A SELECTION THEOREM FOR GROUP ACTIONS

JOHN P. BURGESS

Let a Polish group G act continuously on a Polish space X, inducing an equivalence relation E. Let E_{γ} be the restriction of E to an invariant Borel subset Y of X. Assume E_{γ} is countably separated. Then it has a Borel transversal.

Throughout, let Γ be a continuous action of a Polish group G on a Polish space X. Thus X is a separable space admitting a complete metric, while G is a topological group whose topology is separable and admits a complete metric, and Γ is a continuous function $G \times X \to X$ satisfying $\Gamma(g^{-1}, \Gamma(g, x)) = x$ and $\Gamma(g, \Gamma(h, x)) = \Gamma(gh, x)$ for all $x \in X$ and $g, h \in G$. We write gx for $\Gamma(g, x)$, and for subsets of X write gA for $\{gx: x \in A\}$. Γ induces an equivalence relation E on X: xEy iff gx = y for some $g \in G$. $W \subset X$ is invariant if gW = W for all $g \in G$. Let $Y \subset X$ be an invariant Borel set, E_Y the restriction of E to Y. A transversal or selector-set for an equivalence relation is a set composed of exactly one representative from each equivalence class. Let us assume E_Y is countably separated, i.e., that there exist invariant Borel $Z_0, Z_1, Z_2, \cdots \subset Y$ such that for all $x, y \in Y$:

$$(0) \qquad \qquad xEy \longleftrightarrow \forall m(x \in Z_m \longleftrightarrow y \in Z_m)$$

our goal is to prove the following selection result:

THEOREM. Under the above hypotheses, E_{γ} has a Borel transversal. It should be mentioned that a number of special cases and overlapping results have been known to and applied by C^* -algebraists for some time now. The construction of the required transversal proceeds in four stages.

Stage A. It will prove convenient to reserve the letters m, n plain and with subscripts to range over the set I of natural numbers, and to reserve s, t plain and with subscripts to range over the set Q of finite sequences of natural numbers. We let s^*m denote the concatenation of s and m, i.e., s with m tacked on at the end. We wish to define Borel sets A(s) for overy $s \in Q$ of even length.

Case 1. $s = \text{the empty sequence } \emptyset$. Set $A(\emptyset) = Y$.

Case 2. s = a sequence (m, n) of length two. Set $A((m, n)) = Z_m$

if n = 0, and $Y - Z_m$ if n > 0.

Case 3. s = a sequence of form t^*m^*n , where t has length ≥ 2 , and A(t) is a closed set. For such t we wish to define $A(t^*m^*n)$ for all m and n at once. In order to do so, we first fix a complete metric ρ compatible with the topology of X. For each m we then let $\{A(t^*m^*n): n \in I\}$ be a family of closed sets of ρ -diameter < 1/mwhose union is A(t).

Note that in every case so far we have:

(1)
$$A(t) = \bigcap_{m} \bigcup_{n} A(t^*m^*n) .$$

Case 4. s = a sequence of form t^*m^*n , where t has length ≥ 2 , and A(t) is not closed. Again, for such t we define all $A(t^*m^*n)$ at once.

But first we introduce by induction on countable ordinals α a slight modification of the usual hierarchies of Borel sets. Let Θ_0 be the family of all closed subsets of X. For a countable ordinal $\alpha > 0$, let Θ_{α} be the family of all sets of form $\bigcap_m \bigcup_n W_{mn}$ with the $W_{mn} \in \bigcup_{\beta < \alpha} \Theta_{\beta}$. Thus $\Theta_1 = F_{o\delta}, \ \Theta_2 = F_{o\delta o\delta}$. For present purposes the rank of a Borel set W will mean the least α with $W \in \Theta_{\alpha}$.

Now returning to our Borel set A(t) of rank $\alpha > 0$, we let the $A(t^*m^*n)$ be sets of rank $< \alpha$ satisfying (1) above. This completes the opening stage of the construction.

Stage B. Let us fix an enumeration s_0, s_1, s_2, \cdots of the nonempty members of Q, such that if s_m is an initial segment of s_n , then m < n. Let F_n denote the set of all functions $\{s_0, \dots, s_{n-1}\} \to I$. (So F_0 contains only the empty function \emptyset .) Let $F = \bigcup_n F_n$, and let F_∞ be the set of all functions $\{s_i: i \in I\} \to I$. We reserve the letters σ, τ plain and with subscripts to range over F. We say τ is an *immediate proper extension* of σ , and write $\sigma \subset \tau_{\alpha}$, if for some n, $\sigma \in F_n, \tau \in F_{n+1}$, and τ extends σ .

For $\psi \in F \cup F_{\infty}$ and $s = (m_0, m_1, \dots, m_{k-1}) \in \text{dom } \psi$ we define: $\psi^+(s) = (m_0, n_0, m_1n_1, \dots, m_{k-1}, n_{k-1})$, where $n_0 = \psi((m_0))$ and $n_1 = \psi((m_0, m_1)), \dots, n_{k-1} = \psi(s)$.

To complete stage B of the construction, we define $B(\sigma)$ to be the intersection of all $A(\sigma^+(s))$ for $s \in \text{dom } \sigma$. Unpacking all these definitions, one readily verifies that:

(2)
$$B(\sigma) = \bigcup_{\sigma \in \tau} B(\tau) .$$

Another glance at the definitions (especially stage A, case 2) discloses:

 $(3) \qquad x \in B(\sigma) \& (m) \in \text{dom } \sigma \longrightarrow (x \in Z_m \longleftrightarrow \sigma((m)) = 0) .$

334

Stage C. Before launching into the next stage of the construction, we define for any $W \subset X$ the Vaught transform W^* of W to be $\{x \in X: \{g \in G: gx \in W\}$ is nonmeanger (2nd category) in G}. One readily verifies that:

 W^{\sharp} is invariant.

W is invariant $\rightarrow W = W^*$.

 $(\mathbf{U}_n W_n)^{\sharp} = \mathbf{U}_n (W_n^{\sharp}).$

It is shown in [1] that

W is Borel $\longrightarrow W^*$ is Borel

which will be all-important for us.

Now let us define $C(\sigma) = B(\sigma)^*$. The above facts from Vaught's theory of group actions imply that each $C(\sigma)$ is an invariant Borel set, that $C(\emptyset) = Y$, and that:

$$(4) C(\sigma) = \bigcup_{\sigma \in \tau} C(\tau) .$$

Now if $x \in C(\sigma)$, then some $gx \in B(\sigma)$, so applying (3) above, and recalling that the Z_m are invariant, we conclude:

(5)
$$x \in C(\sigma) \& (m) \in \operatorname{dom} \sigma \longrightarrow (x \in Z_m \longleftrightarrow \sigma((m)) = 0)$$
.

Stage D. We say σ lexicographically precedes τ , and write $\sigma \triangleleft \tau$, if for some n and i < n we have $\sigma \in F_n, \tau \in F_n, \sigma(s_j) = \tau(s_j)$ for all j < i, and $\sigma(s_i) < \tau(s_i)$. The relation \triangleleft well orders each F_n .

Let $D(\sigma)$ be the invariant Borel set $C(\sigma) \cdot \bigcup \{C(\tau): \tau \triangleleft \sigma\}$. Thus $D(\emptyset) = Y$ and by (4) and (5) we have:

$$(6) D(\sigma) = \sum_{\sigma \in \tau} D(\tau)$$

$$(7) \qquad x \in D(\sigma) \text{ and } (m) \in \text{dom } \sigma \longrightarrow (x \in Z_m \longleftrightarrow \sigma((m)) = 0) \text{.}$$

In (6), Σ denotes *disjoint* union.

Finally we are in a position to introduce the Borel set:

$$T = \bigcap_{n} \bigcup_{\sigma \in F_n} (B(\sigma) \cap D(\sigma)) .$$

We aim to show that T is the required transversal for E_Y . To this end we consider an arbitrary *E*-equivalence class $K \subset Y$ and verify that $T \cap K$ is a singleton.

To begin with, from (6) it is evident that there exists a sequence $\emptyset = \sigma_0 \subset \sigma_1 \subset \sigma_2 \subset \cdots$ of elements of F such that $K \in D(\sigma_n)$ for each n, but $K \cap D(\sigma) = \emptyset$ for any other $\sigma \in F$. Let $\psi \in F_{\infty}$ be the union of these σ_n .

Recall that:

$$B(\sigma_n) = \ \cap \ \{A(\sigma_n^+(s_i)) \colon i < n\} = oldsymbol{\bigcap} \ \{A(\psi^+(s_i)) \colon \ i < n\}$$
 .

Let us consider the closely related sets:

 $L_n = \bigcap \{A(\psi^+(s_i)): i < n \text{ and } A(\psi^+(s_i)) \text{ is a closed set} \}$.

Manifestly the L_n are closed and nested, $L_{n+1} \subset L_n$. They are also nonempty. (To see this, note that $K \subset D(\sigma_n) \subset C(\sigma_n)$ implies $K \cap$ $B(\sigma_n) \neq \emptyset$, and that $L_n \supset B(\sigma_n)$.) Finally, the ρ -diameters of the L_n converge to zero. (To see this, consider for any given m the sets $A(\psi^+((m))), A(\psi^+((m, m))), A(\psi^+((m, m, m))), \cdots$. By stage A, case 4 of our construction, the ranks of these sets decrease until at some step we reach a closed set; then by stage A, case 3, at the very next step we get a closed set of ρ -diameter < 1/m.) Since ρ is complete, $\bigcap_n L_n$ is a singleton $\{y\}$.

Claim. $y \in A(\psi^+(s))$ for all s.

This is established by induction on the rank of the set involved: we know it already for rank 0, i.e., closed, sets. Suppose then $A(\psi^+(s))$ has rank $\alpha > 0$, and assume as induction hypothesis that the claim holds for sets of rank $< \alpha$, e.g., for the various $A(\psi^+(s)^*m^*n)$. Then for any m, letting $n = \psi(s^*m)$, we have $\psi^+(s^*m) = \psi^+(s)^*m^*n$, and so by induction hypothesis, $y \in A(\psi^+(s)^*m^*n)$. This shows $y \in \bigcap_m \bigcup_n A(\psi^+(s)^*m^*n) = A(\psi^+(s))$ as required to prove the claim.

From the claim it is immediate that $y \in \bigcap_n B(\sigma_n)$, and also that for any $m, y \in Z_m$ iff $\psi(m) = 0$. On the other hand, by (7) above, for any $m, K \subset Z_m$ iff $\psi(m) = 0$. But then by (0), $y \in K$. And this implies $y \in \bigcap_n D(\sigma_n)$. Putting everything together, $T \cap K = \{y\}$ as required.

References

1. R. L. Vaught, Invariant sets in topology and logic, Fund. Math., 82 (1974), 269-293.

Received July 21, 1978. Research partially supported by NSF grant NCS 77.

PRINCETON UNIVERSITY PRINCETON, NJ 08540