
PACIFIC JOURNAL OF MATHEMATICS
Vol. 80, No. 2, 1979

CONNECTIVITY PROPERTIES OF METRIC SPACES

DOUGLAS S. BRIDGES

We discuss various connectivity properties of a metric
space, and investigate how far their equivalence carries
over from the classical to the constructive setting. In
passing, we obtain interesting relations between connectivity
and convexity for subsets of R, and a result on preservation
of connectivity by continuous mappings.

1Φ The primary object of this note is a constructive examination
of the relationship between several, classically equivalent connectivity
properties of a metric space (E, d). In order to make sense of the
statements of these properties, we recall that a subset A of E is
located (in E) if

dist (x9 A) ΞΞ inf {d(x, a): aeA}

is computable for each x in E; in which case the metric complement
of A in E is defined to be

E - A = {xeE: dist (x, A) > 0} .

Note that a located set A is nonvoid, in the sense that we can
construct at least one of its elements. For further properties of
located sets, and general background material in constructive analysis,
we refer the reader to [1] and [2].

In [3], we introduced the following types of connectivity of a
metric space:

C-connectivity: if A is a closed, located subset of E with nonvoid
metric complement, then there exists a point ξ in A Π (E — A)";

^-connectivity: if A is an open, located subset of E with nonvoid
metric complement, then there exists ξ in A such that d(ξ, x) > 0 for
each x in A;

Connectivity: if A is an open, closed and located subset of E,
then A = E.

We then showed that

C-connectivity = > 0-connectivity = > connectivity .

In this section, we shall show that these implications cannot be reversed
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within a constructive proof-theoretic framework. To do this, we
first characterize located C- and O-connected subsets of the real line
R, and prove connectivity of subsets of R of the form [a, b] U ]b, c],
where a < b < c.

LEMMA 1. Let S be a subset of R with the property. S n ]α, b[
is dense in [a, b] whenever a, b belong to S and a < b. Let A be a
located subset of the metric space S and let be S — A. Then there
exist a in A and £ in A f] (S — A)~ such that either a ^ £ < b or
b <ζ ^ α.

We first note that if x e S — A, then

min (dist (x — dist (x, A), A), dist (x + dist (x, A), A)) = 0 .

In particular, it follows that, if r = dist (6, A), then either
dist (6 - r, A)< (l/2)r or dist (6 + r, A)< (l/2)r. Taking, for example,
the former case (the latter produces the second alternative of the
conclusion of the lemma), we compute a in ]b — 3r/2, b — r] D A. As
ae S,be S, and a < i>, there exists ^ in S ίl ]δ - r, 5 - (l/2)r]. Let
^ = dist (xlf A) and ζ = χt — p. Then 0 < |O ̂  ^ — α < r; so that
^ + p belongs to ]xu b + (l/2)r[, and therefore

dist (xt + p9 A) ^ min (|O, r) > 0 .

Hence dist (ξ, A) = 0, and f e A. On the other hand, as ξ ^ α, S Π ]α, 6[
is dense in [α, 6], and \xt — ξ\ = d i s t ^ , A), it follows that ]f, xj c
5 - A, and therefore that ζ e (S - A)".

THEOREM 1. A necessary and sufficient condition that a located
subset S of R be C-connected is that S ID [α, b] whenever a, b are points
of S and a < b.

If S is C-connected, and α, b are points of S with a <by and
# e [α, 6], we have either a < α? or x < &. Without loss of generality,
we suppose the latter. Then A = Sn]—°°,x] is a closed, located
subset of S such that beS — A. Thus there exists £ in A ί l S ί l
(S — A)~. It is easy to see that ξ = x, whence xe S.

Conversely, suppose the stated condition holds, and let A be a
closed, located subset of S with S — A nonvoid. Choosing b in S — A,
compute a in A and ξ in A π (S — A)~ such that either a <̂  ξ < 6 or
6 < ζ ^ α Then ξeS, and so £ e A Π (S — A)~. Thus S is C-connected.

THEOREM 2. A necessary and sufficient condition that a located
subset S of R be ^-connected is that S D ]α, δ[ whenever α, & are points
of S and a < b.
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If S is O-connected, and α, 6 are points of S with a < δ, and
xe]a, δ[, we apply the O-connectivity condition to 4 = Sn]-°°,ίi;[,
to obtain ζ in S with d(ξ, y) > 0 for each y in A. As ζ is clearly
equal to x, we have xeS, as required.

Conversely, suppose the stated condition holds, and let A be an
open, located subset of S with S — A nonvoid. Choosing δ in S — A,
compute a in A and ξ in 1 n (S - i ) " such that either a ^ £ < b or
δ < f ^ α. As <f e A entails A Π (S — A) nonvoid, and A is open, we
see that d(ξ9 x) > 0 for each x in A. In particular, either a < ζ < b
or b < <f < a; so that f e S, and S is O-connected.

PROPOSITION 1. Let a, δ, c be real numbers with a < b < c. Then
[a, b] U ]6, c] is connected.

Let A be an open, closed, located (and therefore totally bounded)
subset of S ΞΞ [α, δ] U ]δ, c]. We first prove that, if i n [α, 6] is
nonvoid, then iD[α, 6]. Indeed, given #0 in Af)[a, b] and a? in [a, b],
we have either x0 <£ x — r or a? + r <; x0. Without loss of generality,
we may assume the former. Letting

B = AΠ[atx] = AΠ[afx[ ,

we see that B is open and closed in [α, b]. On the other hand, if 0 < ε < r
and {xlf * ,cc,} is an ε-net of A, we may assume that xlf ---,xs

belong to AΠ[a, x — r], and that xs+1, •••,»„ belong to Af)[x + r, c].
It is now easy to show that {xlf , xs} is an ε-net of J5; whence B
is totally bounded, and therefore located in [a, b]. By connectivity
of [α, 6], we now have B = [α, 6]; whence we obtain the contradiction
xe A. Thus r = 0,xeAf)[a, 6], and so Az)[α, 6].

In a similar manner, we can show that if A Π ]δ, c] is nonvoid,
then Az)]δ, c]. Given f in A, we now see that either ζe[a, δ], in
which case [α, δ] c A and therefore (as A is open in S)A Π ]δ, c] is
nonvoid; or fe]δ, c], when ]ί>,c]ci, and therefore (as A is closed
in S) be A. In either case, we have Az)[α, δ]U]δ, c], and therefore
A = S. Thus S is connected.

THEOREM 3. The proposition,

a located, O-connected subset of R is C-connected ,

is essentially nonconstructive.

Consider the located subset S Ξ ( 0 } U ]0,1] of R. It follows from
Theorem 2 that S is O-connected. On the other hand, by Theorem
1, the C-connectivity of S would entail the proposition
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[0, l](x > 0 V x = 0) ,

which is known to be essentially nonconstructive.

THEOREM 4. The proposition,

a located, connected subset of R is ^-connected ,

is essentially nonconstructive.

Consider the located subset S = [-1, 0]U]0, 1] of R. By Pro-
position 1, S is connected. However, the 0-connectivity of S would
entail the proposition

Vαe[-1, l](x > 0 V x ^ 0) ,

which is known to be essentially nonconstructive.

2* A subset U of the metric space E is colocated (in E) if it
is the metric complement of a located set. U is then an open subset
of E. Colocated sets, like located sets (although to a lesser degree),
are easier to handle than general subsets of E. It therefore seems
reasonable to investigate what happens when we formulate alternative
connectivity properties in terms of colocated sets.

When we do so, we find that the natural analogue of C-connec-
tivity is just a condition of disconnectedness. That of 0-connectivity
is given by the property,

if U is a nonvoid, colocated subset of E, then exists ξ in fj
such that d(ξ, x) > 0 for each x in U,

a property easily shown to be equivalent to that of C-connectivity.
Finally, there is no direct analogue of connectivity, although a natural
property (readily seen to be equivalent to that of connectivity) is
that any open, closed, colocated subset of E is empty.

Of greater interest is the following property, analogous to that
of M-connectivity (defined in [4], and there shown to be equivalent
to 0-connectivity):

( * ) it U> V are nonvoid, disjoint subsets of E with U colocated and
V open, then there exists ξ in E such that d(ζ, x) > 0 for each
x in U U V .

(By "disjoint" here, we mean t h a t d(u, v) > 0 whenever ueU and

v e V.) We have

C-connectivity = » (*) ==> 0-connectivity .

To see this, suppose first t h a t E is C-connected, and let A be a
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located subset of E such that U=E—A = E—A is nonvoid. Then
there exists ξ in A Π U. As U is open, d(ξ, x) > 0 for each x in U.
If also F is a nonvoid open subset of E such that U, V are disjoint,
then ξ e V entails V Π U nonvoid; whence, as V is open, d(ξ, x) > 0
for each x in F. Thus i? satisfies (*).

On the other hand, if E satisfies (*) and A is an open, located
subset of E with U = E — A nonvoid, then there exists ξ in E such
that d(ζ, x) > 0 for each x in U (J A. Were dist (f, A) > 0, we would
have the contradiction £ e Z7; hence dist ({,4) = 0 , f e I , and so E is
0-connected.

On the real line, we can say more:

THEOREM 5. A necessary and sufficient condition that a located
subset E of R satisfy (*) is that E be 0-connected.

Let E be 0-connected. Let U be a nonvoid, colocated subset of
E, V a nonvoid, open subset of E such that U, V are disjoint, and
choose u in U, v in V. We may assume that u < v. By the lemma
in [5], the set

B Ξ { X 6 [U, V]: [U, X] C ?7}

is totally bounded. Let ξ = sup 5. Then (as U U V is open in E) it
is clear that | ξ — x \ > 0 for each x in £7 U F. Thus w < £ < v, and
so, by Theorem 2, £ei7. Hence £7 satisfies (*). Reference to the
remarks preceding this theorem completes the proof.

THEOREM 6. Let E be either an open ball in a Banach space,
or a complete, convex subset of a normed space. Then E satisfies (*).

Let A be a located subset of E, with U = E — A nonvoid. Using
the argument of the proof of 2.1 of [3], we can construct a point
ζ of E Π A Π U. It is easy to see that, if F is a nonvoid, open subset
of E such that U, V are disjoint, then \\ζ — χ\\ > 0 for each x in
UUV.

Theorems 5 and 6 support the (classically true) conjecture that
0-connectivity and (*) are equivalent properties of a metric space.

3* An immediate consequence of Theorems 1 and 3 is that the
proposition,

if S is a located, 0-connected subset of R, and α, b are points
of S with a < b, then [a, b] c S,

is essentially nonconstructive. This, and Theorem 1 itself, extends
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the work of Mandelker [6] in response to the first of two questions
with which we ended [3]. On the other hand, Proposition 1 enables
us to progress towards an answer to the second of these questions,
which we shall consider in a form slightly different to that found
in [3]:

if f is a uniformly continuous mapping of [0, 1] into R, what
connectivity properties obtain for /([0, 1])?

LEMMA 2. Let K be a compact, connected metric space, f: K—>R
a uniformly continuous mapping, and a, b points of f{K) with a ^b.
Then f(K) Π [a, b] is dense in [a, 6].

Let y e [a, b], and suppose that 0 < r '== dist (y, f(K)). Then

a <ί y — r < y < y + r <^b .

Compute a in ]0, r[ so that

A = /-G-oo, y _ a]) = Γ ( ] - o o f y[)

is compact [1, Ch. 4, Thm. 8]. Then A is an open, closed and located
subset of K. Hence A — K, and so ί / G i - a contradiction. Thus
dist(ί/,/(JBO) = 0.

THEOREM 7. The proposition,

a uniformly continuous mapping f: [0, 1] • R has ^-connected
range ,

is essentially nonconstructive.

Let ae[—l,l], and define a uniformly continuous mapping
/: [0, 1]->Λ so that /(0) = - 1 , /(1/3) = /(2/3) = a, /(I) - 1, and / is
linear in each of the intervals [0, 1/3], [1/3, 2/3], [2/3, 1]. Let S =
/([0,1]) and A = [-1, 0[n S. Then A is open in S. As S is dense
in [ — 1,1] (by Lemma 2), A is dense in [ — 1, 0[, and therefore totally
bounded. Hence A is located in S. Also, dist (1, A) > 0, and 1 6 S.
Suppose that S is 0-connected. Then there exists ξ in A Π S with
\ξ — x\> 0 for each x in A. It is clear that ξ = 0; whence OeS,
and we can compute z in [0, 1] with f(z) — 0. Either 1/3 < z or
z < 2/3. In the former case, we have a = /(1/3) <̂  f(z) = 0; in the
latter, a = /(2/3) ^ f(z) — 0. Thus we see that the proposition in
question entails

Va 6 [-1, 1] ( α ^ O V c t ^ O ) ,
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a proposition known to be essentially nonconstructive.

We have yet to answer the final question of [3] in its original
form:

if f is a uniformly continuous mapping of an interval I in
R into a metric space, is / ( / ) connected!
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