COMMUTANTS AND THE OPERATOR EQUATION $A X=\lambda X A$

Carl C. Cowen

Abstract

Suppose A is a bounded operator on the Banach space \mathscr{B} such that A or A^{*} is one-to-one. In this note, we point out a relation between the commutant of A, the commutants of its powers, and operators which intertwine A and λA, where λ is a root of unity. A consequence of this relation is that the commutants of A and A^{n} are different if and only if there is an operator Y, not zero, that satisfies $A Y=$ $\lambda Y A$, where $\lambda^{n}=1, \lambda \neq 1$. Combining this with Rosenblum's theorem, we see that if the spectra of A and $X A$ are disjoint, the commutant of A is the same as that of A^{2}. We also use the theorem to give a counterexample to a conjecture of Deddens concerning intertwining analytic Toeplitz operators.

If A, B, and X are bounded operators on \mathscr{B}, we say X commutes with A if $X A=A X$, and we say X intertwines A and B if $X A=B X$. The set of operators that commute with A, the commutant of A, will be denoted $\{A\}^{\prime}$.

Lemma. Suppose A is an operator such that A or A^{*} is one-to-one, and λ is a primitive nth root of 1. If X commutes with A^{n}, the operators $Y_{i}=\sum_{j=0}^{n-1} \lambda^{i j} A^{n-j-1} X A^{j}$, for $i=0,1, \cdots, n-1$, are the unique operators such that $A Y_{i}=Y_{i}\left(\lambda^{i} A\right)$ and $n A^{n-1} X=\sum_{i=0}^{n-1} Y_{i}$.

Proof. Let $Y_{i}=\sum_{j=0}^{n-1} \lambda^{i j} A^{n-j-1} X A^{j}$. Then

$$
\begin{aligned}
A Y_{i} & =\sum_{j=0}^{n-1} \lambda^{i j} A^{n-j} X A^{j}=A^{n} X+\sum_{j=1}^{n-1} \lambda^{i j} A^{n-j} X A^{j} \\
& =X A^{n}+\sum_{j=1}^{n-1} \lambda^{i j} A^{n-j} X A^{j} \\
& =\sum_{k=0}^{n-1} \lambda^{i(k+1)} A^{n-k-1} X A^{k+1} \\
& =\left(\sum_{k=0}^{n-1} \lambda^{i k} A^{n-k-1} X A^{k}\right)\left(\lambda^{i} A\right)=Y_{i}\left(\lambda^{i} A\right) .
\end{aligned}
$$

Since $\sum_{i=0}^{n-1} \lambda^{i j}=0$ when $j \neq 0$, and the sum is n when $j=0$,

$$
\begin{aligned}
\sum_{i=0}^{n-1} Y_{i} & =\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \lambda^{i j} A^{n-j-1} X A^{j} \\
& =\sum_{j=0}^{n-1} A^{n-j-1} X A^{j} \sum_{i=0}^{n-1} \lambda^{i j}=n A^{n-1} X .
\end{aligned}
$$

Now suppose $Z_{0}, Z_{1}, \cdots, Z_{n-1}$ are operators such that $n A^{n-1} X=$ $\sum_{i=0}^{n-1} Z_{i}$ and $A Z_{i}=Z_{i}\left(\lambda^{i} A\right)$ for each i. We have

$$
\begin{aligned}
n A^{n-1} Y_{i} & =\sum_{j=0}^{n-1} \lambda^{i j} A^{n-j-1}\left(n A^{n-1} X\right) A^{j} \\
& =\sum_{j=0}^{n-1} \lambda^{i j} A^{n-j-1}\left(\sum_{k=0}^{n-1} Z_{k}\right) A^{j}=\sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \lambda^{i j} A^{n-j-1} A^{j} \lambda^{-k j} Z_{k} \\
& =\sum_{k=0}^{n-1} A^{n-1} Z_{k} \sum_{j=0}^{n-1} \lambda^{(i-k) j}=n A^{n-1} Z_{i} .
\end{aligned}
$$

If A is one-to-one, then $A^{n-1} Y_{i}=A^{n-1} Z_{i}$ implies $Y_{i}=Z_{i}$. If A^{*} is one-to-one, then A^{n-1} has dense range and $Y_{i} A^{n-1}=\lambda^{-i(n-1)} A^{n-1} Y_{i}=$ $\lambda^{-i(n-1)} A^{n-1} Z_{i}=Z_{i} A^{n-1}$, which implies $Y_{i}=Z_{i}$.

Theorem. Suppose A or A^{*} is one-to-one and n is a positive integer. Then $\{A\}^{\prime}=\left\{A^{n}\right\}^{\prime}$ if and only if $A Y=Y(\lambda A)$ for $\lambda^{n}=1$ implies $\lambda=1$ or $Y=0$.

Proof. (\Rightarrow) Suppose $\{A\}^{\prime}=\left\{A^{n}\right\}^{\prime}$ and for some Y we have $A Y=$ $Y(\lambda A)$ where $\lambda^{n}=1$. Then $A^{n} Y=Y\left(\lambda^{n} A^{n}\right)=Y A^{n}$, so $Y \in\left\{A^{n}\right\}^{\prime}=\{A\}^{\prime}$ and $A Y=Y A$ as well. Thus $\lambda Y A=A Y=Y A$ and $(1-\lambda) Y A=0$. Since A or A^{*} is one-to-one, this means that $(1-\lambda) Y=0$, so $\lambda=1$ or $Y=0$.
(\Leftarrow) Suppose $A Y=Y(\lambda A)$ for $\lambda^{n}=1$ implies $Y=0$ or $\lambda=1$. Let X be in $\left\{A^{n}\right\}^{\prime}$, and let λ be a primitive nth root of 1. For $i=1,2, \cdots, n-1$ let $Y_{i}=\sum_{j=0}^{n-1} \lambda^{i j} A^{n-j-1} X A^{j}$. By the lemma, $A Y_{i}=$ $Y_{i}\left(\lambda^{i} A\right)$ so, since $\lambda^{i} \neq 1$, our hypothesis says $Y_{i}=0$. Thus, we have the $n-1$ equations $\sum_{j=0}^{n-1} \lambda^{i j} A^{n-j-1} X A^{j}=0,(i=1,2, \cdots, n-1)$.

Consider the equations $\sum_{j=0}^{n-1} \lambda^{j i} w_{j}=0,(i=1,2, \cdots, n-1)$, in the indeterminates $w_{0}, w_{1}, w_{2}, \cdots, w_{n-1}$. We notice that $w_{0}=w_{1}=w_{2}=$ $\cdots=w_{n-1}$ is a solution of these equations, and since the $(n-1) \times n$ coefficient matrix $\left(\lambda^{j i}\right)_{j=0}^{n-1} \substack{n-1 \\ i=1}$ has rank $n-1$, this is the only solution. In our case, we conclude $A^{n-1} X=A^{n-2} X A=\cdots=X A^{n-1}$. If A is one-to-one, $A^{n-1} X=A^{n-2} X A$ implies $A X=X A$, whereas if A^{*} is one-to-one, $A X A^{n-2}=X A^{n-1}$ implies $A X=X A$.

We have shown that X is in $\{A\}^{\prime}$ if it is in $\left\{A^{n}\right\}^{\prime}$. Since the reverse inclusion is automatic, we have $\left\{A^{n}\right\}^{\prime}=\{A\}^{\prime}$.

As illustrations, we prove the following corollaries.
Corollary 1. If the spectrum of A and the spectrum of $-A$ are disjoint, then $\{A\}^{\prime}=\left\{A^{2}\right\}^{\prime}$.

Proof. Since the spectra of A and $-A$ are disjoint, Rosenblum's theorem, [3], implies that the only solution of $A X=X(-A)$ is $X=$ 0 . Zero is not in the spectrum of A, so A is one-to-one and we
apply the theorem to conclude $\{A\}^{\prime}=\left\{A^{2}\right\}^{\prime}$.
Corollary 2. If the spectrum of A is contained in the quarter plane $\{z \mid \operatorname{Re}(z)>0$ and $\operatorname{Im}(z)>0\}$, then $\{A\}^{\prime}=\left\{A^{4}\right\}^{\prime}$.

Proof. The spectra of $A, i A, i^{2} A$, and $i^{3} A$ are disjoint, so by Rosenblum's theorem, the only solution of $A X=X\left(i^{k} A\right)$, for $k=1$, 2 , or 3 , is $X=0$. Zero is not in the spectrum of A, so A is one-to-one, and we apply the theorem to conclude that $\{A\}^{\prime}=\left\{A^{4}\right\}^{\prime}$.

The theorem may also be used to refute a conjecture of Deddens concerning intertwining analytic Toeplitz operators [2, page 244]. We recall that if ϕ is a bounded analytic function on the unit disk D, the analytic Toeplitz operator, T_{ϕ}, is the operator on the Hardy space H^{2} of multiplication by ϕ. Deddens conjectured that when ϕ and ψ are bounded analytic functions on D and 0 is the only solution of $X T_{\phi}=T_{\psi} X$, then the complex conjugate of the range of ψ is not contained in the point spectrum of T_{ϕ}^{*}. To see that this is false, let f be a Riemann map of D onto the slit disk $D \backslash(-1,0]$. Then the corollary of Theorem 5 of [1] implies that $\left\{\left(T_{f 2}\right)^{2}\right\}^{\prime}=\left\{T_{f}\right\}^{\prime}=$ $\left\{T_{f^{2}}\right\}^{\prime}$. If f^{2} and $-f^{2}$ are the ϕ and ψ of the conjecture, we note that range $\psi=D \backslash\{0\}=$ point spectrum T_{ϕ}^{*}. But since $\left\{\left(T_{f^{2}}\right)^{2}\right\}^{\prime}=$ $\left\{T_{f^{2}}\right\}^{\prime}$ and $T_{f^{2}}$ is one-to-one, the theorem implies that 0 is the only operator which intertwines $T_{f^{2}}$ and $-T_{f^{2}}=T_{-f^{2}}$. The difficulty seems to be associated with the fact that the multiplicities of f^{2} and $-f^{2}$ are different on the real axis.

The unfortunate presence of A^{n-1} in the formula $n A^{n-1} X=\sum_{i=0}^{n-1} Y_{i}$ of the lemma is essential when A is not invertible; it is easy to give examples of operators X in $\left\{T_{z}^{2}\right\}^{\prime}$ so that $2 T_{z} X=Y_{0}+Y_{1}$, as above, but $Y_{0} \neq T_{z} B$ for any bounded operator B. On the other hand, if A is invertible, we may solve the equation for X and obtain $X=\sum_{i=0}^{n-1} \hat{Y}_{i}$, where $\hat{Y}_{i}=\left(n A^{n-1}\right)^{-1} Y_{i}$. These operators are the unique operators that satisfy $A \hat{Y}_{i}=\hat{Y}_{i}\left(\lambda^{i} A\right)$ and $X=\sum_{i=0}^{n-1} \hat{Y}_{i}$.

In the above, we have found a relation between the commutants of A and $p(A)$ for the polynomials $p(z)=z^{n}$. Of course, there is an analogous result for polynomials of the form $p(z)=(z-\alpha)^{n}+\beta$. It would be interesting (and apparently more difficult) to obtain information about the relation between $\{A\}^{\prime}$ and $\{p(A)\}^{\prime}$ for more complicated polynomials.

References

1. C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc., 239 (1978), 1-31.
2. J. A. Deddens, Intertwining analytic Toeplitz operators, Michigan J. Math., 18
(1971), 243-246.
3. M. Rosenblum, On the operator equation $B X-X A=Q$, Duke Math. J., 23 (1956), 263-269.

Received June 12, 1978. Supported in part by National Science Foundation Grant MCS 77-03650.

University of Illinois at Urbana-Champaign
Urbana. IL 61801
AND
Purdue University
West Lafayette, IN 47907

