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ON y-CLOSED SUBSPACES OF X, FOR BANACH SPACES
J c 7 ; EXISTENCE OF ALTERNATING ELEMENTS

IN SUBSPACES OF C(J)

JURGEN VOIGT

If Z c 7 are Banach spaces, with continuous embedding,
we consider property (P3): If L c l i s a closed subspace of
Y, then L is finite dimensional. If the embedding XL+Y is
compact (property (PI)), then (P3) follows. It is shown that
(PI) implies also (P2): In (P3) the dimension of L can be
estimated from above in terms of the norm of the mapping
id: (L, 11 I \γ) -»(L, 11 \]x). For some examples which are known
to satisfy (P3) but not (PI), we show that also (P2) is valid.

The main tool for the proof of (PI) => (P2) is the exis-
tence of "alternating" elements in subspaces of Rk and
C[0, 1]. In order to obtain such elements we investigate the
structure of certain subsets of the unit cube in Rk.

Introduction* Let (Y, || ||r) be a Banach space, I c Γ a linear
subspace which is also a Banach space (X, || | | x ) , with continuous

embedding id: (X, || | |A) -> (Γ, || - | | F ) . If additionally

(PI) id:(X, || \\x) > (Y, || ||F) is compact,

then

(P3) any || \\γ-closed subspace LaY, which is contained in X, is
finite dimensional.

(The closed graph theorem shows that || | | F and || \\z are equivalent

on L, and then (PI) implies that the unit ball in L is relatively

compact.) There are, however, examples of pairs (X, Y) which

satisfy (P3) but not (PI) ([3], [6], [7]).

In order to state a quantitative version of (P3) we define the

function φ: [0, <>o) —> iV0 U ί0 0},

= φ(K; X,
: = sup {dim L; L c l linear subspace, | |x | | .Γ ^ K\\x\\γ(x e L)}

= sup {dim L; L c l linear subspace, NL ^ K) ,

where

NL: = s u p { | | a ? | U ; α ? 6 l / , | |a? | | r ^ 1 }

is t h e norm of the mapping id: (L, || | |F) —> (L, || | | x ) . Then

(P2) φ{K) < oo for all Ke[0, oo)
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implies (P3): If LaX is || ||F-closed in Y, then id: (L, || |lr)->
(L, ll llx) is continuous by the closed graph theorem, i.e., NL < oo.
Therefore dim L <: φ(NL) < oo.

With the function ψ: No -+ [0, oo],

ψ(n)( = ψ(n; X, Y))

: = inf {NL'y LaX linear subspace. dim L ̂  n)

(ψ(n) = oo if n > dimX), it is easy to see that (P2) is equivalent to

(P2') ψ{n) > oo for n > oo .

The function φ was defined in [6], [7] in the context considered
there. For the same case Pajor defined the function ψ and noticed
the equivalence of (P2) and (P2') (private communication of M.
Rogalski to R. Tandler, 1977).

For Y: = C[0,1], X: = W&0,1), 1< p ^oo, property (PI) is satisfied.
I n [6], [7] it is shown that also (P2) is satisfied. The function φ is
not calculated explicitly, its finiteness being proved by a compactness
argument. The search for an explicit expression of φ for this case
was the starting point of this paper. We obtain it not only for the
cases 1 < p ̂  oo but also for p = 1, thereby giving a new proof of
(P3) for this latter case (§4).

For the computation of φ in the cases just mentioned we use
the existence of alternating elements in the || lU-unit ball of sub-
spaces of C[0,1] (§2). These elements are also used to obtain (Pl)=>
(P2) for the special case XaY = C[0,1]. It turns out that this case
is already the general case for a pair (X, Y) satisfying (Pl)(§3).

1* Subsets of alternating elements in the unit cube in Rh+ We
are going to use the following notations: For JceNQ we denote by

Ek: = [-1, 1]* = {xeRk; | | s |L ̂  1}, E° = {0} ,

the unit cube in βfc( = unit ball in (R\ || | | J ) .
For n e N we define

Fί,n: = {x e Ek; there exist 1 ^ j 1 < j 2 < < j n £ k such that

α i r = ± ( - l ) * - r ( r = 1, ••-,%)},

Fjcn' — Fk,n U Ft,n

For convenience of notation we also denote Fkt0 = Fϊ,Q = F^Q = Ek.
Let us note that Fkfl — {xe Ek\ | |α||oo= 1} is just the boundary of Ek.
Also the following identities are easily proved:

Fk,n ~ —Fk,n, Fk>n = —Fk>n ,

Fit% n Fι% - Fk,n+1(n eN), Fk,% = 0 for n > k .
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THEOREM 1.1.1 For all ke No there exists a homeomorphism

gk: E
k > Ft+lil ,

with the following additional properties:
(a) gk(-x) = -gk(x) for all xeFkΛ ,
(b) for all n e λτ, the mapping gk induces homeomorphisms

„ \ i , v. JP(±) J71(±)
9k I Fψl' * k,n > * A + l . Λ + 1

Proof. We proceed by induction on k. For k = 0 we have the
unique map g0: E° = {0} —> i^ti = {(1)}, which has properties (a), (b)
because the sets considered there are empty.

Let us assume that the statement is true for k — 1. Then we
define a mapping

9k'' ft k,i > ft k+i,2 >

i/&\«*V — ) \ίf k — IV ^-ΊJ 1 ^k—lJf ^k) JL-t- -1- ^ ™k ^ •*- f

\( Π ( rγ, . . . /v. \ IN if /y. _ _ 1

for a; = (xx, , xk) e Fk>1. At the end of proof we are going to
extend gk to the desired homeomorphism gk. Before we do this we
want to show some properties of gk.

( i ) We show that gk is a homeomorphism. It is easy to see
that FkΛ is the union of the three closed sets

G±: •=- {xeEk; xk = ±1} ,

GΊ = {x e Ek; (x19 •- , xk.x) e Fk_1Λ) ,

and that Fk+U2 is the union of three closed sets

H±: = {y 6 Ek+ι; (y19 --',yk)e FΐΛ, y k + 1 = ± 1 } ,

JET: ={yeEk+1; (yί9 - , yk) e FkΛ) .

Now, gγc: = gk\G-: G~ —> If" is a homeomorphism, by the assumption
that gk_x: E

k~ι ~> FiΛ is a homeomorphism. Taking into account FkΛ =
— Ft>u we obtain by the same argument that #ί : = ̂ U + G+ — > ίf+

is a homeomorphism. If xeG' is such that % = 1, then from
(x19 •••, X π J e f π , ! we obtain f̂c(αj) = ( — gk-i( — Xi9 •••> ~%-i)? 1) =
(^-i(^i, , ίCfc_i), 1) by property (a) of Theorem 1.1. This shows that
for all xeG' we have gk(x) = (gk-i(xlf " 9xk-i),xk) So we obtain
that gk: = gk\σ>: G' —> H' is a homeomorphism, by the assumption that
gk-i\Fk_ι t' Fk_ul—> Fk>2 is a homeomorphism (property (b) of Theorem
l.i). - ' '

From what we have shown it follows that gk is continuous. To
show that gk is a homeomorphism it suffices to show the equalities

1 Concerning the results of this section cf. "Added in proof, 1."
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gk(G~nG+)=H-DH+ ,

gk(G± ΓΊ G') = H* n fΓ ,

because #J: G* —> iϊ* and gί: G' —» fΓ are homeomorphisms. The first
equality follows from G~ Π G+ = 0, H~ ΓΊ i ϊ + = 0 . To show the
remaining two equalities we note

G± n G' = {z G £7*; (a?lf , %_J G 2 ^ ^ , % = ±1} ,

If x G jF\fl, i/ G Fk+U2, gk(x) = 2/, then:

x G G ± n G'

<=>τ/G£Γ ± nίί / .

(ii) For all xeFkΛ we have ^fc( — x) = —gk{x)- This follows
directly from the definition of gk if x is such that xk = ± 1 . If — 1 <
% < 1 t h e n (a?!, •••, O s ί i - u j a n d (flr&_i( — a?i, •••, E*-I)> — % ) =

— (flTjb-i(»i> •••,%-!) ,%) fo l lows f r o m (a) of T h e o r e m 1.1.

(iii) For all neN, glc induces homeomorphisms
gk I Fk~n' -F k,n ^ J- k + l,n + l

In view of (i) and (ii), it is sufficient to show gk(Fkyn) = Fk+1>n+1. So
let x e Fk>1, y e Fk+U2, y = gk(x): then:

x G F+

{ (1.) (x x ) G JP~ and 'a? = 1

or (2) (a?!, , cCfc.O G Fί_1|Λ and xfc < 1

(or (2) (i/i, , yk) = gk-i(xίf , ̂ &-i) G j^i^+i and yk+ι < 1

Finally we extend gk to a homeomorphism gk: E
k -> Fί+1)1. Denote

by £ the point (1,1, , 1) 6 Ek+1. For a; G FkΛ, 0 ̂  ί ^ 1 we define

Sffc(tx): = t0fc(x) + (1 — t)ί .

From ΰk(x)€Fk+ι>2 we obtain immediately gk(tx)e F£+1Λ. For zeEk,
the extension #& can also be written as

(» if 2 = 0,
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which shows that gk is continuous. If y e Fuhl, y Φ y, then

y
\\y — 2/ll

* eFk+1,2,

and #fc(z) = = y. This shows that gk is surjective. In fact it is
easily calculated that the expression obtained above yields the inverse

gΛy)= 2 - °"~* v ' -\\y-y\\o

 l f

0 if y = y

of gk. This shows that gk is bijective as well as that gk* is continuous.
So we have obtained a homeomorphism #*: jEfc —> Fϊ+lyl. The pro-

perties of gk proved in (ii), (iii) show that gk satisfies (a), (b) of
Theorem 1.1.

COROLLARY 1.2. For n, ke N, 1 ^ n ^ fc, there exists a homeo-
morphism fk}n: Fk-nΛ.ltl—> F]c>n which also satisfies fk,n( — x) — —fk,Jiχ)
for all xeFk-n+ltl.

Proof. From Theorem 1.1 we obtain that

is the desired homeomorphism.

Let us note that, for our application in §2, it would have been
sufficient to show that the mappings considered in Theorem 1.1 and
Corollary 1.2 are continuous.

2* Alternating elements of subspaces of Rk and C(J).

THEOREM 2.1. Let keN. Let LaRk be a linear subspace,
n: = dim L(^fc). Then there exists x — (x19 , xk) e L with the follow-
ing properties: \\x\\n ̂  1, and there exist 1 ^ j \ < j 2 < < j \ ̂  k
such that Xjr — ( — l ) r for all r = 1, , n.

Proof.2 With Fkf% from §1, one has to show that Lf)Fktn Φ 0 .
There exist linear functionals If. Rk —> R, j = 1, - , k ~ n, such that
L = f|y=Γ i7J(0). Then ί: = (Zlf , ί ^ J I ^ , . : ^ , . -* # f c~u is continuous,
and Z( — a;) = —l(x)(xeFktn) by the linearity of I. From Corollary
1.2 we obtain that l°fk,n: Fk_n+1Λ—> Rk~n is a continuous mapping
satisfying l°fhtn(-x) = -l°fk,n(^) for all α e JF\_ Λ + 1 > 1 . NOW jPfc_%+1)1 =

2 A simplified proof is sketched in "Added in proof, 1."



258 JURGEN VOIGT

dEk~n+1, where Ek~n+ι = {xeRk~n+1; H^L < 1} is open, bounded, sym-
metric, and OeEk~n+1, and therefore Borsuk's theorem implies that
there exists xeFk-n+ltl such that l°fk,n{x) = ° ([9, Corollary 3.29],
[2, §10, Satz 3]). This shows fk>n(x)eLf] Fk,n φ 0 .

REMARK 2.2. One might be tempted to think that Theorem 2.1
is a special case of a more general statement which would say that,
under the assumptions of Theorem 2.1, for any w-tuple y =
(Vu •••> 2/Je{-l, l}n there exist xeL, | |#|U ^ 1, and 1 £ j ί < <
j n <; & such that xjr = yr(r = 1, , n). Such a statement, however,
is not true, as the following example shows: Let LczR3 be the 2-
dimensional space spanned by (1, 1, —2), (1, —2, 1). Then there is no
xeL, II&IL ^ 1, which has + 1 in two coordinates.

In order to state the next theorem we need a definition. By a
compact totally ordered set we understand a totally ordered set J =
(J, <;) which is compact in the order topology (cf. [4, Exercise (6.96)]).
By C(J) we denote the Banach space of continuous real-valued func-
tions, endowed with the supremum norm.

THEOREM 2.3. Let J be a compact totally ordered set. Let
L c C(J) be a linear subspace, dim L >̂ n(e No). Then there exists
f eL with the following properties: | | / |U S 1, and there exist tl9 ,
tn^J1t1<t2< — < tn, such that f(tr) = ( — iy for all r = 1, •••,%.

Proof. Without restriction we may assume dim L = w. There
exist Si, , sn6 J such that dim {(/(sj, , / ( s j ) ; / e L } = %. From
d i m L = n it follows that for each α; e i ί Λ there exists a unique f eL
with /(s,-) = Xj(j = 1, •••,%), that the mapping Rnsx\-+ f e C(J) thus
defined is linear and continuous, and therefore

C: = sup {II/IU; | / ( ^ . ) | ^ 1 for all j = 1, . • , n) < - .

We define the system ^~\ — {FaJ; F finite, {s19 •••, s j c ί 7 } , which
is directed by inclusion. For each FeJ^F = {̂ , , tk}, tt<t2<
••• < tkf the set {(/(ti), •••, f(tk)); feL} is then a linear subspace
of Rk, of dimension n. By Theorem 2.1 there exists fF e L : | / F (* i) | ^
l ( j = 1, •••,&), and there exist 1 <; i x < < j n <: k such that
fF(tir) = ( - l ) r ( r = 1, , n). We define tF = (if, , ί ί ) : - (ί^, , tin),
zF: = (/F, t F ) . Then (^) F 6 ^- is a net in L x {(«„ , tn) e Jn; tx^t2^
. . . ^ ί.}. Moreover H/^IU ̂  C since {«„ ••., β j c f and \fF(t)\ ^ 1
for all teF. Now JBC: = {/eL; | | / | U ^ C} is compact in C(J) (and
therefore equicontiuous), and {(tlr « , ί j e/ w ; ^ <; £2 <;-«-<:£„} is
compact. This implies that the net (zF)Fejr has a cluster point
(/, (ίi, , O) , / 6 Bc, (tlf , ί j e J , *t ^ . ^ ίH.
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Let ε > 0. Since Bo is equicontinuous and J is compact we obtain
an open covering (Ul, , U;,(β>) of J such that for alH e {1, , m(ε)},
t, t' eUί,fe Bc we have |/(t) - /(£')! ^ s. For r = 1, , w we choose
ir such that t r e U\r. Let ί e J. Since (/, (ίlf , tn)) is a cluster point
of (zF)Fe,,-f there exists FeJ^teF, such that | | / - jTIU ^ ε, £?e
U\r{r = 1, , w). This implies

S \f(tr) - /*(ίr)l + \fF(tr) - /^(ίf)| ^ 2ε ,

Since ε > 0 and teJ were arbitrary, we obtain f(tr) = ( —l) r(r = 1,
. , n), and ] |/ |U ^ 1. Finally, /(ί r ) Φ f(tr+ι) together with tr ^ tr+ι

implies tr < tr+1(r = 1, , n — 1).

3 (PI) implies (P2) Let the function h: [0, oo)~>[0, oo) be a
modulus of continuity, i.e., fo is nondecreasing, and h(0) =

= 0. We denote

LipΛ[0, 1]: = {/: [0, 1] > R; f continuous, there exists C i> 0

such that |/(t) - /(ί')l ^ Cft(|ί - ί'|) for all ί, t ' e [0,1]} .

0, 1], endowed with the norm ||/f|λ: = H/IU + | / | Λ , where

I / \h: = inf {C ^ 0; I /(ί) - /(f) | ^ CΛ(| t- - f |) for all ί, f e [0, 1]} ,

is a Banach space.
For X: = Lip JO, 1], Γ: = C[0, 1], the Arzela-Ascoli theorem

implies that (PI) is satisfied. We are going to show that (P2) is also
satisfied, and that this implies (PI) => (P2) in general.

THEOREM 3.1. Let h be a modulus of continuity. Let X: —
ip,* [0, 1], Y: = C[0, 1]. Then (P2) is satisfied, more 'precisely

1 + 2h(—-—) ' (n eN,n^ 2)
\n — 1/

(where h(l/(n - I))" 1 = oo if h(l/(n - 1)) = 0).

Proof. Let L c LipA [0, 1] be a subspace of dimension ^> n^2.
By Theorem 2.3 there exist / e L, H/IU = 1, 0 ^ ^ < < tn <: 1
such that f(tr) = ( — l) r (r = 1, •••,%). I t follows that there exists
r 6 {2, , w} such that fcr — tr^ ^ l/(w — 1). This implies

h{\tr -tr-x\) \n
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NL = supί||/||Λ; /eLJI/IU ^ 1} ̂  1 + 2λ(—A—Γ ,
\n — 1/

therefore α/K™) ̂  1 + 2h(l/n - I))"1. (If A(l/(w - 1)) = 0, then LipΛ[0, 1]
consists of the constant functions, dim LipΛ [0, 1] = 1, ψ(n) — oo.)

THEOREM 3.2. (PI) implies (P2).

Proof* Let (X, Y) satisfy (PI). Without restriction we may
assume that X is dense in Y, and that X and Y are Banach spaces
over R. Since the unit ball B of X is relatively compact in Y we
conclude that Y is separable. (SF is a compact metric space, therefore
separable; X= \JneNnB is dense in Y.) Now a theorem of Banach
and Mazur states that the separable Banach space Y is norm isomorphic
to a closed subspace of C[0, 1] ([1, Ch. XI, §8, Theoreme 9], cf. [5,
§21.3, (6)]). So we may assume without restriction that F i s a closed
subspace of C[0, 1].

Now the unit ball B of X is relatively compact in C[0, 1], there-
fore uniformly equicontinuous. This implies that h: [0, oo)—> [0, oo),

h(s): = sup{|/(ί) - /(ί')l *, *'e[0, l],\t - t'\ £ 8, f eB} ,

is a modulus of continuity. By the definition of h, we have \f\h<^l
for all feB. Let JV be the norm of the injection id: {X, \\ | |x) -»
(Γ, | | . | | r ) . Then | | / | | A = | | / | L + | /k <* 2SΓ||/||X + 1 ̂  iSΓ + l ( / e B)
shows that the injection id: (X, || ||x)-^LipΛ[0, 1] is continuous. Now
the desired statement follows from Theorem 3.1 together with Lemma
3.3 proved subsequently.

LEMMA 3.3. Let (X, Y) satisfy (P2). Let I c I be a Banach
space, with continuous embedding X^+ X. Then (X, Y) satisfies (P2).
If N is the norm of the embedding XC=^X, then ψ(n; X, Y) ̂

; X, Y), φ(K; X, Y) £ <p(N-K; X, Y).

Proof. Let L c I be a subspace of dimension ^ n. Then L c l ,
and

; X, Y) ̂  sup{||x||x; xeL, \\x\\γ ̂  1}

\x\\r,xeL, \\x\\r ̂ 1} .

This implies <ψ{n; X, Γ) ̂  N^ψin; X, Γ), and therefore (P2) for
(X, Y).

If if ;> 0, and L c l i s a linear subspace with

\\x\\i£K\\xMxeL),

An alternative proof is sketched in "Added in proof, 2."
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then \\x\\x^N\\x | |* ̂ NK\\x\\γ(xeL) shows that dimL^φ(N K;X,Y).
This proves the inequality for φ.

EXAMPLE 3.4. Let 0 < a ^ 1, ha(s): = sa(s ^ 0). Then X: =
LipAα [0, 1] is just the space of Holder continuous functions, with
Holder exponent a. Let Y: — C[0, 1], (This is a special case of a
situation considered in [10, VI. 3].) We are going to calculate

ψ(n; a) = 1 + 2(n - l)a (n e N)

for this case. From Theorem 3.1 we obtain " ^ " for n ^ 2. To
obtain "<;" we consider

L: = \fe C[0, 1]; / affine linear on all intervals p " 1 , — ί — Ί ,
^ L^ — 1 n — 1J

i = 1, , n — 1

Then L c LipΛα [0, 1], dim L = n. If / e L, | | / |U ^ 1, then it is easy
to show \f(t)*~ f(t')\ ^ 2{n - l)a\t - t'\a(t, t' e [0, 1]), and therefore

^ 1 + 2(n - l)α. This implies «^w.
= 1 is true in the situation of Theorem 3.1: " ^ " follows

from II/IU ^ | | / | | A ( / 6 Lipλ [0, 1]), and "<;" is obtained by considering
the constant functions.

4* Uniformly closed spaces of functions of bounded variation*
For a compact totally ordered set J, we denote by CBV(J) the space
of continuous functions of bounded variation,

CBV(J) = {/: J >R; f c o n t i n u o u s , \f\v < oo} ,

w h e r e

I / I F : = s u p J Σ | / ( ί i ) - / ( ί i _ 1 ) | ; ί0, , t, e J, t0 ^ • • ̂  tx

CBV(J), endowed with the norm | | / | | F : = II/IU + I / I F , is a Banach
space.

THEOREM 4.1. Let J be a compact totally ordered set, X: =
CBV(J\ Y: = C(J). ΓAew (X, Γ) satisfies (P2); more precisely f(n) ^

e N).4

Proof. Let LaCBV(J) be a linear subspace of dimension^ n.
By Theorem 2.3 there exist feL, | | / |U = 1, tlf , ίn e J, t, < < tn,
such that f(tr) - (-l) r(r = 1, , n). This implies | | / | | F - | | / |U +
I / \v ^ 1 + 2{n - 1), NL ^ 1 + 2(n - 1). This proves ψ(n) ^ 1 + 2(w - 1).

4 cf. "Added in proof, 3."



262 JURGEN VOIGT

REMARK 4.2. (a) Theorem 4.1 implies that (CBV(J), C(J)) satisfies
(P3). For J = [0,1], this statement is due to Mokobodzki and Rogalski
[6, Theoreme 9]; cf. also [7, Theoreme 16]. A more general statement
has been obtained by Pajor (cf. [7, Theoreme 22]).

(b) For 1 <, p ^ oo we consider Y: = C[0, 1], X: = TF*(O, 1) (the
Sobolev space of real, absolutely continuous functions whose derivative
is in Lp(0, 1)). As norm on Wι

p(0, 1) we take \\f\\cp: = (|/|L + \\f'\\p.
For p > 1, property (PI) is satisfied (cf. [6, proof of Proposition 1]).
In [6], [7] it is shown that, for p > 1, the function φ(K; p): =
φ(K; WJ(0,1), C[0,1]) is finite for all K < oo, but no explicit upper
bound was obtained. Also the problem was posed if limp_+1)P>1 φ(K; p)
is finite. ([6, Probleme 6], [7, Probleme 7]; let us note that our
function φ(K; p) is slightly different from <p(K, p) considered in [6],
[7], but it is easy to see that the formulations of the problem are
equivalent.)

From \f\v = H/ΊL ^ Wf'Ufe Wi(0, 1)), which implies that the
embeddings WJ(0,1) ^ Wί(0,1)^>CBV[O, 1] have norm ^ 1, and Lemma
3.3 we obtain φ(K; p) ^ <p(K; 1) ^ φ(K; CBV[0, 1], C[0, 1]). To calculate
the last quantity, let LaCBV[0,1] be a linear subspace. If K is
a bound for the mapping id: (Z#, || HJ -> (L, || | |F), and n = dim L,
then Theorem 4.1 implies K^ 2n — 1, n ^ [(If + l)/2](= max {̂  e N; n ^
(Z" + l)/2}) This shows ^(iΓ; 2?) ^ [(if + l)/2]. The subspace La
TF̂ (O, 1), defined in Example 3.4, is an ^-dimensional subspace for
which NL = 2n — 1; thus we obtain

(Cf. [7, example at the end of §111].) This solves the problem men-
tioned above. At the same time we have calculated φ(K; 1) ([6,
Probleme 11], [7, Probleme 19]).

5* Examples •

EXAMPLE 5.1. Let / be an index set. Let l^p <qS°°, X'- =
19(I), Y: = lq(I). (Here the elements of lp(I) are taken K-valued,
K = R or C.) If / is infinite, then (PI) is not satisfied. It follows
from [3, Theoreme 2, (2)] that (P3) is satisfied. We are going to
show that (P2) is also satisfied. In order to do this and to calculate
ψ(n; p, q): = ψ(n; lP(I), lq(I)) we proof an estimate.

LEMMA 5.2. Let L c c / J ) be a subspace with dim L ^ n{ 6 NQ).
Then there exists xeL, \\x\\oo ^ 1, c a r d i e / ; \x(c)\ = 1} ^ n.

Proof, (i) If J c l , card J < n, then there exists 0 ^ y eL such
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that y(c) = 0 for all ceJ. Proof: If we define the linear forms
f:L-*K,f(x):=x(c) (where x = (x(ή; eel)), then f\tBjfr\O) is a
subspace of L, of codimension <s card J < n. This shows that
Γ\<ejfrX0) cannot be all of L.

( i i ) Let xeL, WxWn^l, card {eel; \x(c)\ =1} £ n - 1 . Then

there exists xeL, \\ x IU <; 1, card{<: 61; | x(c) | = 1} > card{£ 6 /; | x(c) | = 1}.
Proof: From (i) we obtain 0 Φ y eL, y(ή = 0 for all * e J with x(ή = 1.
It is easy to see that there exists t > 0 such that ||sc + tylL = 1>
card {* e l ; |α(<0 + ty(e)\ = 1} ̂  c a r d i e I; | α? CO I = 1} + l (Take ί: =
inf {s ̂  0; \\x + si/IU > 1}, and use α?(*) -> 0, y(ή -> 0 for ^ ~> oo'?.)

(iii) From (ii) the desired statement follows by induction.

There is a slight similarity between Lemma 5.2 and Theorem 2.3.
Indeed, for I = N, we may consider the compact totally ordered set
j = iVU {°°} and obtain the statement of Lemma 5.2 from Theorem
2.3.

ESTIMATE 5.3. Let 1 ^ p < oo; let L<zl9(I) be a subspace,
^ n. Then sup{p|l*>; ^ L , ||x|U ̂  1} ̂  n1/p.

Proof. For the element xeL obtained from Lemma 5.2 we have

Continuation of Example 5.1. We are going to show

p)-wg) for n 6 JVO w i t h n ^ card I,

(oo for w e No with ^ > card J ,

thereby establishing (P2).
Let L c lp(I) be a subspace, dim L ^ n (then necessarily

card / ) , and let NL be the norm of the mapping id: (L, || ||7) -» (L, ||
For a? 6 L, we then have

and therefore sup{||a;||p; xeL, | |a?|U^l}^i^l/(g-p>. Now Estimate 5.3
implies w1/p ^ NΫ"-*, n{ί/p)-{1/q) ^ iNΓL, which shows ψ<w) ̂  ^(v^-d/^).

To show equality, we take J c J , card J = n9 and consider L: =
{xeK1; x(c) = 0 for all *gj}. If cceL, then Holder's inequality
implies pH,, ̂  nll/p)"il/q)\\x\\q9 which shows NL^n{ι/p)'il/q).

EXAMPLE 5.4. Let μ be a probability measure on a measure
space. Let 1 <: p < oo, χ : = Loo(^), Y: = Lp(μ). Except if μ is atomic,
(PI) is not satisfied. By [3, Theoreme 1], (X, Y) satisfies (P3). From
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a different proof for this fact, given in [8, Theoreia 5.2], we obtain
that also (P2) is satisfied: If LaL^iμ), dimL ^ n, and NL =

; / e L , | | / | | p ^ 1}, then the proof in [8, loc. cit.] shows

NL ^ w1/p for p ^ 2 , JVL ̂  w1/2 for 1 ̂  p ^ 2 .

This implies

ψ(n\ p) ̂  nί/p for p ̂  2 , f(n\ p) ̂  w1/2 for 1 ̂  p ^ 2 .

It seems to the author that the best bound should be ψ(n; p) ̂  n1/p

for all pe[ l , cχ>). This is correct for p ;> 2: Taking ^ = Lebesgue
measure on [0,1], and considering

L: = {/: [0, 1] > K; f constant on (J ~ 1 , ί~

for all j — 1, , n

one obtains ψ(n; p) ̂  n1/p for this special case. The above distinction
for p ^ 2, p <̂  2 comes from the fact that the bound is first calculated
for p = 2.

REMARK 5.5. We presented Examples 5.1 and 5.4 because for
these Examples (PI) is not satisfied but (P3) is satisfied, and moreover
even (P2) is satisfied. This raises the question for an example
satisfying (P3) but not (P2), or else whether it can be proved that
(P2) and (P3) are equivalent.5 Also, for noncountable index set J,
Example 5.1 provides an example of nonseparable spaces satisfying
(P2).

Added in proof. 1. In this remark we sketch a simplified
version of the proof of Theorem 2.1.

From the proof of Theorem 2.1 it is clear that for this proof
it would be sufficient to know that for the set Fk,n the following
Borsuk's tpye theorem is valid.

THEOREM A.I. Let k,neN, n^k. Let l:Fk>n-*Rk~n be con-
tinuous and odd (i.e., ί(—x) = — l{x)) Then there exists xeFktn

such that l(x) = 0.

The whole object of § 1 in our context is to prove the existence
of the homeomorphism fk>n: Fk_n+ί)1 -> Fk>n of Corollary 1.2; this ho-
meomorphism is used in the proof of Theorem 2.1 to obtain implicitly

cf. "Added in proof, 4."
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the statement of Theorem A.I. We are going to indicate a simpler
proof of Theorem A.I.

LEMMA A.2. For k, neN, l<^nt^k — l, there exists hktn: Fkil—>R,
continuous and odd, such that hk)\(Q) f] Fk,n = Fk>n+1.

Proof. Define hk,n: Fk,n -• R by

. fdist (a;, Fk,n+1) if xeFk

+

9% ,
k'nX ( — d i s t (x, Fk>n+1) if x 6 Fk,n .

Standard arguments show that hk>n can be extended to a continuous
and odd mapping hkyn\ Fk>1 —> R, which then has the desired properties.

Proof of Theorem A.I. Extend I to a continuous and odd
mapping ΐ: Fktn —> JR*-* Apply Borsuk's theorem ([9, Corollary
3.29], [2, §10, Satz 3]) to the mapping (ΐ, hk,n_ly hk,n_2, •••, hkίl):Fktί->
Rk~\ to obtain $ e 2 ^ with (Γ, hk,n-19 , Λfc>1)(α?) = O. Now O = hkyl(x)~
hk,2(

χ) — * = ^n-iCfc) imply a? e i*7^, and so Z(a?) = ΐ(x) = O.
The author is indebted to N. Rogler for a discussion as a con-

sequence of which he found this proof of Theorem A.I.

2. An alternative (and very natural) proof of Theorem 3.2 (PI) ==>
(P2)) was communicated by R. Tandler. His proof exploits directly
the fact that the 4ίΓ-ball BAK in X is precompact in Y. The number
of translates of the unit ball in Y which is needed to cover B4K is
shown to be an estimate for φ(K; X, Y).

3. In § 4 we were restricted to the case of real valued functions
because Theorem 2.3 is valid only for real valued functions. On the
other hand, if E is a finite dimensional (real or complex) Banach
space, then (P3) is known for (X: = CBV(J; E), Y: - C(J; E)) [10,
Satz IV.4]. In this remark we want to indicate how to carry over
Theorem 4.1 to the case of iίm-valued functions. (This also covers
the case of Cm-valued functions.)

We consider Rm endowed with the norm || |U. Let I: ={1, , m},
J a totally ordered compact set; then I x J, with lexicographical
order, is a totally ordered compact set. Define j : C(J; Rm) 9 / H *
feC(IxJ) by f(i, t): = /,(«) (ieI,teJ). If LaCBV(J:Rm) is a
subspace of dimension ^n, then L: = j(L)aCBV(IxJ) has dimension
^n, and by Theorem 2.3 there exists feL such that 11/11̂  = 1, \f\v

Then 11/11^=11/11^ = 1, and | | / | | F ^ l + m - 1 ( i / | F - 2 ( m - 1))
) - l . For X=CBV(J; Rm), Y=C(J: Rm), this implies ψ(n: X, Y)

- 1, and therefore (P2).
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4. In this remark we indicate an example satisfying (P3) but
not (P2); cf. Remark 5.5.

For meN, let l^m) be Rm, with norm || ][x. For p — 1, 2, we
denote the ί̂ -sum of (l1(m);meN) by

l/p

)

Then (X: - Σ 1 k(m), Y: = Σ 2 k(rrή) satisfies (P3) but not (P2):
Obviously ψ(n; X, Y) = 1 for all neN, therefore (P2) is not

satisfied.
Let L c l be a subspace which is closed in Y. It is easy to see

that Fis reflexive, and therefore so is L. The norms \\-\\x and || ||F

are equivalent on L, by the closed graph theorem. Assume that L
is not finite dimensional. Since L is also closed in X, and X is k(N),
it would follow that L contains l,(N) [1, XII, §2, Theoreme 1], so
that L could not be reflexive. This yields a contradiction.
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