ON THE MULTIPLICATIVE COUSIN PROBLEMS FOR $N^{p}(D)$

Kenzō Adachi

Let D be a strictly convex domain in C^n with C^2 -class boundary. Let $N^p(D)$, 1 , be the set of all holomorphicfunctions <math>f in D such that $(\log^+|f|)^p$ has a harmonic majorant. The purpose of this paper is to show that the multiplicative Cousin problems for $N^p(D)$, 1 , are solvable.

Introduction. Let D be a domain in C^n . We denote by S_m 1. the class of bounded domains D in C^{*} with the properties that there exists a real function ρ of class C^2 defined on a neighborhood W of ∂D such that $d\rho \neq 0$ on $\partial D, D \cap W = \{z \in W: \rho(z) < 1\}$ and the real Hessian of ρ is positive definite on W. For $1 \leq p \leq \infty$, we denote by $N^{p}(D)$ the set of all holomorphic functions f in D such that $(\log^+|f|)^p$ has a harmonic majorant in D. When $p = \infty$, we assume that |f| is bounded in D. When $p = 1, N^{1}(D)$ is the Nevanlinna class. E. L. Stout [5] proved that the multiplicative Cousin problem with bounded data on every domain of class S_n can be solved. In this paper we shall prove that the multiplicative Cousin problems for $N^p(D)$, 1 , can be solved. The proof depends on the Riesztype theorem concerning conjugate functions and the estimates obtained by E. L. Stout [5], [6]. The required analysis is available on strictly pseudoconvex domains, but the geometric patching constructions in §3 depend on euclidean convexity. Explicitly, the above results are the following:

THEOREM. Let $D \in S_n$. Let $\{V_{\alpha}\}_{\alpha \in I}$ be an open covering of \overline{D} , and for each α , $f_{\alpha} \in N^p(V_{\alpha} \cap D)$, $1 . If for all <math>\alpha$, $\beta \in I$, $f_{\alpha}f_{\beta}^{-1}$ is an invertible element of $N^p(V_{\alpha} \cap V_{\beta} \cap D)$, then there exists a function $F \in N^p(D)$ such that for all $\alpha \in I$, Ff_{α}^{-1} is an invertible element of $N^p(V_{\alpha} \cap D)$.

In the case when D is an open unit polydisc in C^* , theorem for p = 1 was proved by S. E. Zarantonello [7], and theorem for $p = \infty$ was proved by E. L. Stout [4].

Let A(D) be the sheaf of germs of continuous function on \overline{D} that are holomorphic in D. I. Lieb [2] proved that $H^q(\overline{D}, A(D)) = 0$ for q > 0, provided D is a strictly pseudoconvex domain with C^5 -boundary. Let $D \in S_n$ and let D have a C^5 -boundary. Then, from the above Lieb's result and $H^2(D, \mathbb{Z}) = 0$, by applying the standard exact sequence of sheaves

$$0 \longrightarrow Z \longrightarrow A(D) \xrightarrow{\exp} A(D)^{-1} \longrightarrow 0$$

one can solve Cousin II-problems with data from the sheaf A(D).

The author is pleased to acknowledge his gratitude to the referee for valuable suggestions and helps during the improvement of this paper.

 H^{p} -functions. We now state some properties about H^{p} -2. functions. If $D \subset C^n$ is a domain, then for $0 , <math>H^p(D)$ is the space of all functions f holomorphic in D such that $|f|^p$ admits a harmonic majorant in D. When $p = \infty$, $H^{p}(D)$ is the space of all functions bounded and holomorphic in D. For a relatively compact domain D in C^n with ∂D a real submanifold of class C^2 , we shall say that a C²-function ρ defined on a neighborhood of \overline{D} is a characterizing function for D provided $\rho(z) < 1$ if and only if $z \in D$, provided $\partial D = \{z; \rho(z) = 1\}$, and provided $\partial \rho / \partial \nu \ge c > 0$ on ∂D , where $\partial / \partial \nu$ is the derivative with respect to the outward normal. E. L. Stout [5] proved that $D \in S_n$ is strictly convex and that if $0 \in D$, then D can be defined by a globally defined function which has positive definite real Hessian on $C^n - \{0\}$. From now on, when we consider $D \in S_n$, we assume that the defining function of D is globally defined and we take this function as a characterizing function of D. By E. M. Stein [3], the following (1) and (2) are equivalent for holomorphic functions f in D and $1 \leq p \leq \infty$:

$$(1) \qquad \qquad \sup_{{}^{arepsilon<1}} \left(\int_{{}^{arepsilon D}{}_{arepsilon}} |f(x)|^p dS_{arepsilon}(x)
ight)^{1/p} < \ \infty$$
 ,

where $D_{\varepsilon} = \{x: \rho(x) < \varepsilon\}, \rho(x)$ a characterizing function of D, and dS_{ε} is the element of surface area on ∂D_{ε} .

(2) $|f(x)|^p$ has a harmonic majorant if $p < \infty$. When $p = \infty$ we assume that |f| is bounded in D.

By the Cauchy-Fantappiè integral formula, if $f \in H^p(D)$, $1 \leq p \leq \infty$, then for $w \in D$,

$$f(w) = c_n \int_{\partial D} f(z)$$
 $imes rac{dz_1 \wedge \cdots \wedge dz_n \sum\limits_{k=1}^n (-1)^k \hat{\xi}_k(z) d\hat{\xi}_1(z) \wedge \cdots \wedge d\hat{\xi}_k(z) \wedge \cdots \wedge d\hat{\xi}_n(z)}{\langle w - z, \nabla
ho(z)
angle^n}$

where

$$\xi_k(z) = rac{\partial
ho}{\partial z_k}(z), \ c_n = rac{(n-1)!}{(2\pi i)^n}, \ \langle w-z, ar{V}
ho(z)
angle = \sum_{j=1}^n (w_j-z_j)rac{\partial
ho}{\partial z_j}(z) \ ,$$

and \frown means to be omitted. Since ∂D is of class C^2 , the above

integral can be written as

$$f(w) = c_n \int_{\partial D} f(z) \frac{k(z) dS(z)}{\langle w - z, \nabla \rho(z) \rangle^n}$$

where k is a continuous function and dS is the element of surface area on ∂D . Next we have the following propositions proved by E. L. Stout [6] for the Ramírez-Henkin integral. The proofs of the propositions are essentially the same as the proof of Theorem II.1 in E. L. Stout [6], so we omit the proofs.

PROPOSITION 1. If $f \in H^p(D)$, $1 \leq p \leq \infty$, and if ϕ is defined and satisfies a Lipschitz condition on C^n , then the function f_{ϕ} defined by

$${f}_{\phi}(w)=c_{n}\!\!\int_{\partial D}\!\!rac{f(z)\phi(z)k(z)dS(z)}{\langle w-z,
abla
ho(z)
angle^{n}}$$

belongs to $H^p(D)$.

PROPOSITION 2. Let $D \in S_n$. Let $f = u + iv \in O(D)$, where O(D)is the space of all holomorphic functions in D. Let $|u|^p$, 1 , $have a harmonic majorant, and let <math>\phi$ be a real function of C^n which satisfies a Lipschitz condition on C^n . Let f_{ϕ} be the function defined in Proposition 1. Then $|\operatorname{Re} f_{\phi}|^p$ has a harmonic majorant in D.

3. Proof of theorem. Let $D \in S_n$. Let $M = \max \{x_{2n}: \text{ for some } z \in \overline{D}, z = (z_1, \dots, z_n), x_{2n} = \text{Im } z_n\}$, and let m be the corresponding minimum. Let ε_0 satisfy $0 < \varepsilon_0 < (1/12)(M - m)$. Let $\eta_i, i = 1, 2$, be real valued functions of a real variable such that

(1)
$$\eta_i$$
 is of class C^2 , $i = 1, 2$,

$$(\ 3\) \qquad \qquad \eta_{\scriptscriptstyle \mathrm{I}}(t) \geqq 2 \quad \mathrm{if} \quad t \geqq rac{1}{2}(M+m) + 3arepsilon_{\scriptscriptstyle 0}$$
 ,

$$\eta_{\scriptscriptstyle 2}(t) \geq 2 \quad ext{if} \quad t \leq rac{1}{2}(M+m) - 3arepsilon_{\scriptscriptstyle 0}$$
 ,

299

Let ρ be a characterizing function of D, and let

$$D_{\scriptscriptstyle 1} = \{z \colon
ho(z) + \eta_{\scriptscriptstyle 1}(x_{\scriptscriptstyle 2n}) < 1\}, \, D_{\scriptscriptstyle 2} = \{z \colon
ho(z) + \eta_{\scriptscriptstyle 2}(x_{\scriptscriptstyle 2n}) < 1\}$$
 .

Then it is easily verified that D_1 , D_2 and $D_1 \cap D_2$ are elements of S_n .

LEMMA 2. Let D, D_1, D_2 be as above. If a positive subharmonic function ϕ in D has harmonic majorants in D_1 and D_2 , then ϕ has a harmonic majorant in D.

Proof. To prove Lemma 2, it suffices to show that

Let $D_{1\varepsilon} = \{\rho(z) + \eta_1(x_{2n}) < \varepsilon\}$, $D_{2\varepsilon} = \{\rho(z) + \eta_2(x_{2n}) < \varepsilon\}$. Then $D_{1\varepsilon} \cup D_{2\varepsilon} = D_{\varepsilon}$, $\partial D_{1\varepsilon} \cup \partial D_{2\varepsilon} \supset \partial D_{\varepsilon}$, $D_{1\varepsilon} \subset D_1$, $D_{2\varepsilon} \subset D_2$. Hence we have

where dS_{ε}^{1} and dS_{ε}^{2} are the surface area elements of $\partial D_{1\varepsilon}$ and $\partial D_{2\varepsilon}$, respectively. Integrals on the right are bounded uniformly on ε . Therefore Lemma 2 is proved.

We need two definitions.

DEFINITION 1. We say that a positive subharmonic function ϕ in *D* has local harmonic majorants if there exists an open covering $\{O_{\alpha}\}_{\alpha \in I}$ of \overline{D} such that for each $\alpha \in I$, ϕ has a harmonic majorant on $O_{\alpha} \cap D$.

DEFINITION 2. We say that F is locally in $N^p(D)$ if there exists an open covering $\{V_{\alpha}\}_{\alpha\in I}$ of \overline{D} such that for each $\alpha\in I$, F restricted to $V_{\alpha}\cap D$ belongs to $N^p(V_{\alpha}\cap D)$. The class of functions locally in $N^p(D)$ will be denoted by $N^p_{\text{loc}}(D)$. We denote the group of its invertible elements by inv $N^p_{\text{loc}}(D)$.

LEMMA 3. Let D, D_1 and D_2 be as in Lemma 2. Let $f = u + iv \in O(D_1 \cap D_2)$. If $|u|^p$ has a harmonic majorant in $D_1 \cap D_2$, then there exist functions f_1 and f_2 such that $f = f_1 + f_2$, where f_i , i = 1, 2, is holomorphic in D_i and $|\operatorname{Re} f_i|^p$ has a harmonic majorant in D_i , respectively.

Proof. Let ψ be a function on C^* which satisfies a Lipschitz condition and which has the properties that

300

$$egin{aligned} \psi &= 0 \quad ext{on} \quad \left\{ z \, \epsilon \, \partial \, (D_1 \cap D_2) ext{:} \, x_{\scriptscriptstyle 2n} < & rac{1}{2} (M + m) - arepsilon_0
ight\} ext{,} \ \psi &= 1 \quad ext{on} \quad \left\{ z \, \epsilon \, \partial (D_1 \cap D_2) ext{:} \, x_{\scriptscriptstyle 2n} > & rac{1}{2} (M + m) + arepsilon_0
ight\} ext{,} \end{aligned}$$

where ε_0 is the constant used in Lemma 2. Let $\tilde{\rho}$ be a characterizing function of $D_1 \cap D_2$. Write f as a Cauchy-Fantappiè integral. For $w \in D_1 \cap D_2$, we have

$$f(w) = c_n \int_{\partial(D_1 \cap D_2)} \frac{f(z)k(z)dS(z)}{\langle w - z, \nabla \rho(z) \rangle^n} = f_1(w) + f_2(w)$$

where

$$egin{aligned} f_1(w) &= c_n \int_{\mathfrak{F}(D_1 \cap D_2)} rac{f(z)(1-\psi(z))k(z)dS(z)}{\langle w-z,
abla
ho(z)
angle^n} \ , \ f_2(w) &= c_n \int_{\mathfrak{F}(D_1 \cap D_2)} rac{f(z)\psi(z)k(z)dS(z)}{\langle w-z,
abla
ho(z)
angle^n} \ . \end{aligned}$$

The functions f_1 and f_2 are holomorphic on $D_1 \cap D_2$ and that $|f_1|^p$ and $|f_2|^p$ have harmonic majorants on $D_1 \cap D_2$. Moreover, we can write

where $\Gamma = \partial(D_1 \cap D_2) \cap \{x_{2n} \leq (M+m)/2 + \varepsilon_0\}$. If $E = \{z \in D: x_{2n} \geq (M+m)/2 + 2\varepsilon_0\}$, then the distance between E and the tangent plane of $\partial(D_1 \cap D_2)$ at z is positive, where z is contained in $\partial(D_1 \cap D_2) \cap \{x_{2n} \geq (M+m)/2 + \varepsilon_0\}$. Therefore f_1 is holomorphic in D_1 . Let ρ_1 be a characterizing function of D_1 . Then we have

$$\int_{\rho_1=\varepsilon} |f_1|^p dS^1_{\varepsilon} \leq \int_{\{\widetilde{\rho}=\varepsilon\} \cap (D_1-E)} |f_1|^p d\widetilde{S}_{\varepsilon} + \int_{\{\rho=\varepsilon\} \cap E} |f_1|^p dS_{\varepsilon}$$

where $d\widetilde{S}_{\varepsilon}$ is the element of surface area of $\partial (D_1 \cap D_2)_{\varepsilon}$. Integrals on the right are bounded uniformly on ε . Therefore $|f_1|^p$ has a harmonic majorant in D_1 . Hence $|\operatorname{Re} f_1|^p$ has a harmonic majorant in D_1 . The proof that $|\operatorname{Re} f_2|^p$ has a harmonic majorant is the same as the proof for f_1 . Therefore Lemma 3 is proved.

LEMMA 4. Let $D \in S_n$. Then any positive subharmonic function ϕ in D with local harmonic majorant has a harmonic majorant. A one variable version of this result has been given by P. M. Gauthier and W. Hengartner [1].

Proof. Suppose ϕ does not have a harmonic majorant in *D*. Let D_1 and D_2 be subdomains of *D* constructed in Lemma 2. By Lemma

2, ϕ cannot have harmonic majorants on both D_1 and D_2 . Say D_1 . The x_{2n} -width of D_1 , i.e., the number max $|x'_{2n} - x''_{2n}|$, the maximum taken over all pairs of points z', z'' in D_1 , is not more than three fourths of the x_{2n} -width of D. We now treat D_1 as we treated D, using the coordinate x_{2n-1} rather than x_{2n} , and we find a smaller set $D_{11} \subset D_1$ on which the problem is not solvable and which has the property that the x_{2n-1} -width of D_{11} is not more than three fourths that of D_1 . We iterate this process, running cyclically through the real coordinate of C^n , and we obtain a shrinking sequence of sets on which our problem is not solvable. But there is an open covering $\{O_{\alpha}\}$ of \overline{D} such that on each $O_{\alpha} \cap D$, ϕ has a harmonic majorant. One of the domains on which ϕ has no harmonic majorant will fall inside some $O_{\alpha} \cap D$, which is a contradiction. Therefore Lemma 4 is proved.

By using Lemmas 2, 3, 4, we are going to prove our theorem.

Proof of theorem. Suppose theorem does not hold. Let D_1 and D_2 be subdomains of D constructed in Lemma 2. If there were functions $F_i \in N^p(D_i)$ such that for every $\alpha \in I$ and $i = 1, 2, F_i f_{\alpha}^{-1}$ belongs to inv $N^p(D_i \cap V_{\alpha})$. Then $F_1F_2^{-1} = F_1f_2^{-1}f_{\alpha}F_2^{-1}$ would be inv $N^p(D_1 \cap D_2 \cap V_{\alpha})$ for every α . Thus, $F_1F_2^{-1}$ would be in

$$\operatorname{inv} N^p_{\operatorname{loc}}(D_{\scriptscriptstyle 1} \cap D_{\scriptscriptstyle 2}) = \operatorname{inv} N^p(D_{\scriptscriptstyle 1} \cap D_{\scriptscriptstyle 2})$$
 .

By Lemma 4, if we set $\tilde{F} = F_1 F_2^{-1}$, then $(\log^+ |\tilde{F}|)^p$ and $(\log^- |\tilde{F}|)^p$ have harmonic majorants in $D_1 \cap D_2$. So if $\tilde{F} = e^f$, then $|\operatorname{Re} f|^p = (\log^+ |\tilde{F}| + \log^- |\tilde{F}|)^p$. Therefore $|\operatorname{Re} f|^p$ has a harmonic majorant. From Lemma 3, we can write $f = f_1 + f_2$, where $f_i \in O(D_i)$, i = 1, 2, and $|\operatorname{Re} f_i|^p$ has a harmonic majorant in D_i , respectively. If we set $G_1 = \exp(f_1)$, $G_2 = \exp(-f_2)$, then $(\log^+ |G_i|)^p$, $(\log^- |G_i|)^p \leq |\operatorname{Re} f_i|^p$, i = 1, 2, respectively. Therefore G_i , i = 1, 2, is an invertible element of $N^p(D_i)$, respectively. Moreover, $F_1F_2^{-1} = \exp(f_1)\exp(f_2) = \exp(f) = G_1G_2^{-1}$. If we define $F = F_1G_1^{-1}$ on D_1 and $F = F_2G_2^{-1}$ on D_2 , then $F \in N^p(D)$ and for each $\alpha \in I$, $Ff_{\alpha}^{-1} \in \operatorname{inv} N_{\operatorname{loc}}^p(V_{\alpha} \cap D)$. But this is impossible since we have assumed our theorem not to be true. So we can assume that our problem is not solvable on D_1 . We iterate the same process as in the proof of Lemma 4, and we have a contradiction. Therefore theorem is proved.

References

^{1.} P. M. Gauthier and W. Hengartner, Local harmonic majorants of functions subharmonic in the unit disc, J. Analyse Math., **26** (1973), 405-412.

^{2.} I. Lieb, Die Cauchy-Riemannschen differentialgleichungen auf streng pseudokonvexen Gebieten: Stetige Randwerte, Math. Ann., **199** (1972), 241-256.

^{3.} E. M. Stein, Boundary behavior of holomorphic functions of several complex

variables, Princeton University Press, Princeton, 1972.

4. E. L. Stout, The second Cousin problem with bounded data, Pacific J. Math., 26 (1968), 379-387.

5. ____, On the multiplicative Cousin problem with bounded data, Ann. Scuola Norm. Sup., XXVII (1973), 1-17.

6. ____, H^p-functions on strictly pseudoconvex domains, Amer. J. Math., **98** (1976), 821-852.

7. S. E. Zarantonello, The multiplicative Cousin problem and a zero set for the Nevanlinna class on the polydisc, Trans. Amer. Math. Soc., **200** (1974), 291-313.

Received October 28, 1977 and in revised form June 19, 1978.

NAGASAKI UNIVERSITY 1–14, Bunkyo-machi, Nagasaki Japan