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BOUNDARY CONTINUITY OF SOME HOLOMORPHIC
FUNCTIONS

I. GLICKSBERG

For certain bounded domains D in Cn any continuous
function on D{jdA(ΰ)9 which is holomorphic on D automatical-
ly extends continuously to D~.

For a bounded domain D in Cn let A(D) be the sup normed
algebra of functions continuous on D~ and holomorphic on D, and
let d = dMD) denote its Silov boundary, so 3 c 3 D . Of course this
inclusion can be proper, and in his thesis [0] A. Aytuna raised
the question of whether every bounded continuous function on 9 U D
holomorphic on D necessarily extends continuously at all points of
dD\d. Aytuna showed this held when n ^ 2 for the half-ball D =
{z: \z\ < 1, Rez1 > 0}, where dD\d = {z: \z\ < 1, R e ^ = 0} is a union
of analytic discs and normal family arguments apply. In fact there
are simple domains for which continuous extension fails, as we shall
see below (§ 3), while it holds rather trivially for star like domains;
our purpose here is to point out some classes of domains for which
it holds, and indeed something stronger obtains, by virtue of some
elementary function algebra facts combined with the Oka-Weil
approximation theorem.

Recall that KaD~ is a peak set for A(D) if there is an / in
A(D) with f{K) = 1 and I / K 1 on D~\K. P(K) will denote the
closure in C(K) of the analytic polynomials and H°°(D) the bounded
holomorphic functions on D.

THEOREM 1. Suppose dD\d is differentiable and covered by a
union of peak sets K for A(D), for each of which

(1.1) / holomorphic near K implies f\K is uniformly appro-
ximable by polynomials, and

(1.2) x e K\d implies (0, ex)vx + K c D, where vx is the inward
unit normal to 3D at x, and x —> εx is a positive con-
tinuous function on dD\d.

If h is bounded and holomorphic on D, and, for one of our peak
sets Ko, has a continuous extension to D U (<5 Π Ko), then h extends
continuously to D U Ko.

In particular if h extends continuously to D I) d it extends to
an element of A(D); in fact in this case we need not assume h
bounded on D. Hypothesis (1.1) holds if each peak set K is poly-
nomially convex by the Oka-Weil approximation theorem (cf. [3],
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which will also be our reference for facts on uniform algebras).
An alternative to (1.1) is the assumption that each K provides

the spectrum of the (necessarily closed [3]) algebra A(D)\K: for
then K is the joint spectrum of the coordinate functions and the
functional calculus [3, p. 76] applies to assert any / holomorphic
near K has f\KeA(D)\K, which is just the property used. (Note
that if D~ is the spectrum of A(D), each K has this property.)
Hypothesis (1.2), as we shall see, is one of many which might be
used; the assumption that we can move all of K into D can be
relaxed considerably in the presence of additional hypotheses, with
some complication in the argument; in fact we need only know that
(as more smoothness of dD\d guarantees) near each x0 e dD\d not too
small chunks of each K can be moved along a normal into D, with
rather more information on our Ko.

THEOREM 2. Suppose dD\d is a C2 manifold and is covered
by a union of peak sets K for A(D) which are polynomially convex.
Suppose that for one of these, Ko, there are v3- —> 0 in Cn with
Vj + K0(zD. Then if h is bounded and holomorphic on D and extends
continuously to ΰU(3fl Ko), h extends continuously to D U KQ.

More generally, suppose Ko only contains polynomially convex
subsets Kj for which Kj + Vj c D for vo —> 0 in Cn, while for some
zoeKo\d

(2.1) each probability measure X on d Γ\ Ko representing z0 on
polynomials is a w* cluster point of a bounded sequence
{Xj}, where Xj is a complex measure on Kj multiplicative
on polynomials.

Then any bounded holomorphic h on D continuous on D U (3 Π Ko)
has a unique cluster value at z0. (The first assertion follows from
the second by taking Kj = Ko, Xj — λ.)

1* One of the main function algebra facts we shall use is that
if K is a peak set for A(D) then A(D)\K is closed in C(K) [3];
another is that d f] K provides a boundary for this algebra. (Any
representing measure for xeK on 9 must be carried by K, hence
by 3 Π K, as one sees by applying it to /*, where / 6 A(D) peaks
on K, and letting w->°o.) Both enter our proof of Theorem 1
which has been greatly simplified by T. W. Gamelin, to whom I
would like to express my thanks.

Let EcD~ be closed and contain the Silov boundary d. The
basic step in our proof of Theorem 1 is the more general.

LEMMA 1. Suppose z0 e dD\d lies in the peak set K for A(D),
K satisfies (1.1), and Vj+KaD for a sequence Vj->0 in C%.
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Then if

( * ) lim sup I g(z) | ^ lim sup | g(z) \, g e H~(D) ,
ZBD-^ZQ zeD-*E

any /eif°°(Z)) which extends continuously at all points ofEf]K
extends continuously at z0.

For the proof, define /,- e C(K) by f3(z) = f(z + vό). Because of
(1.1) and our hypothesis that v3 + KdD we know f3 is a uniform
limit of polynomials on K, hence of elements of A(D)\K; since this
algebra is closed, fά e A(D) \ K. But / extends continuously at all
points of E Π K so the sequence {f3\EP[K} converges uniformly on
E Π K, a set which includes the boundary d Π K for A(D) \ K, so
that in fact {fβ} converges in A{D) \ K. Its limit is the restriction to
K of some geA(D), and evidently for weEnK, g(w) = limzeD^w f(z).
Thus / — g tends to zero at each point of E Π K, and given ε > 0,
by compactness we have a neighborhood U of E Γϊ K in Ό~ for
which I / - flr I < ε on U Π D.

Now let h e A(D) peak on if, and let V be an open neighborhood
in D~ of E\U &t a positive distance from IT. Since hm —> 0 uniform-
ly on F we have an m for which | (/ — g)hm | < ε on V9 and the
same is true on U Π D because | / — g \ < ε and | h \ ̂  1 there. Thus

lim sup I(/ - g)hm{z)\ ^ ε

so that ε^limsup,ez)^0 |(/(^)-g(^))fem(^)NlimsupZez)^0 |/(^)-^)| by
(*). Since ε is arbitrary g(z0) evidently provides the unique cluster
value for / at z0, yielding our conclusion.

A simple condition insuring (*) is provided by

LEMMA 2. Suppose that for each sequence {z3} in D converging
to z0 there are closed sets .5?} and E3 for which ^ ej^}, jE'yCJ^c
Ώ, lim sup Ej c E, while sup | / ( J ^ ) | = sup | f{Eό) \, all fe H°°(D).
Then (*) holds.

Let M denote the left side of (*) and choose z3- in D so that
l/(Zi)|—>Λf, Zj-+z0. With E3 and 3ίΓi as above we have w3eE3aD
for which | f{w3) | —> M, and by hypothesis the w3 accumulate only
in E, so trivially (*) follows.

Now in order to prove Theorem 1 it only remains to verify
that we can apply Lemma 2 to any zoeKQ\d since in the presence
of (*) Lemma 1 applies. So suppose z3- —> z0, z3 e D, and let x3 e 3D
be nearest z3\ taking j large we can assume x3 lies in dD\d, and in
fact in a compact neighborhood of z0 in dD\d so that by (1.2) and
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the continuity of x —> ex for some fixed ε > 0

(0,ε)vXj+K3(zD

for j :> j 0 , where K3 is a peak set containing x3. Now z3 = x3 +
<Λy> where ίy —> 0 necessarily (indeed t3 — dist fo , 3D) <: dist (z3-, s0)),
and we only have to take SΓ3 = K3 + t3vx. czD and E3 = K3 Γ) E +
tjVXj: evidently lim sup E3 c E while sup | f(E3) | ^ sup | f(J%7) | follows
from the fact that K3 Π EZD K3 Π 3 is a boundary for P(K3), so that
by translation E3 is a boundary for P(J?ti), which contains
H°°(D)\J%Γ3 because of (1.1). Our proof of Theorem 1 is now com-
plete.

Note that our use of the differentiability of dD\d was needed
only to allow us to satisfy the hypotheses of Lemma 2; this can be
accomplished by various other hypotheses on D. For example

THEOREM 3. Suppose D is a bounded domain in Cn and KadD
is a peak set for A{D) which is polynomially convex and for which
K + v3(zD for a sequence v3 —• 0 in Cn. Suppose a dense subset of
D lies on positive dimensional subvarieties V of D all having V~\
F c 3 U Λ where Δ aCn is compact and disjoint from K.

Then any h e H°°(D) which has a continuous extension to D U
(3 Π K) has a continuous extension to D U K.

Here we deduce (*) for E — d U Δ from the maximum principle
for varieties, noting that we can restrict ourselves to a dense set
of z in D on the left side of (*). So Lemma 1 implies Theorem 3
directly.

We should also note that our proof of Theorem 1 applies equally
well to convex D, where the fact that dD\d is a union of polynomi-
ally convex peak sets follows from the fact that for each z0 e 3D
one has a w e Cn for which

z > Re (z, w)

assumes its maximum over D~~ at z0, so a multiple of z —> exp (z, w)
provides an element of A(D) which peaks on a subset K of dD
containing zQ; trivially K is convex and thus polynomially convex
(via such functions of course). One has only to replace translation
along normals by maps

σt(z) = (1 - ε)z + ez0

where zoeD is fixed. (But in fact that feH°°(D) continually
extendable to all of D U 3 has a continuous extension to D~ for D
star like is trivial: with z0 now the star center /, = foσε e A(D)f and
fs-+f uniformly on 3, as ε-^0, so that fε^geA(D); since fe-+f
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pointwise on D, f = g on D.) Of course convex domains are special
cases of those for which, for our Ko, we have a sequence of holo-
morphic maps σά of D~ into D with σά(k) -> k for each k e KQ Π 3,
and such maps will serve in place of our translations z —• 2 + tf, in
Lemma 1; in particular, Theorem 3 holds if our assumption that
K + VjdD for ^ i ^ O is replaced by the existence of such a sequ-
ence Oj.

Part of our proof of Theorem 1 yields some information even
when we have no continuity at the Silov boundary.

COROLLARY 4. Let D be as in Theorem 1, or convex, and let
K be one of our peak sets. If feH°°(D) then cl (/, K), the set of
cluster values of f at points of K, lies in ^ = ^(c l (/, d Π K)),
the closed convex hull of the set of cluster values at points of df]K.

This follows precisely because (*) holds: if our inclusion were
to fail, so some w e cl (/, K)\^, (necessarily a cluster value at some
zoeKQ\d), then so would (*) for exp (eiθf), where θ is chosen so that
Re (eίθw) > sup Re (eί9rέf).

2. The proof of Theorem 2 is more involved than that of
Theorem 1 because we cannot make as great use of the closure of
the algebra A(D)\K. The tubular neighborhood theorem [2, p. 9]
allows us to deduce it from the more general result below, in
which Π(x, δ) denotes the square polycylinder of radius δ about x.

THEOREM 2'. Suppose dD\d is differentiate, and covered by a
union of polynomially convex peak sets K for A(D), and for each
x0 e dD\d there are ε, δ, η > 0 with 2δ > ε for which Π(x0, ε + δ) Π d =
0, while x e Π(xQ, ε) 0 (dD\d) implies

(2.0) (o, η)vx + (Kx n Π{x, δ)) c: D

where Kx is one of our peak sets containing x and vx is again the
inward unit normal. Finally suppose that for one of our peak
sets Ko we have a sequence of polynomially convex subsets Kό and
Vj —> 0 in Cn with vά + K5 c D, and for some z0 e K0\d

(2.1) each probability measure X on Kod d representing zQ on
polynomials is a w* cluster point of a bounded sequence {Xj}, where
Xj is a complex measure on K3 multiplicative on polynomials.

Then if heH°°(D) extends continuously to D U (3 Π KQ) it has a
unique cluster value at zQ.

To begin our proof of Theorem 2', let B be the uniformly closed
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algebra of functions continuous D U KQ and holomorphic on D, and
let X be the closure in its spectrum of D U K0 (hence of D itself),
with p the restriction to X of the map dual to A{D) -» B. Since
the elements of B are all continuous on D U i£0> the natural injec-
tion of that set into X is continuous, 1 — 1 , while p provides a
continuous inverse, so D U K0 is imbedded homeomorphically in X.
In fact, D forms an open subset of X while p is 1 — 1 over D, as
is easily seen [4, p. 421]; moreover <o is also 1 — 1 over K since15 no
beB (and hence no element of C(X)) can separate p~\z) for zeK0:
for if x e p~\z) and {zδ} is a net in the dense subset D of X with
£5 -> x in X then 2d = p{zδ) —> p(x) = z in Z)~, so

6(x) = lim b(zδ) = lim δ(z3) = δ(z) = δ(z)

since b e B is continuous on D U if.
Of course |O maps X into, hence onto, D~; moreover local maxi-

mum modulus and the fact that D is open in X shows dB Π D = 0 ,
so 3^ c p~\dD) since X forms a boundary for B. In fact I claim
dB c ^ ( d ) . If not some element b of B peaks at x 6 p~\dD\d), and
letting x0 = ι°(^) e oD\d we have by hypothesis ε, δ, r; > 0, with δ>2ε,
77(x0, ε + δ) Π δ = 0 , and

( 1 ) (0, η)vx +KXΠ Π{x, δ)dD

for any x in Π(xQ, ε) (Ί (dD\d), where Kx is one of our peak sets
containing x. Replacing 6 by bk for k large we can suppose | δ | <
1/4 on D\Π(xQ, l/2^min(ε, η))9 while |6(«) |>3/4 for some zeΠ(x0,
l/2nmin(ε97j)). Now let xedD be nearest 12, so z = x + tvx, 0 <
ί < 1/2 min (ε, η), and, since xeΠ(xQ,ε), (1) applies. In particular
this says &(• + ^ x ) is analytic near the polynomially convex set
Kx n /7(a;, δ), and so lies in P(KX n 77(x, δ)) by Oka-Weil. But this
algebra coincides with the uniform closure of P(KX) \ (Kx Π Π(x, δ))
clearly, whose Silov boundary, by Rossi's local maximum modulus
theorem [3], lies in the topological boundary 30 = d(Kx Π Π(xt δ)) =
ULβ Π dΠ(x, δ) of iΓ. n Π(x, δ) in iΓ, (since Π(x, δ) c /7(x0, δ + ε) misses
3). Because t < ε and δ > 2ε, 30 + tvx lies in the closure of D\Π(x0,
l/2nmm(e,7})), where | δ | < l / 4 , and so we obtain a contradiction
3/4 < I b(z) I = I b(x + ίi J | ^ sup | δ(30 + tvx) \ £ 1/4, establishing the
claim that dβCzp'Xd).

Moreover, if geA(D)(zB peaks on Ko then g = gopeB peaks
on p~ιK0, while the closed algebra Blp^Ko has, as a boundary, 35Π
P^ULO C ^"'9 Γl jO"1-^ = i°-1(^ Π Ko) which is precisely d f] KQ since p is
1 — 1 over Ko as we saw earlier.

Now consider our function h holomorphic on D and continuous

1 Here ~ is the Gelfand representation of B.
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on D U (3 n Ko). We shall show
( i ) h has a continuous extension h0 to XXp'^KoXd);
(ii) all probability measures λ on dB representing our fixed

zQ e K0\d are multiplicative on the closed subalgebra Bo of
C(X\p-\K0\d)) generated by B and ho;

(iii) the subset dB of X\p~\K\d) forms a boundary for i?0.
Once these facts are in hand our conclusion follows by noting

that if Xo is the closure of X\p~\KQ\d) in the spectrum MBo (hence
that of D as well) and p0 is the restriction to Xo of the map dual
to A(D) —> Bo, then all points of pϊ\z0), for our fixed zoeKo\d, are
represented by measures λ on the boundary dB for B0(iiϊ) which lie
in the set of measures on dB representing z0 on B) since (ii) says
these are all multiplicative on Bo they all represent the same func-
tional: if λ and λ' represented distinct f unctionals we'd have b e Bo

with λ(δ) = 0, λ'(6) = 1, whence multiplicativity of (λ + λ')/2 yields
1/2 - l/2(λ + λ')(δ2) = (l/2(λ + λ')(δ))2 - 1/4. Thus p»\z0) is a single-
ton, and of course this implies h has a unique cluster value at z0

since if z3 —* z0, z3 e D> any cluster value of {h(z3-)} is fe(cc) for some
xe Xo with ,o0(x) = £0

So it remains to prove (i)-(iii).
To see (i), note that

X = p-\D~) = p~\D) U p~\dD\K0) U p~\d n Ko) U iO-^oW

so X\p-\K0\d) = p~\D) U ρ-\dD\K0) U /O"^ n ίΓJ, and we only have
to see fc, as a function on D aX, has a unique cluster value at each
x 6 p~\dD\K0) U p" 1 ^ Π JBLO) For the second set this is our hypothe-
sis on h, and for the first, if g e A(D) again peaks on Ko then b =
(1 — g)h 6 Bf so b(x)(l — ̂ (x))"1 provides our unique cluster value at
x 6 p-\3D\K0).

For (ii) recall that by hypothesis we have v3- —> 0 in Cn and
polynomially convex sets K5 c Ko with v3- + ifi c D, while each
probability measure λ on 3 Π K0 representing 20 on P(JGL) is a W*

cluster point of a sequence {X3}, where λy is a complex measure on
iΓ̂  multiplicative on polynomials.

As we know any probability measure λ' representing z0 on B
and carried by dB is carried by dB Π p~\K0) c p"1^) Π P~\KO) =
p~\p Π Zo) — 3 Π Ko, and so λ' = λ as above, as a measure repre-
senting zQ on A(D), hence on A(ί?)|iίL0Z) P(K0). If α*^) = 2; + v3

then trivially the translated measures σ*X3- (defined by σ*Xs(f) =
λX(/o0y)) still have λ as a w* cluster point (now in the space of
measures on X) since boσ3->b uniformly on ϋΓ0 Γl 3 and {λ̂ } is
bounded. Since hoσ3 is analytic near K3, and so in P(K3), as is
boσ3 for beBf
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whence X{hnb) — X(h)nX(b), so X is multiplicative on Bo, and (ii) holds.
Now only (iii), that dBaX\p~l(KJd) forms a boundary for Bo,

remains to be seen. If b e Bo peaks at x e W — XQ\(dB U PQ\K0)) and
U is a compact neighborhood of x lying in W then for ?ι sufficiently
large b, = 6W(1 — #)(ΞΞO on if0, # again our element of A(D) peaking
on KQ) is an element of B which assumes its maximum modulus
only within U, hence not on dB, so dB can not be a boundary for
B. Thus the peak points for J50 in Xo lie in dB U Po\Ko), so dBQcz
dB U p^(KQ). Since the dense open subset ΰ of I lies in X^Q^KQ),

the peak set Po\Ko) is nowhere dense in Xo. But now if V = 3Bo\
3# c Po\KQ) is nonvoid it must contain a peak point #0 for £>0 (as a
relatively open subset of dBo must), and since the element 1 — g of
Bo vanishes on p^\K0) Z) V it must vanish on a neighborhood of x0

in XQ by [5, 2.1], despite the fact that we have seen (1 — g)~\0) =
Po\Ko) is nowhere dense in Xo. We conclude dBo cd B so our proofs
of (iii) and Theorem 2' are complete.

A variant of our argument yields another version of Theorem 2.

THEOREM 2". Suppose dD\d is a C2 manifold and is covered by
a union of peak sets K for A(D) each of which forms the spectrum
of A(D)\K {which is automatic if D~ is the spectrum of A(D)).
Suppose that for one of these, Ko, vό + KoczD for v3- -> 0 in Cn.
Then any bounded holomorphic h on D extending continuously to
D U (d Π KQ) extends continuously to D U Ko.

This replacement of polynomial convexity for our K's is possi-
ble since here K Π Π(x, δ) is the joint spectrum of the coordinate
functions for the algebra (A(D)\K Π Π(x, δ))~, so our argument that
dB c p~\d) proceeds as before using the holomorphic calculus in place
of Oka-Weil; a similar replacement occurs when we consider the
functions h°σβ of course.

Note that when (1.1) in Theorem 1 is replaced by polynomial
convexity of the peak sets K that result is contained in the asser-
tion of Theorem 2' (with all Kό = KQ). We should also note a
property of such domains: for D as in Theorem 1 (or starlike) any
heH°°(D) bounded near d, say by M> 0, is bounded on D, and by
the same constant. (If h were not bounded by M then we have z5

in D with | h(Zj) \ —> sup | h(D) \ > M, and we can assume z, —> z0,
necessarily in dD\d; if x, e dD is nearest z, and we take j ^ jQ all
the Xj will lie in a compact neighborhood of z0 in dD\d on which



BOUNDARY CONTINUITY OF SOME HOLOMORPHIC FUNCTIONS 433

ex^ ε > 0, so Zj = x$ + t5vxp with t, < ε for j ^ j \ . But now since
Kxj + tfl)x.c:D while h( +tjVxj) is in P(JBΓy) as before,

|A(s, )| ^ sup l A ί ^ + «Λ y ) | ^ sup | Λ(3 ΓΊ IT,,. + «,*.,.) I

so Λf < sup I Λ(D) I = lim I frfe ) | ^ lim sup | h(d Π JK^ + ί^*,.) | <i ikf, our
contradiction.) As a consequence if D is as in Theorem 1 (or
star like) and h e A(D) then h(d U D) provides the entire range of h,
h(D~). To see this we need only show 0 g h(d U JD) implies 0 g h(D~).
But the hypothesis implies 1/fe is holomorphic on Z> and bounded on
(and so near) d, so 1/h is bounded on Z)~ by our remark, and 0 g
h(D~). (Even when D" is the spectrum of A(D), so h{D~) is the
spectrum of h, the familiar Banach algebra fact that dh(D~) c h(d),
which thus implies h(D) U dh(D~) a h(d U D), does not quite yield
this since dh(D) may properly contain dh(D~~).) More generally, for
/z, G H°°(D) the set of cluster values of h at all points of dD, cl (h, 3D) a
h(D) U cl (h, d) for D as in Theorem 1, by the same argument.

An improvement of Theorem 2 can be obtained via the basic
lemma of [1], viz: for aeA(D) and EaC a closed set of (inner
logaritmic) capacity zero, if h has a single cluster value at each
point of d Π (K0\a~\E)) the same is true at z0 if z0 e KQ\a~\E). Here
one argues exclusively with Jensen measures. h0 is now only con-
tinuous on Y = (X\io~1(iί0\3))\(α-1(J5r) n 3), but since X(a-\E)) - 0 for
each Jensen measure λ representing z 6 J5LO\(9 U a~~ι(E)) on B (by [1,
Lemma 1]), hQoσ5 —> h0 a.e. λ, so as before one concludes all such
Jensen measures for z coincide on the subalgebra Bo of C{Y) gene-
rated by B and h0, and represent the same functional ψ0 on Bo. On
the other hand by the proof of (iii) dBo is the closure in MBo of dB\
a~\E), and it is easy to see the new points lie in pQla~\E) — a~\E)\
since each element of Po\z) is represented by a Jensen measure λ
on dBQ, which necessarily vanishes on ά~\E), X is in fact carried by
dB, and represents z on B. But now λ represents φQ, and pϊ\z) is
a singleton as desired.

3* There are simple domains for which continuous extension
fails. Here is one which amounts to a union of two convex domains,
deformed so that two discs in the boundary meet in precisely their
common center, and thus obstruct continuous extension; as will be
noted there is a vast gap between the example and the domains
previously considered.

In C3 let

A = {t(z19 0, 2i) + (1 - t)w: 0 < t < 1, \z,\ < 1, \w-(0, 0, 2)| < 1} ,

A - {t(0, z2, -2i) + (1 - t)w: 0 < t < 1, \z2\ < 1, | w-(0, 0, 2)| < 1} ,
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and A = A U A Note that π3D0 lies in the open right half plane,
while τr3A~ meets the imaginary axis in ±2ΐ; evidently π^\iR)C]Do
is the union of the two closed discs

Λ - {(zί9 0, 2i):\zι\ ^ 1} , 4 = {(0, z2, - 2 i ) : |z 2 | ^ 1} .

Thus if we set p(z19 z2, zz) — (zί9 z2, zξ) and D = pDQ then p maps ZV

onto D~, and A biholomorphically onto D. In fact p is 1 — 1 on
D~ except at the centers (0, 0, ±2ί) of Δ19 Δ2 both of which map to
(0, 0, —4), which is precisely pΔι Π pΔ2. Thus the function h = π3op~1

on D~\{(0, 0, —4)}, which provides the square root of the third
coordinate, is continuous, and holomorphic on D. Since it yields
values near both ±2i in each neighborhood of (0, 0, —4) in D~, it
has no continuous extension to D~. Finally (0,0, — 4)£34 U ? ), (essen-
tially since each pΔt is an analytic disc), and we are done.

(One can easily modify A so that dD\pΔλ U pΔ2 lies in dA{D)\
moreover pΔt U pΔ2 can be made a peak set (as in the example,
where (4 — z3)/S is the peaking function), and polynomially convex.)

Added in proof (April 1, 1979). I am indebted to H. Alexander
for the following simpler (and basically different) example. In C2

l e t D = {(z, w ) : \ z \ < \ w \ < 1 } . T h e n d = {(z, w): \z\ = \w\ = 1 } , e s -
sentially since any point with | z \ = | w \ < 1 lies in a disc where
feA(D) must be analytic (as Iimr//1/(r , ))l but f — z\w is a bounded
continuous function on D~\{(0, 0)} analytic on D which has no con-
tinuous extension to D~ since (0, 0) lies on too many analytic discs.
(For the same reason (0, 0) lies in no proper peak set.)
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