COMMUTANTS AND THE OPERATOR EQUATION $AX = \lambda XA$

CARL C. COWEN

Suppose A is a bounded operator on the Banach space \mathscr{B} such that A or A^* is one-to-one. In this note, we point out a relation between the commutant of A, the commutants of its powers, and operators which intertwine A and λA , where λ is a root of unity. A consequence of this relation is that the commutants of A and A^n are different if and only if there is an operator Y, not zero, that satisfies $AY = \lambda YA$, where $\lambda^n = 1$, $\lambda \neq 1$. Combining this with Rosenblum's theorem, we see that if the spectra of A and XA are disjoint, the commutant of A is the same as that of A^2 . We also use the theorem to give a counterexample to a conjecture of Deddens concerning intertwining analytic Toeplitz operators.

If A, B, and X are bounded operators on \mathscr{B} , we say X commutes with A if XA = AX, and we say X intertwines A and B if XA = BX. The set of operators that commute with A, the commutant of A, will be denoted $\{A\}'$.

LEMMA. Suppose A is an operator such that A or A^* is oneto-one, and λ is a primitive nth root of 1. If X commutes with A^n , the operators $Y_i = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X A^j$, for $i = 0, 1, \dots, n-1$, are the unique operators such that $A Y_i = Y_i(\lambda^i A)$ and $n A^{n-1} X = \sum_{i=0}^{n-1} Y_i$.

Proof. Let $Y_i = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X A^j$. Then

$$egin{aligned} A\,Y_i &= \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j} X A^j = A^n X + \sum_{j=1}^{n-1} \lambda^{ij} A^{n-j} X A^j \ &= X A^n + \sum_{j=1}^{n-1} \lambda^{ij} A^{n-j} X A^j \ &= \sum_{k=0}^{n-1} \lambda^{i(k+1)} A^{n-k-1} X A^{k+1} \ &= \left(\sum_{k=0}^{n-1} \lambda^{ik} A^{n-k-1} X A^k
ight) (\lambda^i A) = \,Y_i(\lambda^i A) \;. \end{aligned}$$

Since $\sum_{i=0}^{n-1} \lambda^{ij} = 0$ when $j \neq 0$, and the sum is n when j = 0,

$$\sum_{i=0}^{n-1} Y_i = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X A^j \ = \sum_{j=0}^{n-1} A^{n-j-1} X A^j \sum_{i=0}^{n-1} \lambda^{ij} = n A^{n-1} X \, .$$

Now suppose Z_0, Z_1, \dots, Z_{n-1} are operators such that $nA^{n-1}X = \sum_{i=0}^{n-1} Z_i$ and $AZ_i = Z_i(\lambda^i A)$ for each *i*. We have

$$egin{aligned} nA^{n-1}Y_i &= \sum\limits_{j=0}^{n-1}\lambda^{ij}A^{n-j-1}(nA^{n-1}X)A^j \ &= \sum\limits_{j=0}^{n-1}\lambda^{ij}A^{n-j-1}igg(\sum\limits_{k=0}^{n-1}Z_kigg)A^j &= \sum\limits_{j=0}^{n-1}\sum\limits_{k=0}^{n-1}\lambda^{ij}A^{n-j-1}A^j\lambda^{-kj}Z_k \ &= \sum\limits_{k=0}^{n-1}A^{n-1}Z_k\sum\limits_{j=0}^{n-1}\lambda^{(i-k)j} &= nA^{n-1}Z_i \ . \end{aligned}$$

If A is one-to-one, then $A^{n-1}Y_i = A^{n-1}Z_i$ implies $Y_i = Z_i$. If A^* is one-to-one, then A^{n-1} has dense range and $Y_iA^{n-1} = \lambda^{-i(n-1)}A^{n-1}Y_i = \lambda^{-i(n-1)}A^{n-1}Z_i = Z_iA^{n-1}$, which implies $Y_i = Z_i$.

THEOREM. Suppose A or A^* is one-to-one and n is a positive integer. Then $\{A\}' = \{A^n\}'$ if and only if $AY = Y(\lambda A)$ for $\lambda^n = 1$ implies $\lambda = 1$ or Y = 0.

Proof. (\Rightarrow) Suppose $\{A\}' = \{A^n\}'$ and for some Y we have $AY = Y(\lambda A)$ where $\lambda^n = 1$. Then $A^n Y = Y(\lambda^n A^n) = YA^n$, so $Y \in \{A^n\}' = \{A\}'$ and AY = YA as well. Thus $\lambda YA = AY = YA$ and $(1 - \lambda)YA = 0$. Since A or A^* is one-to-one, this means that $(1 - \lambda)Y = 0$, so $\lambda = 1$ or Y = 0.

(\Leftarrow) Suppose $A Y = Y(\lambda A)$ for $\lambda^n = 1$ implies Y = 0 or $\lambda = 1$. Let X be in $\{A^n\}'$, and let λ be a primitive *n*th root of 1. For $i = 1, 2, \dots, n-1$ let $Y_i = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X A^j$. By the lemma, $A Y_i = Y_i(\lambda^i A)$ so, since $\lambda^i \neq 1$, our hypothesis says $Y_i = 0$. Thus, we have the n-1 equations $\sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X A^j = 0$, $(i = 1, 2, \dots, n-1)$.

Consider the equations $\sum_{j=0}^{n-1} \lambda^{ji} w_j = 0$, $(i = 1, 2, \dots, n-1)$, in the indeterminates $w_0, w_1, w_2, \dots, w_{n-1}$. We notice that $w_0 = w_1 = w_2 =$ $\dots = w_{n-1}$ is a solution of these equations, and since the $(n-1) \times n$ coefficient matrix $(\lambda^{ji})_{j=0}^{n-1} \stackrel{n-1}{i=1}$ has rank n-1, this is the only solution. In our case, we conclude $A^{n-1}X = A^{n-2}XA = \dots = XA^{n-1}$. If A is one-to-one, $A^{n-1}X = A^{n-2}XA$ implies AX = XA, whereas if A^* is one-to-one, $AXA^{n-2} = XA^{n-1}$ implies AX = XA.

We have shown that X is in $\{A\}'$ if it is in $\{A^n\}'$. Since the reverse inclusion is automatic, we have $\{A^n\}' = \{A\}'$.

As illustrations, we prove the following corollaries.

COROLLARY 1. If the spectrum of A and the spectrum of -A are disjoint, then $\{A\}' = \{A^2\}'$.

Proof. Since the spectra of A and -A are disjoint, Rosenblum's theorem, [3], implies that the only solution of AX = X(-A) is X = 0. Zero is not in the spectrum of A, so A is one-to-one and we

338

apply the theorem to conclude $\{A\}' = \{A^2\}'$.

COROLLARY 2. If the spectrum of A is contained in the quarter plane $\{z \mid \operatorname{Re}(z) > 0 \text{ and } \operatorname{Im}(z) > 0\}$, then $\{A\}' = \{A^{4}\}'$.

Proof. The spectra of A, iA, i^2A , and i^3A are disjoint, so by Rosenblum's theorem, the only solution of $AX = X(i^kA)$, for k = 1, 2, or 3, is X = 0. Zero is not in the spectrum of A, so A is one-to-one, and we apply the theorem to conclude that $\{A\}' = \{A^4\}'$.

The theorem may also be used to refute a conjecture of Deddens concerning intertwining analytic Toeplitz operators [2, page 244]. We recall that if ϕ is a bounded analytic function on the unit disk D, the analytic Toeplitz operator, T_{ϕ} , is the operator on the Hardy space H^2 of multiplication by ϕ . Deddens conjectured that when ϕ and ψ are bounded analytic functions on D and 0 is the only solution of $XT_{\phi} = T_{\psi}X$, then the complex conjugate of the range of ψ is not contained in the point spectrum of T_{ϕ}^{*} . To see that this is false, let f be a Riemann map of D onto the slit disk $D \setminus (-1, 0]$. Then the corollary of Theorem 5 of [1] implies that $\{(T_{f^2})^2\}' = \{T_f\}' =$ $\{T_{f^2}\}'$. If f^2 and $-f^2$ are the ϕ and ψ of the conjecture, we note that range $\psi = D \setminus \{0\} = \text{point spectrum } T_{\phi}^*$. But since $\{(T_{f^2})^2\}' =$ $\{T_{f^2}\}'$ and T_{f^2} is one-to-one, the theorem implies that 0 is the only operator which intertwines T_{f^2} and $-T_{f^2} = T_{-f^2}$. The difficulty seems to be associated with the fact that the multiplicities of f^2 and $-f^2$ are different on the real axis.

The unfortunate presence of A^{n-1} in the formula $nA^{n-1}X = \sum_{i=0}^{n-1} Y_i$ of the lemma is essential when A is not invertible; it is easy to give examples of operators X in $\{T_z^2\}'$ so that $2T_zX = Y_0 + Y_1$, as above, but $Y_0 \neq T_zB$ for any bounded operator B. On the other hand, if A is invertible, we may solve the equation for X and obtain $X = \sum_{i=0}^{n-1} \hat{Y}_i$, where $\hat{Y}_i = (nA^{n-1})^{-1}Y_i$. These operators are the unique operators that satisfy $A\hat{Y}_i = \hat{Y}_i(\lambda^i A)$ and $X = \sum_{i=0}^{n-1} \hat{Y}_i$.

In the above, we have found a relation between the commutants of A and p(A) for the polynomials $p(z) = z^n$. Of course, there is an analogous result for polynomials of the form $p(z) = (z - \alpha)^n + \beta$. It would be interesting (and apparently more difficult) to obtain information about the relation between $\{A\}'$ and $\{p(A)\}'$ for more complicated polynomials.

References

^{1.} C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc., **239** (1978), 1-31.

^{2.} J. A. Deddens, Intertwining analytic Toeplitz operators, Michigan J. Math., 18

(1971), 243-246.

3. M. Rosenblum, On the operator equation BX-XA=Q, Duke Math. J., 23 (1956), 263-269.

Received June 12, 1978. Supported in part by National Science Foundation Grant MCS 77-03650.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA. IL 61801 AND PURDUE UNIVERSITY WEST LAFAYETTE, IN 47907

340