Proposition 2.6, there is a unique sharp G-morphism / from S to
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Ax B with pAof = fA and pBof = fB (simply f(s) = (fA(s),fB(s)). One
checks (using S as a group) that / is strict, and so makes A x B
into an S-G-probability group. We denote / b y fAx fB. By
Proposition 2.3 the image / of fA x fB is a G-subgeometry of Ax B.
In general, we cannot make A x B//I into an S-G-probability group,
but when S is abelian, both A and B are of finite probability
type, and both fA and fB are central we proceed as follows. S an
abelian group implies s-^s~ι is a G-isomorphism (thus strict), so if
/J(s) = /^(s"1) for all s e S, /j is a strict G-morphism (actually a G-
homomorphism) and makes B into an S-G-probability group. We
let / be the image of fA x / j , note I is a normal G-subgeometry of
A x B (using Proposition 2.3 and that both fA and fB are central),
check that AxB is of finite probability type, and let AXSB
denote the G-probability group A x B//I (which exists by Proposi-
tion 2.3). By Proposition 2.3 the natural map g: A x B—> A XSB
is a G-homomorphism (so strict). Letting lB(s) = eVs e S we check
that 1^ is a strict G-morphism and that fA x 1B is strict, and use
9°(/A x l s) (i e., S H K / ^ 8 ) , e)]τ) to give AχsB the structure of an
S-G-probability group. One checks go(fA x 1B) = go(lA x fB).

PROPOSITION 2.9. Let G be a group and S be a G-group. Let
A9 B, C, be S-G-probability groups. Then we have a natural iden-
tification

, A x B) < > Shp^(C, A) x Shp5_G(C, B) (h < > (pAoh, pBoh))

and if in addition C is abelian, S is abelian, A and B are of
finite probability type, and fA, fB are central, we have another
natural identification

XSB, C) < > Stps_G(A, C) x S tp 5 _ G (β, C)

(h < > (hogoinA, hogoinB)) .

Proof. The first part is easily checked (using Proposition 2.6),
so we make the assumptions for the second part. This part follows
easily from three lemmas. Now fA and fB induce algebra homomor-
phisms (which we denote by the same names) fA: C(S) —> C(A) and
fB: C(S) —> C(B). Since fA and fB are central, these make both C(A)
and C(B) into C(S)-algebras, and similarly C(AXSB) is a C(S)-alge-
bra. Each of fA, fB, fA x fB is a G-homomorphism, so by Proposition
2.3 its image (which is isomorphic to a factor group of S) is a
subgroup and the next lemma applies.

LEMMA 2.4. Let T be a sharp subgeometry (i.e., a subgroup) of
a Pasch geometry D. Then for t e T, d e Dl unique xeD with
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(d, t, x*)eΔD. We denote x by d't (t d is defined similarly).

Proof. Let (d, t, x*), (d, t, y*) e ΔD. Then iweD with (w, t\ t),

(w, y\ x) e ΔD. Thus w = e so y = x.

LEMMA 2.5. C(AXSB) ^ C(A)®cίS)C(B) as C(S)-algebras, by
linearity and [(α, b)]Σ «-> α 0 6.

Proo/. C(A) ®CW»C(£) is C(A)®CC(B)/W, where TΓ is the sub-
space spanned by all

(α Λ(s)) 0 6 - α 0 (Λ(s) δ), where α 6 4 , k 5 , s e S .

Each such term may be written (using fA is central, S is a group,
and letting c be fB(s) 6)

(/A(S) 0/J(s) — e 0 e) (α 0 c), where α e i , c e ί , se S .

Using that / is normal one checks for alf α2 6 A, 6̂  b2eB that [(αx, δi)]/ =
[(α2, 62)]z if and only if 3s e S with (fA(s) 0/J(s)) (αL 0 6J - (α a06 a).
Thus if we extend the map [(a19 6J]/ H-> αx 0 6X + W by linearity we
get a well-defined C-homomorphism which one can check is bijective
and preserves multiplication and also multiplication by elements in

LEMMA 2.6. Let D, H be probability groups. Then Stp (D, H)
is in bijective correspondence with the set of all algebra homomor-
phisms f from C(D) to C(H) such that f°σ = σ<>f and f(P(D)) £
P(H) {where P( ) is the set of linear combinations with nonnega-
tive coefficients which add to 1).

Proof. Letting / e Stp (D, H) correspond to the linear map
which takes deD to Σfh(d)h, this is easily checked. Now the
proof of Proposition 2.9 is easily concluded using usual properties
of the tensor product.

Now let A be a finite probability group. The group ring C(A)
is semi-simple (for if J is the radical, Jm+1 = 0, Jm Φ 0, v e Jm, then
σ(v) e Jm so vσ(v) = 0 so 0 = (v σ(v), e) = (v, v) so v = 0). Thus the
Wedderburn theorems give that C(A) is a direct sum of complex
full matrix rings. Now suppose A is abelian. Let A denote the
set of all maps / from A to C such that f{e) — 1, and

Σ Pα(δ,c)/(α)=/(δ)/(c)
aeA

for all 6, c e A. Since these correspond to the algebra homomorphisms
from C(A) to C, they are a basis of the algebra Map (A, C) of all
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maps from A to C with component-wise addition and multiplication.
Hence there exist uniquely defined complex numbers PΘQC, ψ), Θ,X, ψe
A with

χ.ψ = X pθ(X, ψ)θ , for all X, ψ e A .
Θ

We call A (in the spirit of [5], [6], [11]—they consider more than
the finite case) dualizable if pθ(X, ψ) is a nonnegative real for all
θ, X, ψ e A. If this is the case, one can check then {A, p) is an
abelian probability group (which is dualizable) and if {A, p) = (B, q)
then (B, q) = {A, p). If G is a finite group and F is the set of inner
automorphisms of G, then G/F is an abelian probability group
(Example 2.2) which is dualizable with dual G (Example 2.5). If
(P, ££*} is a finite projective space, then (P#, p) is an abelian proba-
bility group (Example 2.4) which is dualizable with dual coming
from the projective space which has hyperspaces for points, and
hyperspaces containing a subspace of codimension two for lines
(i.e., the usual dual). If A is G//H for G a finite group, A is duali-
zable ([10]). Even when A is not dualizable we have the following:

PROPOSITION 2.10. Let A be a finite abelian probability group.
Let XeA. Then Z(α*) = X(aj for all aeA. Define %* by l\a) =
Z(α#) = X(a) for each α e i . Then X* e A and aug 6 A {where aug (α) =
1 for all aeA). Also paug(X, X*) is a positive real number. We
denote its reciprocal by hχ and we let n(A) denote X hx (the sum
over all XeA). Then n(A) — n(A), and using the Kronecker delta,
we have for any X, ψe A, b, ce A

ψ(a) = n(A)δXfψ (the sum over aeA), and
a

X hχhbX(a)X(b) — n(A)8ayb (the sum over XeA).

Proof. Let nx denote Σα|Z(α)|%β, which is certainly a positive
real number. Let v denote YAX(a^)haaeC(A). For any be A, by
direct computation (together with (2) and (4) of the definition of a
probability group) v b = vX(b), v Φ 0, and v2 = kv where k =
Σ y-(a*)X(a)ha. k Φ 0 since C(A) is semi-simple. Let uχ (or u) denote
k~ιv. Then u Φ 0, u2 = u, and u b = uX(b)Vbe A. One checks
directly that any element in C(A) with these properties must be u.
Now let X° be defined by X°(a) =~X(a*) for all aeA. One checks X° e
A. Taking σ( ) of u-b = uX(b) gives b**σ(u) = X(b)σ(u), so σ(ux) =
UχO. B u t 0 < (Uχ, Uχ) = (Uχ θ(Uχ), β) SO Uχ'UχO Φ 0. But ίOY βach

be A, Uχ Uχo b = Uχ uχoXo(b) and uX'Uxo is an idempotent, so uX'Uxo =
uxo. Similarly, uxo ux = wχ. Since uX'Uxo — uxo ux, we have χ̂o = ^ z .
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Multiplying this by any aeA, gives Z°(α) = %(α), and thus %(α*) =
%(α). Substituting above, we get nχ = k. One checks V and aug are
in A. Extending X by linearity gives an algebra homomorphism
from C(A) to C. Now let f G A . For α e A , uψ a — u^ψ(a) so
X(uψ)X(a) = X(uψ)ψ(a), so if XΦψ, choosing a appropriately we get
%(ity) — 0, while if X = ψ*, %(%*) = ^X(a#)haX(a)/nx = 1. Thus X(ity) —
<5χ,̂ . In particular, %(^aug) = δ z > a u g . But waug = Σ (ha/n(A))a so
Σ (hJn(A))X(a) = £χ,a u g. Thus

Paug(5ί, f *) - Σ ^(Z, ^#)δ,, a u g = Σ Σ &(*, ψ*)haθ(a)/n(A)
θ ϋ

= Σ
= (nψ/n(A))X(uψ) =

Since both w^ and w(A) are positive real numbers, we have paug(Z, ψ*)
is nonzero if and only if X = ψ. Also fcz = n(A)/nχ. Plugging this
in X(uψ) = δXyψ gives

This can be written as that the product of two appropriate matrices
is the identity. Hence their product in the other order is the iden-
tity, so

Σ hxhbX(a)Xφ) = n(A)δa>b .

Letting a = b — e, we get n(A) — n(A).

PROPOSITION 2.11. Let A be a finite dualizable abelian probabi-
lity group. Let S be subgeometry of A. Let S1 — {XeA\X(s) = 1
Vs e S}. Then SL is a subgeometry of A, both A//S and S are
dualizable and

Also S H SL is an order inverting bisection between the set of all
subgeometries of A and set of all subgeometries of A. Also n(Sλ) —
n(A)/n(S) and (S1)1 = S.

Proof. First one checks that the restriction to S (which we
denote by φ) satisfies the rules that would make it a homomorphism
if S is a probability group. In particular Σ PΘ(X, ψ#) (the sum over
all θeSL) is zero if φ(X) Φ φ(ψ) and is nonzero otherwise for X,ψe
A. Hence if (0, X,f)eA with θ, X e S\ then (X, ψ,θ)eΔ so &#(%, ψ)>
0 so φ(ψ) — φ(X*) so ψeS1. This proves S1 is a subgeometry of
A.
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For Z e S 1 , we extend X by linearity and note X(us) = Σ* (hj
n(S))X(s) = 1. Thus if α, be A with us-a*us = us b-us, then Z(α) =
Z(6). Since us C(A)-us = C(A//S), we have a well-defined map from
S 1 to (A//S) which is a bisection and preserves the probabilities.
Since S1 is a probability group, A//S is dualizable. We also have
n(SL) — n(A)/n(S), since from the last proposition n(A//S) —
n(A//S) - n(A)/n(S).

Now one checks that φ induces a bisection from A//S1 onto a
subset J of S, and this bijection preserves probabilities. Thus

rc(j) - n(A//SL) = n(A)/n(SL) = n(A)/(n(A)/n(S)) = w(S) =

Since n(I) = w(S) we must have / = *S, so S is dualizable and
A//S1 = S.

We now have

n(S) = niAJ/S1) = n^/niS1) = ^(A)M(S1)

and replacing S by S1 we have ^(S1) = n(A)/n(Sλ±) so n(S)=n(A)/
(n(Ά)ln(S1A )) = ^(S 1 1). Since S Q Sλl the proposition is proved.

PROPOSITION 2.12. Lei H be a finite group and A be a finite
abelian dualizable H-probability group. For aeH, Z e i , define
a(X) e A by (a(X))(a) = Z(α*(α)) for all a e A. This makes A into an
H-probability group. Also A/H is dualizable and

(AjH) ~ A/H.

Proof. It is straightforward to check A is an. improbability
group. Every idempotent in C(A) is some sum of the minimal non-
zero idempotents ux, XeA (see proof of Proposition 2.10). But
C(A/H) = C(A)H (see proof of Proposition 2.7). Now one checks that
for aeH, a(uχ) = uaa), and if for XeΆjH, ux denotes Σ^χ (the
sum over all XeX), then the ux, XeΆ/H, are exactly the minimal
nonzero idempotents of C(A)H. For XeΆ/H and Ye A/H we let
φx{Y) denote Σ»*o(»)/I Y\ = Σ i W / I ^ Ί for XoeX, yQeY (the first
sum over all yeY and the second over all XeX). One checks
φx{ Y) is independent of the chice of XQ eX,yQe Γ, and

This means X\-*φx { ) is a bijection from A/H onto (A/H). But
A/H is a probability group (Proposition 2.7) and one checks

φx( Y) 9v( Y) = Σ
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(here X, WeΆ/H, YeA/H, the sum is over all ZeΆ/H, and p is
defined as in Proposition 2.7 with A replaced by A). The proposi-
tion is proved.

PROPOSITION 2.13. Let A and B be finite abelian dualizable

probability groups. For (6, α)ι—>/6(α) a map from BxA to C,

let (X, θ) h-> fγiβ) be the map from A x B to C defined by

Then f is a (probability) homomorphism if and only if f is a
(probability) homomorphism. Also if g = f then g — f (after iden-
tifying each of A and B with its double dual). Thus the category
of finite abelian dualizable probability groups with homomorphisms
is self dual.

Proof. For aeA let f(A) denote Σδ/δ(β)δ, a n d then extend /
to a linear map from C(A) to C(B). Extend each ^ e δ by linearity
to an algebra homomorphism from C(B) to C. Doing the same thing
to / and each XeΆ, one checks using Proposition 2.10, that f(θ) =
θof for each θ eB. Thus by vector space duality g = / if f — g
(after the proper identifications). If / is a homomorphism, / maps
B t o A , s o f o r θlf θ 2 e B , a e A

0
i, Θ2)f(θ)(a) = Σ ί A , θz)θ(f(a)) = θ,(f(a))^(f(a))

0

and since this is true for all α,

Σ Pe(θl9 Θ2)f(θ) -

which implies / is a homomorphism. Now this same argument with
/ replaced by / proves the proposition.

COMMENT 2.2. The self dual category of the last proposition
does not have products or coproducts so falls short of being abelian,
but is exact ([2]).

COMMENT 2.3. Let A, B be finite abelian dualizable probability
groups as in the last proposition. A map / from A to B determines
a unique map a, (θ, X) ι-> aχ(θ), from B x A to C with

for all θ e B. One checks a is / . We call / dualizable if for each
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Θ, the aχ(θ) are nonnegative and add to 1. One can check /—> f is
a bijection from the dualizable maps from A to B onto the strict
morphisms from B to A.

Let r and s be positive integers. We say a finite dualizable
abelian probability group A is (r, s)-integral if A is r-integral and
A is s-integral.

PROPOSITION 2.14. Let r be a positive integer. Let A be a
finite r-integral probability group. Then if r Φ 1, A is 2-integral.
Assume further that s is a positive integer and A is a finite
dualizable abelian {r, s)-integral probability group. Then if S is
any subgeometry of A, n(S) divides n{A). Also if r and s are not
both 1, for each X e A, hψ divides n(A) (so by duality, for each
aeA, hψ divides n(A) = n(A)).

Proof. For a,b,ce A,

mc(α, b) = pc(a, b)hψhψ/hψ

is a nonnegative integer. Letting c — e, b — α* we get (using Pro-
position 2.2 to show ha = ha$) ha divides (hψ)\ If r ^ 2 , (hψ)\hψ)r~2 =
ha gives that (hψ)2 divides ha, so (hT)2 = K so hψ = fei/2. With
this one checks A is 2-integral. Now suppose A is dualizable
abelian (r, s)-integral. If S is a subgeometry, n(S)n(A//S) =

and n(A//S) = n(A//S) = n(SL) is an integer, so w(S) divides
Let XeA. The wa=hHra, aeA, generate a subring of C(A) which
is finitely generated as an abelian group. Thus the same is true of
the image of the extension of X (by linearity) to this ring. Hence
hl!rX(a) is an algebraic integer for each aeA. Now assume r and
s are not both 1. By Proposition 2.10,

Σ hJ{a)X&) = n(A)/hχ .
a

Case 1. rΦl. Then hψ = hψ so hψX(a) and hψX(a) are both
algebraic integers, so n(A)/hχ is an algebraic integer and a rational
number. Thus hχ divides n(A). But hψ-ihψ)*-1 = hχ so /^/s divides
hχ.

Case 2. r = 1. Replacing A by A in an above argument gives
hψX(a) is an algebraic integer. Thus

Σ haX{a)hψX(a) = ^(A)/^1^)5"1

is an integer, so {hψ)s~x divides n(A), and since s ^ 2, Λ/χ

/s divides
(feχ8)8"1- This proves the proposition.

We end this section with a structure theorem which character!-
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zes finite projective spaces. If (P, ̂ f) is a finite protective space
with not both P and £f empty, and if m > 2 is a real number
such that every line (i.e., element of J*f) has exactly m + 1 points
on it, then the probability group P* of Example 2.4 is not sharp,
and every a e P* is in a subgeometry of P% which contains two or
less elements (i.e., | <{α}> [ <; 2). (P, JZ?) and m are easily reconstruc-
ted from P# so are uniquely determined by P*.

PROPOSITION 2.15. Let A be a finite probability group such
that I <{α}> I ̂  2 Vα 6 4 (where <{α}> denotes the subgeometry generat-
ed by a). For simplicity assume A is not sharp (i.e., not a group
in which every element has order 2 or 1). Then there exists a
unique (up to isomorphism) finite protective space (P, J*f) with
not both P and J?f empty, and there exists a unique real m > 2
such that every line in J*f has exactly m + 1 points on it and
A = P\where (P, £f) and m define P% as in Example 2.4). In
particular, A is abelian, and if it has more than two elements it
is dualizable and (1, lyintegral.

Proof. If \A\ = 2, the result is easily checked so without loss
assume | A | ^ 3. By the comment immediately following Proposition
1.8, (P, ̂ f) is a finite projective space, where P = {aeA\a Φ e),
where for a,beP,aΦb, Lab is {c e A \ pct(a, b) > 0 or c = a or c — &},
and where £f = {Lα61 a, b e P, a Φ b}. Since £f is nonempty there
is a unique m such that every line has exactly m + 1 points on it.
Let (B, q) be the probability group associated by Example 2.4 to
(P, L). Then I? and A are the same sets, they have the same iden-
tity, ΔB = zί4 (i.e., they have the same geometry), but it remains
to prove pe(a, b) = qc(a, b) for all a,b,ceB = A. Let Sϊf be the

set of all maximal proper subgeometries of B (or equivalently of
A). For S e ^ T , the sets of A//S and 5//S are equal and \B//S\ = 2
so |A//S| = 2 . Hence A//S = {S, A\S} where A\S denotes the ele-
ments in A not in S. One can check the dual of a two element
probability group {e, x] is x \-+1 and a? f-» — (/O~S so the dual of
A//S is {aug, gs} where ^(S) = 1 and gs(A\S) = -(h^)'1. Let^ks be
the natural map from A to A//S. Then /# = gs°k>s is in A. In
fact aug, and the fs, S e Jg^ are distinct, and since their number
is the same as | A \ (in a projective space the number of hyperspaces
is the same as the number of points), they make up all of A. For
a e A, a Φ e, the restriction of fs to {e, a} must be in the dual of
{ef a}. Hence fs(a) is either 1 or —(ha)'1. Choosing α ί S we get
-(h^y1 = -(KY1 so hA\s = Λβ. Hence if b g S, ^α = Λό. Let Le^f,
C = {e} U L. Then 1/ is a subgeometry of A, so all of the above
holds with A replaced by C. Using that the hyperplanes of C are
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just the {e, c}, ceC, c Φ e, one checks ha = hb for all α, 6 6 C, a Φ e,
b Φ e. Hence there is an h with ha — h for all ae A, a Φ e. But
by Proposition 2.2, hC\Sn(S) = n(C\S); since there are m + 1 + 1
elements in C, this gives h (h + 1) = mh so h = m — 1. Returning
back to A, and S a hyperspace of A we have fs(a) = 1 if α e S and
/5(α) = — (m — I)" 1 if α e i \ S . This whole argument can be done
with A replaced by B, and we see the dual of B is the same set
of maps; i.e., A — B. For this set of maps there exist unique p
with

for all /, geA = B and all xeA = B. Taking double duals the proof
is completed.

3. Formal character tables* In [9], Brauer formalizes some
properties of the character table of a finite group, and then con-
siders tables with those properties in their own right. Here we
choose a somewhat different set of properties, suggested by the
last section, to make the same sort of approach.

We denote the complex conjugate of a complex number C by
C. We consider square matrices whose entries are complex numbers.
If M is such, we write m(M) for the size of M (i.e., the number
of rows, or equivalently, the number of columns), and we denote
the (ΐ, i)-entry of M by MiS for i, j = 1, •••, m(M). The set of
rows of M will be labeled {1, •• ,m(M)} and will be denoted by
R(M), and the set of columns of M will be labeled {1, •• ,ra(ikf)}
and will be denoted by C(M).

By a semiformal table we mean a square complex matrix M
such that there exist positive real numbers hlf , hm, t19 , tm(m =
m{M)) with Ύ,ίhί = Σata (call this n or n(M) or the order of M),
with t± — 1, and with:

( 1 ) Mu = 1 Vi = 1, ••-, m.
(Γ) Jlflα = 1 Vα = 1, •••, m.
( 2 ) Σ i MiaMiβM%rhx is a nonnegative real number Vα, /3, 7 and if

α = 1 it is Iβrn/tβVβ, j (where I is the identity matrix of size m).
It will soon be apparent that if the ht and ία exist, they are unique.
One can check that the transpose of a semiformal table is itself a
semiformal table if and only if ^aMiaMioiMkata is a nonnegative
real Vi, i, k; if this condition holds we call M a formal table. If
M is a semiformal table, the matrix which results when the nonfirst
rows (and/or the nonfirst columns) of M are permuted is certainly
a semiformal table; we say it is isomorphic to M to express that
it is essentially the same as M.

For A = {aι = e, a2, , αm} a finite abelian probability group,
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let A = {%! — aug, X2, , Xm} and let Mia=li(aa) for i, a = 1, , m.
The resulting matrix Λf is a semiformal table by the last section
(and it is a formal table if and only if A is dualizable).

PROPOSITION 3.1. The above association is a bijection from the
isomorphism classes of finite abelian probability groups onto the
isomorphism classes of semiformal tables.

Proof. Let M be a semiformal table of size m. By (2) M has
an inverse, so M is nonsingular. Thus the columns of M are a
basis of C(w), so there exist unique complex numbers pr(a, β) with

MίaMίβ = Σ Vλa, β)MirVi, a, β = 1, . , m .
r

Using (2) one checks the pr(ct, β) are nonnegative reals. Also,
(because the columns are a basis) there exist unique complex numbers
cβa with

Miβ = Σ cβrMirVi, β = 1, , m .
r

Taking the complex conjugate of this gives

Σ c βγcra = dβfCe (Kronecker delta)
7

But

Pι(α, £)tt/<i = ΣMiJίtβMtJii = ΣΣc β 7 M i a M i r h t = c^α^/ία

so c^ is nonnegative real. With this one can check (using yΣjCβrcra=
3β>a) that for each β there is a unique 7 with cβr Φ 0 (and also eβr =
1). With this one checks C(M) with p is a finite albelian probability
group, and its associated table is M. One checks that if we start
with a finite abelian probability group, and perform this construc-
tion on its associated table, we get seomething isomorphic to the
probability group we started with. The proposition is shown.

Now let M be a formal table. As in the above proof we have
that both C(M) and R(M) are naturally abelian probability groups.
We say M is (r, s)-integral if C(M) is r-integral and R(M) is s-inte-
gral. For G a finite group, D the diagonal subgroup of G x G, Gx
G//D is a finite abelian dualizable (1, 2)-integral probability group
and its associated matrix M is a formal table which we denote by
T(G) and call the adjusted character table of G. The matrix h\ί2Mίai

ieR(M), aeC(M), is the character table of G, while conversely, if
N is the character table of G, NJNn, ieR(N), aeC(N), is the
adjusted character table of G.
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Now let N be a formal table. By a table morphism from M
to N we mean a map / from C{M) to C(JV) such that /(I) — 1 and
such that

Σ Nif[β)M3 βtβ is a nonnegative real vi, i .
0

For ieR(N), jeR(M), we define Λ#(Ό so that fj^n/hj is this
displayed nonnegative real.

PROPOSITION 3.2. Le£ M and N be formal tables. Let f be a
map from C(M) to C(N). Write

Nif(β) = Σ Xi(i)Mjβ Vi = 1, -, m(iV), β = 1, . , m(M)
i

which we can do since the rows of M are a basis. Then f is a
morphism if and only if /(I) = 1 and all the coefficients x3 (i) are
nonnegative real numbers. If f is a morphism, then x3 (i) = f3 (i)
for all i and j .

Proof. If / is a morphism we substitute f 3{i) for x3(i) above
and then use (3') with 7 = 1. Conversely, if the x3(i) are nonnega-
tive real numbers, we substitute in the criteria for a morphism,
use (3) with k = 1, and get x^[i)n\h3. The proposition is proved.

We call a map / from C(M) to C(N) a homomorphism if for
each i e R(N) there ̂  exists a j e R{M) with Nifiβ) = MjβVβ. We
denote such a j" by f(i) and check if / is a homomorphism, then /
is a homomorphism from N* to .M* (where ( )* denotes the trans-
pose of ( )). Both morphisms and homomorphisms compose and
give categories. In both cases isomorphims consist of simply per-
muting the nonfirst rows and columns. We write M = N if such
exists from M to N.

Let M be a formal table. For S a subset of R(M), S1 = {ae
C(M)\Mia - IVieS}. For T a subset of C{M), TL = {ieR(M)\Mia =

lVaeT}. By a submatrix of M we mean any matrix derived at
by deleting rows and columns from M. We let mat (T) denote the
submatrix of M which results when first all columns not in T are
deleted from M and then all but one of resulting duplicate rows
are removed. Each column of mat(Γ) comes from some column of
M; this gives a natural map from C(mat(T)) to C(M). For S a
subset of R(M), the matrix derived at by deleting all rows of M
not in S, and then deleting all but one of resulting duplicate colu-
mns, will be denoted mat (S). We have a natural map from C(M)
to C(mat(S)); each eolumn of M is first truncated by removing all
elements not in rows of S and then appears in mat(S). By a sub-
table of M we shall mean a subgeometry of C(M); if T is such
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this terminology tends to confuse T with mat (T); indeed, when no
confusion can result we sometimes denote mat (T) simply by T.
By a factor table of M we mean a subgeometry S of R(M); when
S is such we sometimes denote mat (S) simply by S or by M/S1.
Clearly the factor tables of M are exactly the subtables of M*.

PROPOSITION 3.3. Let M be a formal table and T be a subset
of C(M). Then the following are equivalent:

(1) la subset S of R(M) with S1 = T,
(2) Γ = ( Γ 1 ) \
( 3 ) T is a subtable of M.

If T is a subtable of M, then T (i.e., mat(T)) is a formal table,
T1 is a factor table of M, M/T (i.e., matCT1)) is a formal table,
the natural map from C(mat (T)) to C(M) is an injective homomor-
phism from mat(Γ) to M, the natural map from C(M) to C(mat
(T1)) is a surjective homomorphism from M to matCΓ1), and the
image of the former map is exactly the inverse image under the
latter map of the singleton consisting of the first column) also
n(m2ι,t (TL))n(ma,t (T)) = n(M).

Proof. Everything is either trivially checked or follows from
results in the last section, so the proof is omitted.

Note 3.1. Let T be a subtable of a formal table M. Let

φ: C(mat (T)) • C(M), θ: C(M) > C(mat (T1))

be the natural homomorphisms. For a e C(mat (T)), ta — tφia). For
βeC(M), let [β]τ = [β] be the set of all deC(M) with θ(β) = θ(δ).
T h e n tθ{β) = Σ ( ί ί M m a t (T))), t h e s u m o v e r a l l δ e [β]. F o r β,Ύ,δe
C(M), qθm(θ(β), 0(7)) = Σ A ( / 3 , 7), the sum over all a e [δ]. For β,ye
C(M), θ(β) = θ(7) if and only if qφ{a)(β, 7*) > 0 for some a e C(mat (T)).
By replacing M by Mt we get the corresponding statements for
θ:R(mBlt(T1))-^R(M), φ: R(M) -> Λ(mat (T)), the h's, and the p's.

PROPOSITION 3.4. Let M and N be formal tables and let f be
a homomorphism from M to N. Let Kf = {ae C(M) \ f(a) = 1} and
If = {f(a)\aeC(M)}. Then Kf is a subtable of M, and If is a
subtable of N, and if θ: M-> M/Kff <p:If—>N are the natural
homomorphisms, then there exists a unique isomorphism g: MjKf —>
// with φogoθ = /.

Proof. This follows from Proposition 2.3.

Propositions 2.4 and 2.5 give immediately: Let T and W be
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subtables of a formal table M. Let 7 W denote the set of all a e
C(M) such that 3/2 6 7, 7 e W with qa(β, 7) > 0. Then 7 TF aud
T Π W are subtables of M and

(T-W/W) = (7/(7 n TΓ)) .

If 7 is a sub table of a formal table M, then Lv^L\T is a lattice
preserving Injection from the set of all subtables of M which con-
tains 7 onto the set of all subtables of M/T. Also if L is a sub-
table of M with 7 £ L, then

(M/T)/(L/T) ^ Af/Z, .

We call a formal table simple if it has exactly two subtables.
A formal table M will have a chain of subtables

M = 70 2 7, 2 2 Γr = {1}

such that TJTi+1 is simple for i = 0, , r — 1. We get that the
length r oΐ M and the unordered sequence {7i/7ί+1|i = 0, , r — 1}
of composition factors of ilί are well-defined and unique.

We call a formal table M protective if {a, 1} is a subtable of
MVaeC(M). By Proposition 2.14 we know explicitly the structure
of such tables (at least up to knowledge of the non-Desarguean
planes), and in particular if M is such and is of size larger than 2,
then M is (1, l)-integral. If M is (1, 2)-integral (e.g., T(G) for G a
finite group), n(M) is an integer and by Proposition 2.14 all the
h\n and ta divide n(M), and the order of any subtable divides n(M).
In practice this puts rather heavy restrictions on the table. For
instance, if M is an (r, s)-integral formal table where r and s are
not both 1, with n{M) a proper prime power, then by using n(M) =
Σ K + Σhβ (the first sum over all a e C(M) with ha > 1, and the
second sum over all βeC(M) with hβ = ϊ), it is easy to check that
M has a subtable isomorphic to T(CP), where Cp is the cyclic group
of order p, and p is the prime which divides n(M). Hence if n(M) =
P,M^ T(CP).

We now strengthen Proposition 3.4 to the "nonnormal" situation:

PROPOSITION 3.5. Let f be a morphism from a formal table M
to a formal table N. Let Kf = {ae C(M) \ f(a) = 1}, K} = {i e
•RCΛOlΛ(i) = 1}, i> = {jeR(M)\f3{i) > 0 for some i}, and If be the
intersection of all subtables of N which contain f(a) for all a 6 C(M).
Then Kf is a subtable of M, If is a subtable of N, K) is a factor
table of N, and 1} is a factor table of M. Also I}1 = Kf and
K}L —If. If θ\ M-+ M/Kf and φ:If^N are the natural homo-
morphisms, then there is a unique morphism g from M/Kf to If
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such that φogoθ = /. Also Kg — {1} and Ig = //. If f is a homo-
morphism, then this all reduces to the situation and notation of
Proposition 3.4.

Proof. Let m = m(M) and C(M) denote the algebra C(w) with
multiplication defined point-wise. For i e R(M) we write AT,* for
the row (Miίf Mii9 •••, Λfim). We have the Λf,* are a basis of
and

for all i, j e R(M). Let α e C(M). By the proof of Proposition 2.10,
there exists a nonzero idempotent uaeC(M) with ua Mi* = uaMia for
all i. Letting ua = Σ r̂  My* we have Σ i TjVkU, i) = nΛfία so

(Σ ln|)|Λf«β| ^ Σ Σl^lpΛi, i) = Σ|r , |
A A; i i

so IMia\ ^ 1 for all i e R(M), a e C(M).
Now let β 6 Kf. Then from

i =

we get fό{i) > 0 implies ikfii9 = 1. Thus βel}1. One easily checks,
I}1 £ i^/, so we have I } 1 — Kf. The rest of the proposition now
either is easily checked or follows from Lemma 2.2.

We say a morphism / from a formal table M to a formal table
N is 2-integral if fό{ϊ)h\l2lhψ is an integer for all ieR(N),
jeR(M). For instance, if i ϊ and G are finite groups and φ: H^G
is a group homomorphism, then the adjusted character tables T(H),
T(G) are (1, 2)-integral, and the natural map / = T(φ): T{H) -> T(G)
(which has the obvious effect on conjugacy classes, (h) ι-> (φ(h)}) is
a 2-integral morphism. One checks φ is injective if and only if
Kf = {1}. With this in mind we let N be an arbitrary (1, 2)-inte-
gral formal table. By a presubobject of N we mean a pair (M, f)
where M is a (1, 2)-integral formal table, and / is a 2-integral
morphism from M to N with Kf — {!}. We call two presubobjects
(M, f), (L, g) equivalent if there exists an isomorphism Θ:M-^L
with goQ — f. The equivalence class containing a presubobject (M, /)
will be denoted c(M, f) and called a subobject of iSΓ. It will be
called cyclic (respectively abelian) if M= T(G) for G a finite cyclic
(respectively abelian) group. These can be used in defining pseudo-
groups (see [1]). The class of all subobjects of N is a finite partia-
lly ordered set, where we write c(M, /) ^ c(L, g) if there exists a
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morphism θ from M to L with goθ = /. There is something to
prove here but it follows from:

PROPOSITION 3.6. Let c(M, f) be a subobject of a (1, 2)-ίntegral
formal table N. Then n(M) divides n(N). Also if n(M) equals
n(N), then f is an isomorphism. There are only finitely many
possibilities for c(M, f).

Proof. For ae C(N), k e R(M) define

zk(a) =
β

where the second sum is over all β with f(β) — a (and the first
sum is over all i 6 R(N)). One checks that

Σ yk(a)taNda = Σ Zk(a)taNja
a a

for all j , k, and one checks this implies yk(a) = zk(a). Letting a =
1, k = 1 this gives

But Λf̂  = 1 = Nlf(β) = Σ i fsQJMjβ and since the rows Λfy are
linearly independent, we get /^l) = 1, so (f^lWJyhl'^hl12 — 1, so the
above sum over all i is ^ 1. Now assume this sum is equal to 1.
Then we must have /x(i) = 0 for i Φ\. With this one checks

so if ί ^ a;, fj(i)fk(x) = 0. By Proposition 3.5, I) = i2(Λf), so for
each k e R(M) there exists a unique i e R(N) with /fc(ΐ) > 0. Denote
i by g(k). For each ieR(N), Σk/*W = 1 so /fc(i) > 0 for some &,
so ίjr is surjective. Letting x — i above gives

or

where the sum can be taken over all keg~\{l}). Since / is 2-inte-
gral, there exists a unique k with /fc(ί) > 0. We denote k by f{i).
We also have g is bijective and an inverse to / . / is a homomor-
phism so / is a homomorphism, so / is an isomorphism so / is an
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isomorphism.
There are certainly only a finite number of possibilities for the

row orders for M since they add to a number dividing n(N). The

m*(i, 3) = Pkd, NtiWlhψ

are nonnegative integers limited by Σ* Wkih ύ)hψ = h^h}'2 so there
are only finitely many possibilities for them. The nonnegative
integers mk(ί) = fk{i)h\nlhψ are limited by Σ/c mk(ί)h)J2 = Ap so there
are only finitely many possibilities for them. The proposition is
now proven.

When we remove integrality restrictions the above situation
changes. Let M be an arbitrary formal table. For X a subset of
R{M) we write n(X) for Σ* hx (the sum over all xe X) and X* for
{x*\xeX)9 This notation of course holds for M* also. By an admis-
sible partition of M we mean a pair (.^, (^

p) where ^ is a partition
of S(ikf) and & is a partition of C(ikf) such that:

(1) {1} e & and {1} 6 ^ ,
(2) X*s&> and Γ * e ^ for all I e , ^ , Γ e ^ ,
( 3 ) Σ u ex) (hx/n(X))Mxy, - Σ(.er) ( / ^ M Γ ) ) ^ for all / e 7 e ^

and all xf e Xe &\
We denote the number in (3) by Mχγ, and the matrix with entries
Mxγ, Xe&>, Ye& (where &* = {Xlf-. ,Xr}, &={¥„••-, Y.}, Xt =

{1}, ^ = {1}) by M/(&*, έ?). Let t ing hx = n(X), hγ = n{Y) one

easily checks this is a formal table and the natural map C(M) -> ^
is a morphism.

As an example, if G is a group of automorphisms of M, then
by Propositions 2.7 and 2.12, the set έ? of orbits of C(M) by G
with the set & of orbits of R(M) by {τ | τ e G) is a partition of M.
In this case we denote M\(0*, &) by M/G.

PROPOSITION 3.7. Let f be a morphism from a formal table M
to a formal table N such that Kf = {1}. Then n(M) <; n(N). Also
n(M) = n(N) if and only if there exists an admissible partition

&) of M and an isomorphism φ from M\{0*, &) onto N with
— /, where Θ is the natural morphism from M to

Proof. We repeat the words of the proof of Proposition 3.6 to
get n(M) <£ n(N), and to assume n{M) = n(N) and get there exists
a surjective map g from R(M) to R(N) with fk(i) > 0 if and only
if g(Jc) = i. Still using that proof we get

yk(a) - fk(9Φ))hg{k)Ng{kJh) 2 ,

«*(«) - Σ (fiβ/ta)h)!*Mkβ (over all β with f(β) = a)
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so letting a — 1, fk(g(k)) = hk/hg{k), and substituting this back,

taNg{k)a = Σ tβMkβ, the sum over all β with /(/5) = a .

Substituting in the equation of Proposition 3.2,

hiNίf{β) = Σ KMkβf the sum over all fc with #(&) = ΐ .Σ
Also /(I) = 1, flf(l) = 1. For a e C(N), β e C(M), let &(α) be 0 if aφ
f(β) and be tβ/tf{β) iί a = f(β). Then

Ngwa = Σ 9β(a)Mkβ
β

so by Proposition 3.2, </ is a morphism from N* to ΛP. Note
^(α) = 0 for a Φ 1, and iζ, = {1}. By interchanging # with /, / is
surjective. Let & and & be the partitions defined on R(M) and
C(Λf) by g and / respectively. The above formulas give (^, ^ ) is
an admissible partition of M and ψoθ = /, where β is the natural
morphism from M to Mj{^, <£?) and ^ is the bijection induced by
/. Clearly φ is an isomorphism. The converse is easily checked
directly, so the proposition is proved.

We note by Proposition 2.6, the categories we are considering
have finite products (the Kronecker product of the matrices) and
zero object.
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