A SELECTION THEOREM FOR GROUP ACTIONS

John P. Burgess

Let a Polish group G act continuously on a Polish space X, inducing an equivalence relation E. Let E_{Y} be the restriction of E to an invariant Borel subset Y of X. Assume E_{Y} is countably separated. Then it has a Borel transversal.

Throughout, let Γ be a continuous action of a Polish group G on a Polish space X. Thus X is a separable space admitting a complete metric, while G is a topological group whose topology is separable and admits a complete metric, and Γ is a continuous function $G \times X \rightarrow X$ satisfying $\Gamma\left(g^{-1}, \Gamma(g, x)\right)=x$ and $\Gamma(g, \Gamma(h, x))=\Gamma(g h, x)$ for all $x \in X$ and $g, h \in G$. We write $g x$ for $\Gamma(g, x)$, and for subsets of X write $g A$ for $\{g x: x \in A\}$. Γ induces an equivalence relation E on $X: x E y$ iff $g x=y$ for some $g \in G$. $W \subset X$ is invariant if $g W=W$ for all $g \in G$. Let $Y \subset X$ be an invariant Borel set, E_{Y} the restriction of E to Y. A transversal or selector-set for an equivalence relation is a set composed of exactly one representative from each equivalence class. Let us assume E_{Y} is countably separated, i.e., that there exist invariant Borel $Z_{0}, Z_{1}, Z_{2}, \cdots \subset Y$ such that for all $x, y \in Y$:

$$
\begin{equation*}
x E y \longleftrightarrow \forall m\left(x \in Z_{m} \longleftrightarrow y \in Z_{m}\right) \tag{0}
\end{equation*}
$$

our goal is to prove the following selection result:
Theorem. Under the above hypotheses, E_{Y} has a Borel transversal. It should be mentioned that a number of special cases and overlapping results have been known to and applied by C^{*}-algebraists for some time now. The construction of the required transversal proceeds in four stages.

Stage A. It will prove convenient to reserve the letters m, n plain and with subscripts to range over the set I of natural numbers, and to reserve s, t plain and with subscripts to range over the set Q of finite sequences of natural numbers. We let $s^{*} m$ denote the concatenation of s and m, i.e., s with m tacked on at the end. We wish to define Borel sets $A(s)$ for overy $s \in Q$ of even length.

Case 1. $s=$ the empty sequence \varnothing. Set $A(\varnothing)=Y$.
Case 2. $s=a$ sequence (m, n) of length two. Set $A((m, n))=Z_{m}$
if $n=0$, and $Y-Z_{m}$ if $n>0$.
Case 3. $s=a$ sequence of form $t^{*} m^{*} n$, where t has length $\geqq 2$, and $A(t)$ is a closed set. For such t we wish to define $A\left(t^{*} m^{*} n\right)$ for all m and n at once. In order to do so, we first fix a complete metric ρ compatible with the topology of X. For each m we then let $\left\{A\left(t^{*} m^{*} n\right): n \in I\right\}$ be a family of closed sets of ρ-diameter $<1 / m$ whose union is $A(t)$.

Note that in every case so far we have:

$$
\begin{equation*}
A(t)=\bigcap_{m} \bigcup_{n} A\left(t^{*} m^{*} n\right) \tag{1}
\end{equation*}
$$

Case 4. $s=a$ sequence of form $t^{*} m^{*} n$, where t has length $\geqq 2$, and $A(t)$ is not closed. Again, for such t we define all $A\left(t^{*} m^{*} n\right)$ at once.

But first we introduce by induction on countable ordinals α a slight modification of the usual hierarchies of Borel sets. Let Θ_{0} be the family of all closed subsets of X. For a countable ordinal $\alpha>0$, let Θ_{α} be the family of all sets of form $\bigcap_{m} \bigcup_{n} W_{m n}$ with the $W_{m n} \in \bigcup_{\beta<\alpha} \Theta_{\beta}$. Thus $\Theta_{1}=F_{\sigma \dot{\delta}}, \Theta_{2}=F_{\sigma \delta \delta o \delta}$. For present purposes the rank of a Borel set W will mean the least α with $W \in \Theta_{\alpha}$.

Now returning to our Borel set $A(t)$ of rank $\alpha>0$, we let the $A\left(t^{*} m^{*} n\right)$ be sets of rank $<\alpha$ satisfying (1) above. This completes the opening stage of the construction.

Stage B. Let us fix an enumeration $s_{0}, s_{1}, s_{2}, \cdots$ of the nonempty members of Q, such that if s_{m} is an initial segment of s_{n}, then $m<n$. Let F_{n} denote the set of all functions $\left\{s_{0}, \cdots, s_{n-1}\right\} \rightarrow I$. (So F_{0} contains only the empty function \varnothing.) Let $F=\bigcup_{n} F_{n}$, and let F_{∞} be the set of all functions $\left\{s_{i}: i \in I\right\} \rightarrow I$. We reserve the letters σ, τ plain and with subscripts to range over F. We say τ is an immediate proper extension of σ, and write $\sigma \Subset \tau_{\alpha}$, if for some n, $\sigma \in F_{n}, \tau \in F_{n+1}$, and τ extends σ.

For $\psi \in F \cup F_{\infty}$ and $s=\left(m_{0}, m_{1}, \cdots, m_{k-1}\right) \in$ dom ψ we define:
$\psi^{+}(s)=\left(m_{0}, n_{0}, m_{1} n_{1}, \cdots, m_{k-1}, n_{k-1}\right)$, where
$n_{0}=\psi\left(\left(m_{0}\right)\right)$ and $n_{1}=\psi\left(\left(m_{0}, m_{1}\right)\right), \cdots, n_{k-1}=\psi(s)$.
To complete stage B of the construction, we define $B(\sigma)$ to be the intersection of all $A\left(\sigma^{+}(s)\right)$ for $s \in \operatorname{dom} \sigma$. Unpacking all these definitions, one readily verifies that:

$$
\begin{equation*}
B(\sigma)=\bigcup_{\sigma €:} B(\tau) \tag{2}
\end{equation*}
$$

Another glance at the definitions (especially stage A, case 2) discloses:

$$
\begin{equation*}
x \in B(\sigma) \&(m) \in \operatorname{dom} \sigma \longrightarrow\left(x \in Z_{m} \longleftrightarrow \sigma((m))=0\right) . \tag{3}
\end{equation*}
$$

Stage C. Before launching into the next stage of the construction, we define for any $W \subset X$ the Vaught transform W^{\ddagger} of W to be $\{x \in X:\{g \in G: g x \in W\}$ is nonmeanger (2nd cafegory) in $G\}$. One readily verifies that:
$W^{\#}$ is invariant.
W is invariant $\rightarrow W=W^{\ddagger}$.
$\left(\mathbf{U}_{n} W_{n}\right)^{\#}=\mathbf{U}_{n}\left(W_{n}^{*}\right)$.
It is shown in [1] that

$$
W \text { is Borel } \longrightarrow W^{\ddagger} \text { is Borel }
$$

which will be all-important for us.
Now let us define $C(\sigma)=B(\sigma)^{\ddagger}$. The above facts from Vaught's theory of group actions imply that each $C(\sigma)$ is an invariant Borel set, that $C(\varnothing)=Y$, and that:

$$
\begin{equation*}
C(\sigma)=\bigcup_{\sigma \in \tau} C(\tau) \tag{4}
\end{equation*}
$$

Now if $x \in C(\sigma)$, then some $g x \in B(\sigma)$, so applying (3) above, and recalling that the Z_{m} are invariant, we conclude:

$$
\begin{equation*}
x \in C(\sigma) \&(m) \in \operatorname{dom} \sigma \longrightarrow\left(x \in Z_{m} \longleftrightarrow \sigma((m))=0\right) . \tag{5}
\end{equation*}
$$

Stage D. We say σ lexicographically precedes τ, and write $\sigma \triangleleft \tau$, if for some n and $i<n$ we have $\sigma \in F_{n}, \tau \in F_{n}, \sigma\left(s_{j}\right)=\tau\left(s_{j}\right)$ for all $j<i$, and $\sigma\left(s_{i}\right)<\tau\left(s_{i}\right)$. The relation \triangleleft well orders each F_{n}.

Let $D(\sigma)$ be the invariant Borel set $C(\sigma) \cdot \bigcup\{C(\tau): \tau \triangleleft \sigma\}$. Thus $D(\varnothing)=Y$ and by (4) and (5) we have:

$$
\begin{equation*}
D(\sigma)=\sum_{\sigma \in \tau} D(\tau) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
x \in D(\sigma) \text { and }(m) \in \operatorname{dom} \sigma \longrightarrow\left(x \in Z_{m} \longleftrightarrow \sigma((m))=0\right) . \tag{7}
\end{equation*}
$$

In (6), Σ denotes disjoint union.
Finally we are in a position to introduce the Borel set:

$$
T=\bigcap_{n} \bigcup_{\sigma \in F_{n}}(B(\sigma) \cap D(\sigma))
$$

We aim to show that T is the required transversal for E_{Y}. To this end we consider an arbitrary E-equivalence class $K \subset Y$ and verify that $T \cap K$ is a singleton.

To begin with, from (6) it is evident that there exists a sequence $\varnothing=\sigma_{0} \Subset \sigma_{1} \Subset \sigma_{2} \Subset \cdots$ of eIements of F such that $K \in D\left(\sigma_{n}\right)$ for each n, but $K \cap D(\sigma)=\varnothing$ for any other $\sigma \in F$. Let $\psi \in F_{\infty}$ be the union of these σ_{n}.

Recall that:

$$
B\left(\sigma_{n}\right)=\cap\left\{A\left(\sigma_{n}^{+}\left(s_{i}\right)\right): i<n\right\}=\bigcap\left\{A\left(\psi^{+}\left(s_{i}\right)\right): i<n\right\}
$$

Let us consider the closely related sets:

$$
L_{n}=\bigcap\left\{A\left(\psi^{+}\left(s_{i}\right)\right): i<n \text { and } A\left(\psi^{+}\left(s_{i}\right)\right) \text { is a closed set }\right\} .
$$

Manifestly the L_{n} are closed and nested, $L_{n+1} \subset L_{n}$. They are also nonempty. (To see this, note that $K \subset D\left(\sigma_{n}\right) \subset C\left(\sigma_{n}\right)$ implies $K \cap$ $B\left(\sigma_{n}\right) \neq \varnothing$, and that $L_{n} \supset B\left(\sigma_{n}\right)$.) Finally, the ρ-diameters of the L_{n} converge to zero. (To see this, consider for any given m the sets $A\left(\psi^{+}((m))\right), A\left(\psi^{+}((m, m))\right), A\left(\psi^{+}((m, m, m))\right), \cdots$. By stage A, case 4 of our construction, the ranks of these sets decrease until at some step we reach a closed set; then by stage A, case 3 , at the very next step we get a closed set of ρ-diameter $<1 / m$.) Since ρ is complete, $\bigcap_{n} L_{n}$ is a singleton $\{y\}$.

Claim. $y \in A\left(\psi^{+}(s)\right)$ for all s.
This is established by induction on the rank of the set involved: we know it already for rank 0, i.e., closed, sets. Suppose then $A\left(\psi^{+}(s)\right)$ has rank $\alpha>0$, and assume as induction hypothesis that the claim holds for sets of rank $<\alpha$, e.g., for the various $A\left(\psi^{+}(s)^{*} m^{*} n\right)$. Then for any m, letting $n=\psi\left(s^{*} m\right)$, we have $\psi^{+}\left(s^{*} m\right)=\psi^{+}(s)^{*} m^{*} n$, and so by induction hypothesis, $y \in A\left(\psi^{+}(s)^{*} m^{*} n\right)$. This shows $y \in \bigcap_{m} \bigcup_{n} A\left(\psi^{+}(s)^{*} m^{*} n\right)=A\left(\psi^{+}(s)\right)$ as required to prove the claim.

From the claim it is immediate that $y \in \bigcap_{n} B\left(\sigma_{n}\right)$, and also that for any $m, y \in Z_{m}$ iff $\psi(m)=0$. On the other hand, by (7) above, for any $m, K \subset Z_{m}$ iff $\psi(m)=0$. But then by (0), $y \in K$. And this implies $y \in \bigcap_{n} D\left(\sigma_{n}\right)$. Putting everything together, $T \cap K=\{y\}$ as required.

References

1. R. L. Vaught, Invariant sets in topology and logic, Fund. Math., 82 (1974), 269-293.

Received July 21, 1978. Research partially supported by NSF grant NCS 77.

